• Mon. Sep 16th, 2024

Newsblaze.co.ke

A site providing Education, TSC, Universities, Helb, Sports and Kuccps news

Form 2 Maths Exams and Marking Schemes Free

ByNews Blaze Digital Team

Sep 15, 2024

MATHEMATICS

TERM 3

ย 

NAME: โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆADM NOโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.

CLASSโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..DATEโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ

FORM TWO

MATHEMATICS

TIME: 2 ยฝ HOURS

Instructions

  1. Write your name, adm no. class and date in the spaces provided above.
  2. The paper consists of two sections: section I and section II.
  3. Answer all the questions in section I and any five in section II
  4. Section I has sixteen questions and section II has eight questions
  5. All answers and working must be written on the question paper in the spaces provided below each question.
  6. Show all the steps in your calculations, giving your answers at each stage in

the spaces below each question

  1. KNEC Mathematical table and silent non-programmable calculators

may be used.

ย 


FOR EXAMINERโ€™S USE ONLY

ย 

SECTION I

ย 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total
ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย  ย 

ย 

SECTION II

GRAND TOTAL

ย 

 

17 18 19 20 21 22 23 24 Total
ย  ย  ย  ย  ย  ย  ย  ย  ย 

ย 

ย 

This paper consists of 14 printed pages

ย 

ย 

ย 

ย 

ย 

ย 

SECTION 1 (50 MARKS)

Answer any FIVE questions in this section in the spaces provided

1.Evaluate:ย ย ย ย ย ย ย ย ย  ย + ย ย ย  ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (3mks)

of ( ย +)

ย 

 

 

 

2.Express as a fraction.ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (2mks )

0.

 

 

 

 

3.Simplifyย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

 

 

 

  1. Fifteen tractors each working eight hours a day take eight days to plough a piece of land. How long would it take 24 tractors each working 10 hours a day to plough the same piece of land 3mks)

 

 

 

 

 

 

  1. The shaded region below shows the area swept out on a flat windscreen by a wiper. Calculate the area of the shaded region. (4mks)

 

 

 

4cm

 

 

16cmย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  120o

 

 

 

 

 

 

 

6.The mass of two bags of beans and three bags of salt is 410kg. If the mass of three bags of beans and two bags of salt is 390kg, find the mass of each bag.ย ย  ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

 

 

 

 

 

7.The interior angle of a regular polygon is twice the exterior angle.

  1. Find the number of sides of the polygon. (3mks)

 

 

 

 

  1. What is the name of the polygon? ย ย ย ย ย  (1mks)

 

 

  1. The angle of elevation of a church tower from a point A, 50 metres away from the foot of the church is 24o. Find the distance between A and B if the angle of elevation of the tower from B is 20o. (4mks)

 

 

 

 

 

 

 

9.The figure below is a cross section of a swimming pool 8m wide. Calculate the capacity of the pool in litres. ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

 

30m

 

1m

3m

 

 

 

 

 

 

 

 

 

  1. Three litres of water (density 1g/cmยณ) is added to twelve litres of alcohol (density 0.8/cmยณ).What is the density of the mixture? (3mks)

 

 

 

 

 

 

  1. The volume of two similar solid spheres are 4752cmยณ and 1408cmยณ. If the surface area of the small sphere is 352cmยฒ, find the surface area of the larger sphere. ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

 

 

 

  1. Solve for x in the equation = 32 (3mks)

 

 

 

 

 

  1. Momanyi spent one eight of his February Salary on farming, half on school fees and two thirds of the remainder on food. Calculate his February salary and the amount he spend on school fees if he spent sh. 3200 on food. (3marks)

 

 

 

 

  1. Form three inequalities that satisfy the unshaded region R. (3marks)

 

  1. A Kenyan tourist in US borrowed 10,000 US dollars to pay for his sonโ€™s examination.

He is expected to pay either in Kenyan shillings or through an account in the United Kingdom in

sterling pounds.ย  If he decided to pay through United Kingdom, how much would he save given

that

1 US dollarย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  = 82.4 Kenyan shillings

1 Sterling poundย ย ย ย ย ย ย ย  = 1.4 US dollar

1 Sterling poundย ย ย ย ย ย ย ย  = 105 Kenyan shillingsย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

 

 

 

 

  1. Solve for X in the equation. (3mks)

 

