Form 3 Physics Free High School Notes

<p><strong>PHYSICS FORM THREE<&sol;strong><&sol;p>&NewLine;<p><strong>CHAPTER ONE<&sol;strong><&sol;p>&NewLine;<p><strong> LINEAR MOTION<&sol;strong><&sol;p>&NewLine;<p><em>Introduction<&sol;em><&sol;p>&NewLine;<p>Study of motion is divided into two&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Kinematics<&sol;strong><&sol;li>&NewLine;<li><strong>Dynamics<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>In kinematics forces causing motion are disregarded while dynamics deals with motion of objects and the forces causing them&period;<&sol;p>&NewLine;<ol>&NewLine;<li><em>Displacement<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>Distance moved by a body in a specified direction is called displacement<&sol;em><&sol;strong>&period; It is denoted by letter<strong>&OpenCurlyQuote;s’<&sol;strong> and has both magnitude and direction&period; Distance is the movement from one point to another&period; The Si unit for displacement is the <strong>metre &lpar;m&rpar;&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><em>Speed<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>This is the distance covered per unit time&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Speed&equals; distance covered&sol; time taken<&sol;strong>&period; Distance is a scalar quantity since it has magnitude only&period; The SI unit for speed is <strong>metres per second&lpar;m&sol;s or ms<sup>-1<&sol;sup>&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong>Average speed&equals; total distance covered&sol;total time taken<&sol;strong><&sol;p>&NewLine;<p>Other units for speed used are <strong>Km&sol;h&period;<&sol;strong><&sol;p>&NewLine;<p><em>Examples                                                                                                                                                                          <&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A body covers a distance of 10m in 4 seconds&period; It rests for 10 seconds and finally covers a distance of 90m in 60 seconds&period; Calculate the average speed&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Total distance covered&equals;10&plus;90&equals;100m<&sol;p>&NewLine;<p>Total time taken&equals;4&plus;10&plus;6&equals;20 seconds<&sol;p>&NewLine;<p>Therefore average speed&equals;100&sol;20&equals;5m&sol;s<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>Calculate the distance in metres covered by a body moving with a uniform speed of 180 km&sol;h in 30 seconds&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Distance covered&equals;speed&ast;time<&sol;p>&NewLine;<p>&equals;180&ast;1000&sol;60&ast;60&equals;50m&sol;s<&sol;p>&NewLine;<p>&equals;50&ast;30<&sol;p>&NewLine;<p>&equals;1&comma;500m<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><em>Calculate the time in seconds taken a by body moving with a uniform speed of 360km&sol;h to cover a distance of 3&comma;000 km&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Speed&colon;360km&sol;h&equals;360&ast;1000&sol;60&ast;60&equals;100m&sol;s<&sol;p>&NewLine;<p>Time&equals;distance&sol;speed<&sol;p>&NewLine;<p>3000&ast;1000&sol;100<&sol;p>&NewLine;<p>&equals;30&comma;000 seconds&period;<&sol;p>&NewLine;<ul>&NewLine;<li><em>Velocity<&sol;em><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>This is the change of displacement per unit time<&sol;em><&sol;strong>&period; It is a vector quantity&period;<&sol;p>&NewLine;<p><strong>Velocity&equals;change in displacement&sol;total time taken<&sol;strong><&sol;p>&NewLine;<p>The SI units for velocity are <strong>m&sol;s<&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A man runs 800m due North in 100 seconds&comma; followed by 400m due South in 80 seconds&period; Calculate&comma;<&sol;em><&sol;li>&NewLine;<li><em>His average speed<&sol;em><&sol;li>&NewLine;<li><em>His average velocity<&sol;em><&sol;li>&NewLine;<li><em>His change in velocity for the whole journey<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>Average speed&colon; total distance travelled&sol;total time taken<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals;800&plus;400&sol;100&plus;80<&sol;p>&NewLine;<p>&equals;1200&sol;180<&sol;p>&NewLine;<p>&equals;6&period;67m&sol;s<&sol;p>&NewLine;<ol>&NewLine;<li>Average