 

 

ย 

ย 

ย 

ย 

ย 

ย 

ย 

SECTION II (50MKS)

Answer any FIVE questions in this section in the spaces provided

  1. The figure below shows a glass in form of a frustrum of a cone whose top and bottom diameter of 7cm and 3.5cm respectively. Its depth is 10cm. Taking ,

Calculate;

  1. a) Its total surface area. (5 marks)

 

 

 

 

 

 

 

b). Its capacity in litres.ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย ย ย ย ย ย ย ย ย ย  (5 marks)

 

 

 

 

 

 

 

18.Two friends Jane and Tom live 40km apart. One day Jane left her house at 9.00am and cycled towards Tomโ€™s house at an average speed of 15km/hr. Tom left at 10.30am on the same day and cycled towards Janeโ€™s house at an average speed of 25km/hr.

  1. Determine;
  2. The distance from Janeโ€™s house, where the two friends met. (4 marks)

 

 

 

 

 

 

 

 

 

  1. The time they met. (2 marks)

 

 

 

 

  • How far Jane was from Tomโ€™s house when they met? (2 marks)

 

 

 

  1. The two friends took 10 minutes at the meeting point and they cycled to Tomโ€™s house at an average speed of 12km/hr. Find the time they arrived at Tomโ€™s house. (2 marks)

 

 

 

 

 

 

 

  1. Town Q is 180km on bearing of 050o from town P. Another town R is on a bearing 110o from P and also on compass bearing S 30oE from Q. Town S is South of P and also West of R.

Using scale 1 cm rep. 20 km;

  1. Draw the scale diagram to show the positions of the four towns. (6 marks)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Use your scale diagram in (a) above to find;
  2. The distance of R from P. (1 mark)

 

 

  1. The bearing of Q from S. (1 mark)

 

 

  • The distance of Q from S. (1 mark)

 

 

  1. How far P is North of S. (1 mark)

 

  1. The mark of 100 candidates for mathematics examination were distributed as follows.
marks No of candidates(f) Mid-point(x) fx c.f
30-34

35-39

40-44

45-49

50-54

55-59

60-64

 

5

24

26

24

13

6

2

 

     

 

(a)Calculate

(i) The mean markย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (2mks)

 

 

 

 

 

(ii) The medianย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

 

 

 

 

 

 

 

 

(b) On the grid provided, draw a histogram. ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (3mks)

 

(c) On the same graph, draw a frequency polygon. ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (1mk)

 

(d) Find the modal mark. ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย ย ย ย ย ย ย ย ย ย  (1mk)

 

 

 

 

 

 

 

 

 

 

  1. The figure below shows two circles of radii 10.5 and 8.4cm and with centres A and B respectively. The common chord PQ is 9cm.

(a)ย ย ย ย ย ย  Calculate angle PAQ. ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (2 mks)

 

 

 

 

 

 

 

 

 

 

(b)ย ย ย ย ย ย  Calculate angle PBQ.ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (2 mks)

 

 

 

 

 

 

 

(c)ย ย ย ย ย ย  Calculate the area of the shaded part. ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (6 mks)

 

 

 

 

 

 

 

  1. Three business partners; Kamau, Tatwa and Makau contributed Ksh. 100,000, Ksh. 80,000 and Ksh. 50,000 respectively to start a business. After one year, the business realized a profit which they shared in the ratio of their contributions.
    • If Makauโ€™s share of profit was Kshs. 20,000, how much was the total amount of profit?

(3mks)

 

 

 

 

 

 

 

  • At the beginning of the second year, Makau boosted his shares by Ksh. 10,000. If the business profit increased by 20% at the end of the second year, calculate:-
    • Kamauโ€™s share of the profit. ย  (4mks)

 

 

 

 

 

  • The difference between Kamauโ€™s and Tatwaโ€™s share of profit. ย  (3mks)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. (a) Show by shading the unwanted region, the region which satisfies the following inequalities (8mks)

 

Y > -3

4y โ‰ค5x + 20

2y < – 5 x + 10

4yโ‰ค -3x โ€“ 12

 

 

(b) Calculate the area of this region in a square units ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย ย ย ย ย  (2mks)

 

 

 

 

  1. Triangle ABC has the vertices A (3, 1), B (2, 2) and C (3, 4).

(a)ย  On the grid provided draw triangle ABC and its image A1B1C1 under a rotation of negative quarter turn about the point (0,0)ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย  (3 marks)

 

(b)ย ย  (i)ย  Draw triangle A11B11C11ย  the image of ย A1B1C1 under a reflection in the line y = -xย ย ย ย  (2 marks)

(ii)ย  Describe fully the transformation that maps A11B11C11 ontoย ย  ABCย ย ย ย ย ย ย ย ย ย ย  (2 marks)

 

(c)ย ย ย  (i)ย  On the same axes draw triangle A111B111C111 ย the image of ย  A11B11C11 under a translation given by translation Vector

(iii)ย  State the co ordinates ofย  A111B111C111ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  (2 marks)

ย ______________________________________________________________________________________

MATHEMATICS FORM 2

MARKING SCHEME

1Evaluate: ย + ย ย ย ย ย ย ย  + ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย ย ย  (2mks)

of ( ย + )

 

: ย + ย ย ย ย  +

of ( ย + )

 

+

=

 

=25+ ย = 25

 

 

  1. Let r= 0.1515

100r=15.1515

99r=15.0000

R= ย =

  1. Simplify (2mks)

a(y-x)= a(y-x) = a = -a

b(y-x)ย ย  – b(y-x) โ€“bย ย ย  b

  1. T Dย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  H

15ย ย ย ย ย ย ย ย ย ย ย ย ย ย  8ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  8

24ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  10

15/24ย ย ย ย ย ย ย ย ย  xย ย ย ย ย ย ย  8/10×8= 4 days

 

 

 

 

5.

 

 

A1 = 0/360 ย r2

=120/360×3.142×202=418.933cm2

4cmย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  = 2.68.117cm2

 

Area of shaded region.=418.933-268.17

16cmย ย ย ย ย ย ย ย ย ย ย  120oย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  =150.816cm2

 

 

 

  1. 2b+3s=410

3b+2s=390

4b+6s=820

9b+6b=1170

5b+0=350

5b=350

5ย ย ย ย  5

2×70+35=410

140+35=410

3s=410-140

3s=270

3ย ย ย ย ย  3

S=90

Beans=70bags

Salt=90bag

7a). Let the exterior angle be x

X+2x=180

3x=180

X=60o

noย  of sides

360/60=6

 

  1. b) Hexagon

 

  1. Tan 24o= h/50

50 tan 24o = H

Tan 20o = H/(50 +x)

(50+x) tan 20=H

18.1999+0.364x=22.26

0.3640c=22.26-18.199

0.364x=4.061

X=4.061

0.364

=11.16m

 

  1. Volume of water=Ah

A=1/2(1×3) x 30= 60m2

V=60m2 x 8m=480m3

1m3=1000L

480m3=?

480m3 x 1000L

1m3

= 480,000L

 

  1. Total vol = 15 litres = 15000cmยณ

Tota; mass = 3000g + (12000 ยด 0.8)g

= 3000g + 9600g = 12600gย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  M1

Densityย ย  = ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  M1

= 0.84g/cmยณย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  A1

 

  1. VSF = 3.375

LSF = ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  M1

ASF = (1.5)ยฒ

Area of larger cylinder

= 352 x 2.25= 792cmยฒย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  A1

  1. X 1- X = 32

 

( X 1- X =

 

 

 

 

13.

1.

February salary

School fees

 

 

M1

 

 

 

 

A1

 

 

B1

 

 

14.

2. B1

B1

B1

 

 

 

 

  1. 10,000 ยด 82.4 = 824000 M1

10,000 ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  M1

824000 โ€“ 750000 =

Sh.74000ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย ย  A1

 

  1. L.C.M=12 24x-16-12x+6=12-10x

24x-12x+10x=12-6+16

22x=22

X=1

 

 

SECTION II

 

17
x = 9.85
9.85
3.5
10
1.75
3.5
1.75
โ„“ = 9.85

L = 19.69

a)

 

 

 

 

 

 

 

T.S.A = ย + ( RL โ€“ rL)

= (r2 + RL โ€“ rL)

= ย (1.752 + 3.52 x 19.69 โ€“ 1.75 x 9.85)

= ย x 54.18

= 171.1cm2

 

b) Vol = R2H – r2h

H = 20

h = 10

(R2H – r2h)

(3.52 x 20 โ€“ 1.752 x 10)