velocity&colon; total displacement&sol;total time<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals;800-400&sol;180<&sol;p>&NewLine;<p>&equals;400&sol;180<&sol;p>&NewLine;<p>&equals;2&period;22 m&sol;s due North<&sol;p>&NewLine;<ol>&NewLine;<li>Change in velocity&equals;final-initial velocity<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals; &lpar;800&sol;100&rpar;-&lpar;400-80&rpar;<&sol;p>&NewLine;<p>&equals;8-5<&sol;p>&NewLine;<p>&equals;3m&sol;s due North<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A tennis ball hits a vertical wall at a velocity of 10m&sol;s and bounces off at the same velocity&period; Determine the change in velocity&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Initial velocity&lpar;u&rpar;&equals;-10m&sol;s<&sol;p>&NewLine;<p>Final velocity &lpar;v&rpar; &equals; 10m&sol;s<&sol;p>&NewLine;<p>Therefore change in velocity&equals; v-u<&sol;p>&NewLine;<p>&equals;10- &lpar;-10&rpar;<&sol;p>&NewLine;<p>&equals;20m&sol;s<&sol;p>&NewLine;<ol>&NewLine;<li>Acceleration<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>This is the change of velocity per unit time<&sol;em><&sol;strong>&period; It is a vector quantity symbolized by <strong>&OpenCurlyQuote;a’<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Acceleration &OpenCurlyQuote;a’&equals;change in velocity&sol;time taken&equals; v-u&sol;t<&sol;strong><&sol;p>&NewLine;<p>The SI units for acceleration are <strong>m&sol;s<sup>2<&sol;sup><&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>The velocity of a body increases from 72 km&sol;h to 144 km&sol;h in 10 seconds&period; Calculate its acceleration&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Initial velocity&equals; 72 km&sol;h&equals;20m&sol;s<&sol;p>&NewLine;<p>Final velocity&equals; 144 km&sol;h&equals;40m&sol;s<&sol;p>&NewLine;<p>Therefore &OpenCurlyQuote;a’ &equals;v-u&sol;t<&sol;p>&NewLine;<p>&equals; 40-20&sol;10<&sol;p>&NewLine;<p>2m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A car is brought to rest from 180km&sol;h in 20 seconds&period; What is its retardation&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Initial velocity&equals;180km&sol;h&equals;50m&sol;s<&sol;p>&NewLine;<p>Final velocity&equals; 0 m&sol;s<&sol;p>&NewLine;<p>A &equals; v-u&sol;t&equals;0-50&sol;20<&sol;p>&NewLine;<p>&equals; -2&period;5 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>Hence retardation is 2&period;5 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Motion graphs<&sol;strong><&sol;p>&NewLine;<p>Distance-time graphs<&sol;p>&NewLine;<ol>&NewLine;<li><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Stationary body<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>b&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>A body moving with uniform speed<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>c&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>A body moving with variable speed<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Area under velocity-time graph<&sol;em><&sol;p>&NewLine;<p>Consider a body with uniform or constant acceleration for time<strong>&OpenCurlyQuote;t’<&sol;strong> seconds&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Distance travelled&equals; average velocity&ast;t<&sol;p>&NewLine;<p>&equals;&lpar;0&plus;v&sol;2&rpar;&ast;t<&sol;p>&NewLine;<p>&equals;1&sol;2vt<&sol;p>&NewLine;<p>This is equivalent to the area under the graph&period; The area under velocity-time graph gives the distance covered by the body under&OpenCurlyQuote;t’ seconds&period;<&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A car starts from rest and attains a velocity of 72km&sol;h in 10 seconds&period; It travels at this velocity for 5 seconds and then decelerates to stop after another 6 seconds&period; Draw a velocity-time graph for this motion&period; From the graph&semi;<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>Calculate the total distance moved by the car<&sol;em><&sol;li>&NewLine;<li><em>Find the accelerationof the car at each stage&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>From the