(245 โ€“ 30.625)

x 214.375

cm3

 

 

 

 

 

 

B1

 

 

 

M1

M1

M1

A1

 

 

B1

 

 

M1

M1

 

M1

A1

 

 

 

 

18a) i)ย ย ย ย ย  10.30

9.00

1.30

Jane travelled = ย x 15 = 22.5

Distance before Tom starts journey

Relative speed = 15 + 25 = 40km/hr

T.T.T.M =

= 0.4375 hrs

15 x 0.4375 = 6.5625km

22.5 + 6.5625

= 29.0625km

 

ii)ย ย ย  They met after 0.4375 hrs

= 0.4375 x 60

= 26 minutes

10.30

+ย ย  26

10.56am

iii)ย  Jane had travelled 29.0625km

= 40.00 โ€“ 29.0625

= 10.9375km

 

b) ย ย  = 0.91146 hrs

0.91146 hrs = 55 minutes

Add rest time = 10 minutes

= 65 = 1 hr 5 minutes

10.56

+1.05

12.01 pm

 

 

 

M1

 

 

M1

 

B1

 

A1

 

 

 

M1

 

 

M1

 

B1

B1

 

 

 

 

M1

 

 

A1

 
    10  

 

 

 

19 a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b)

i)ย ย ย ย ย  Distance R from P

= 13.4cm ยฑ 0.1

But 1 cm rep 20km = 13.4 x 20 = 268km

 

ii)ย ย ย  Bearing of Q from S

034o ยฑ 001o

 

iii)ย  Distance of Q from S

12.4cm ยฑ 0.1

But 1cm rep 20km = 12.4 x 20 = 248km

iv)ย ย  How far P is north of S

= 4.5cm

But 1cm rep 20km = 4.5 x 20 = 90km

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

 

B1

 

 

 

B1

 

 

B1

     
     

 

 

 

 

 

21 a)

< PAQ = <PAM + <QAM

< PAM = sinฮธ1 =

Sin -1 (0.4286) = 25.380

< QAM = <PAM = 25.38

โ†’<LAP = 25.38×2= 50.76

 

b)ย  <PBQ = < PBM + <QBM

< PBM = sinโˆ1 =

Sin-1 (0.5357) = 32.390

< PBM = <QBM = 32.390

<PBQ = 32.390x 2 = 64.78

 

 

 

c)i)

 

area of segment = area of a section โ€“ area of D

Taking (i)

=

= 48.84 โ€“ 42.69 = 6.15cm2

Taking (ii)

=

= 39.89 โ€“ 31.92 = 7.97cm2

= (6.15 + 7.97) cm2 = 14.12cm2

 

 

 

 

 

M1

 

A1

 

 

 

 

M1

 

A1

 

 

 

 

 

M1

 

 

B1

 

M1M1

 

B1

 

A1

 
       

 

22.a) Kamauย ย ย ย ย ย ย ย ย ย ย ย ย  Tatwaย ย ย ย ย ย ย ย ย ย  Makau

100,000ย ย ย ย ย ย ย ย ย ย ย ย  80,000ย ย ย ย ย ย ย ย  50,000

10ย ย ย ย ย ย ย ย ย ย  :ย ย ย ย ย ย ย ย ย  8ย ย ย ย ย ย ย ย  :ย ย ย ย ย ย ย  5

5ย ย ย ย  = 20,000

23

1 = ?

20,000 x 23

5

= 92,000

 

(a)ย ย ย  (i)ย  New Ratio

5 : 4 : 3

120 x 92,000

100

New profit = 110,400

 

Kamauโ€™s share = 5 x 110,400

12

= 46,000

 

(ii)ย  Tatwaโ€™s share = 4 x 110,400

12

= 36,800

Difference = 46,000 โ€“ 36,800

= 9,200

 

 

 

B1

 

M1

 

 

A1

 

 

 

B1

 

B1

 

 

M1

 

A1

 

M1

 

M1

 

A1

 
  10  

 

 

One thought on “Form 2 Maths Exams and Marking Schemes Free”
  1. I have been surfing online more than 3 hours today yet I never found any interesting article like yours It is pretty worth enough for me In my opinion if all web owners and bloggers made good content as you did the web will be much more useful than ever before

Leave a Reply

Your email address will not be published. Required fields are marked *