graph&comma; total distance covered&equals; area of &lpar;A&plus;B&plus;C&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals;&lpar;1&sol;2×10×20&rpar;&plus;&lpar;1&sol;2×6×20&rpar;&plus;&lpar;5×20&rpar;<&sol;p>&NewLine;<p>&equals;100&plus;60&plus;100<&sol;p>&NewLine;<p>&equals;260m<&sol;p>&NewLine;<p>Also the area of the trapezium gives the same result&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Acceleration&equals; gradient of the graph<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Stage A gradient&equals; 20-0&sol; 10-0 &equals; 2 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>Stage b gradient&equals; 20-20&sol;15-10 &equals;0 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>Stage c gradient&equals; 0-20&sol;21-15 &equals;-3&period;33 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Using a ticker-timer to measure speed&comma; velocity and acceleration&period;<&sol;p>&NewLine;<p>It will be noted that the dots pulled at different velocities will be as follows&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Most ticker-timers operate at a frequency of<strong> 50Hz<&sol;strong>i&period;e&period; <em>50 cycles per second<&sol;em> hence they make 50 dots per second&period; Time interval between two consecutive dots is given as&comma;<&sol;p>&NewLine;<p><strong><em>1<&sol;em><&sol;strong><em>&sol;<strong>50 seconds&equals; 0&period;02 seconds&period; This time is called a tick&period;<&sol;strong><&sol;em><&sol;p>&NewLine;<p>The distance is measured in ten-tick intervals hence time becomes <strong>10<&sol;strong>×<strong>0&period;02&equals; 0&period;2 seconds&period;<&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A tape is pulled steadily through a ticker-timer of frequency 50 Hz&period; Given the outcome below&comma; calculate the velocity with which the tape is pulled&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>C<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>B<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>A<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>&CenterDot;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>&CenterDot;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>&CenterDot;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Distance between two consecutive dots&equals; 5cm<&sol;p>&NewLine;<p>Frequency of the ticker-timer&equals;50Hz<&sol;p>&NewLine;<p>Time taken between two consecutive dots&equals;1&sol;50&equals;0&period;02 seconds<&sol;p>&NewLine;<p>Therefore&comma; velocity of tape&equals;5&sol;0&period;02&equals; 250 cm&sol;s<&sol;p>&NewLine;<ol>&NewLine;<li><em>The tape below was produced by a ticker-timer with a frequency of 100Hz&period; Find the acceleration of the object which was pulling the tape&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Time between successive dots&equals;1&sol;100&equals;0&period;01 seconds<&sol;p>&NewLine;<p>Initial velocity &lpar;u&rpar; 0&period;5&sol;0&period;01 50 cm&sol;s<&sol;p>&NewLine;<p>Final velocity &lpar;v&rpar; 2&period;5&sol;0&period;01&equals; 250 cm&sol;s<&sol;p>&NewLine;<p>Time taken&equals; 4 ×0&period;01 &equals; 0&period;04 seconds<&sol;p>&NewLine;<p>Therefore&comma; acceleration&equals; v-u&sol;t&equals; 250-50&sol;0&period;04&equals;5&comma;000 cm&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Equations of linear motion<&sol;p>&NewLine;<p>The following equations are applied for uniformly accelerated motion&semi;<&sol;p>&NewLine;<p><strong><em>      v &equals; u &plus; at<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>      s &equals; ut &plus; &half; at<sup>2<&sol;sup><&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>      v<sup>2<&sol;sup>&equals; u<sup>2<&sol;sup> &plus;2as<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A body moving with uniform acceleration of 10 m&sol;s<sup>2<&sol;sup> covers a distance of 320 m&period; if its initial velocity was 60 m&sol;s&period; Calculate its final velocity&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>V<sup>2<&sol;sup> &equals; u<sup>2<&sol;sup> &plus;2as<&sol;p>&NewLine;<p>&equals; &lpar;60&rpar; &plus;2×10×320<&sol;p>&NewLine;<p>&equals;3600&plus;6400<&sol;p>&NewLine;<p>&equals; 10&comma;000<&sol;p>&NewLine;<p>Therefore v&equals; &lpar;10&comma;000&rpar;<sup>1&sol;2<&sol;sup><&sol;p>&NewLine;<p>v&equals; 100m&sol;s<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A body whose initial velocity is 30 m&sol;s moves with a constant retardation of 3m&sol;s&period; Calculate the time taken for the body to come to rest&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>v &equals; u&plus;at<&sol;p>&NewLine;<p>0&equals; 30-3t<&sol;p>&NewLine;<p>30&equals;3t<&sol;p>&NewLine;<p>t&equals; 30 seconds&period;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><em>A body is uniformly accelerated from rest to a final velocityof 100m&sol;s in 10 seconds&period; Calculate the distance covered&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>s&equals;ut&plus; &half; at<sup>2<&sol;sup><&sol;p>&NewLine;<p>&equals;0×10&plus; &half; ×10×10<sup>2<&sol;sup><&sol;p>&NewLine;<p>&equals; 1000&sol;2&equals;500m<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Motion under gravity&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Free fall<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The equations used for constant acceleration can be used to become&comma;<&sol;p>&NewLine;<p><strong><em>v &equals;u&plus;gt<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>s &equals;ut &plus; &half; gt<sup>2<&sol;sup><&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>v<sup>2<&sol;sup>&equals; u&plus;2gs<&sol;em><&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Vertical projection<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Since the body goes against force of gravity then the following equations hold<&sol;p>&NewLine;<p><strong><em>v &equals;u-gt ……………1<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>s &equals;ut- &half; gt<sup>2<&sol;sup> ……2<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>v<sup>2<&sol;sup>&equals; u-2gs …………3<&sol;em><&sol;strong><&sol;p>&NewLine;<p>N&period;B time taken to reach maximum height is given by the following<&sol;p>&NewLine;<p><strong><em> t&equals;u&sol;g<&sol;em><&sol;strong> since v&equals;0 &lpar;<em>using equation 1<&sol;em>&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Time of flight<&sol;em><&sol;p>&NewLine;<p>The time taken by the projectile is the timetaken to fall back to its point ofprojection&period; Using eq&period; 2 then&comma; displacement &equals;0<&sol;p>&NewLine;<p><strong>0&equals; ut- &half; gt<sup>2<&sol;sup><&sol;strong><&sol;p>&NewLine;<p><strong>0&equals;2ut-gt<sup>2<&sol;sup><&sol;strong><&sol;p>&NewLine;<p><strong>t&lpar;2u-gt&rpar;&equals;0<&sol;strong><&sol;p>&NewLine;<p>Hence<strong>&comma; t&equals;0 or t&equals; 2u&sol;g<&sol;strong><&sol;p>&NewLine;<p>t&equals;o corresponds to the start of projection<&sol;p>&NewLine;<p><strong><em>t&equals;2u&sol;g<&sol;em><&sol;strong>corresponds to the time of flight<&sol;p>&NewLine;<p><strong><em>The time of flight is twice the time taken to attain maximum height&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Maximum height reached&period;<&sol;em><&sol;p>&NewLine;<p>Using equation 3 maximum height&comma; <strong>H<sub>max<&sol;sub><&sol;strong> is attained when v&equals;0 &lpar;final velocity&rpar;&period; Hence<&sol;p>&NewLine;<p><strong>v<sup>2<&sol;sup>&equals; u<sup>2<&sol;sup>-2gs&semi;- 0&equals;u<sup>2<&sol;sup>-2gH<sub>max<&sol;sub>&comma;<&sol;strong> therefore<&sol;p>&NewLine;<p><strong>2gH<sub>max<&sol;sub>&equals;u<sup>2<&sol;sup><&sol;strong><&sol;p>&NewLine;<p><strong><em>      H<sub>max<&sol;sub>&equals;u<sup>2<&sol;sup>&sol;2g<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Velocity to return to point of projection&period;<&sol;em><&sol;p>&NewLine;<p>At the instance of returning to the original point&comma; total displacement equals to zero&period;<&sol;p>&NewLine;<p><strong>v<sup>2<&sol;sup> &equals;u<sup>2<&sol;sup>-2gs<&sol;strong> hence <strong>v<sup>2<&sol;sup>&equals; u<sup>2<&sol;sup><&sol;strong><&sol;p>&NewLine;<p>Therefore<strong><em>v&equals;u or v&equals;<&sol;em><&sol;strong><strong><em>±<&sol;em><&sol;strong><strong><em>u<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A stone is projected vertically upwards with a velocity of 30m&sol;s from the ground&period;      Calculate&comma; <&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>The time it takes to attain maximum height<&sol;em><&sol;li>&NewLine;<li><em>The time of flight<&sol;em><&sol;li>&NewLine;<li><em>The maximum height reached<&sol;em><&sol;li>&NewLine;<li><em>The velocity with which it lands on the ground&period; &lpar;take g&equals;10m&sol;s&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>Time taken to attain maximum height<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>T&equals;u&sol;g&equals;30&sol;10&equals;3 seconds<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>The time of flight<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>T&equals;2t&equals; 2×3&equals;6 seconds<&sol;p>&NewLine;<p>Or T&equals;2u&sol;g&equals;2×30&sol;10&equals;6 seconds&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Maximum height reached<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>H<sub>max<&sol;sub>&equals; u<sup>2<&sol;sup>&sol;2g&equals; 30×30&sol;2×10&equals; 45m<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Velocity of landing &lpar;return&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>v<sup>2<&sol;sup>&equals; u<sup>2<&sol;sup>-2gs&comma; but s&equals;0&comma;<&sol;p>&NewLine;<p>Hence v<sup>2<&sol;sup>&equals;u<sup>2<&sol;sup><&sol;p>&NewLine;<p>Thereforev&equals;&lpar;30×30&rpar;<sup>1&sol;2<&sol;sup>&equals;30m&sol;s<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>Horizontal projection<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>The path followed by a body &lpar;projectile&rpar; is called trajectory&period; The maximum horizontal distance covered by the projectile is called range&period; <&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The horizontal displacement &OpenCurlyQuote;R’ at a time&OpenCurlyQuote;t’ is given by <strong><em>s&equals;ut&plus;1&sol;2at<sup>2<&sol;sup><&sol;em><&sol;strong><&sol;p>&NewLine;<p>Taking u&equals;u and a&equals;0 hence <strong><em>R&equals;ut<&sol;em><&sol;strong>&comma; is the horizontal displacement and <strong><em>h&equals;1&sol;2gt<sup>2<&sol;sup><&sol;em><&sol;strong> is the vertical displacement&period;<&sol;p>&NewLine;<p><strong>NOTE<&sol;strong><&sol;p>&NewLine;<p>The time of flight is the same as the time of free fall&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A ball is thrown from the top of a cliff 20m high with a horizontal velocity of 10m&sol;s&period; Calculate&comma;<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>The time taken by the ball to strike the ground<&sol;em><&sol;li>&NewLine;<li><em>The distance from the foot of the cliff to where the ball strikes the ground&period;<&sol;em><&sol;li>&NewLine;<li><em>The vertical velocity at the time it strikes the ground&period; &lpar;take g&equals;10m&sol;s&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>h&equals; &half; gt<sup>2<&sol;sup><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>20&equals; &half; ×10×t<sup>2<&sol;sup><&sol;p>&NewLine;<p>40&equals;10t<sup>2<&sol;sup><&sol;p>&NewLine;<p>t<sup>2<&sol;sup>&equals;40&sol;10&equals;4<&sol;p>&NewLine;<p>t&equals;2 seconds<&sol;p>&NewLine;<ol>&NewLine;<li>R&equals;ut<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals;10×2<&sol;p>&NewLine;<p>&equals;20m<&sol;p>&NewLine;<ol>&NewLine;<li>v&equals;u&plus;at&equals;gt<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals; 2×10&equals;20m&sol;s<&sol;p>&NewLine;<p><strong>CHAPTER TWO<&sol;strong><&sol;p>&NewLine;<p><strong>REFRACTION OF LIGHT<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Introduction<&sol;strong><&sol;p>&NewLine;<p><strong><em>Refraction is the change of direction of light rays as they pass at an angle from one medium to another of different optical densities&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Exp&period; To investigate the path of light through rectangular glass block&period;<&sol;em><&sol;p>&NewLine;<p><em>Apparatus&colon; &&num;8211&semi; soft-board&comma; white sheet of paper&comma; drawing pins &lpar;optical&rpar;&comma; rectangular glass block&period;<&sol;em><&sol;p>&NewLine;<p>Procedure<&sol;p>&NewLine;<ol>&NewLine;<li>Fix the white plain paper on the soft board using pins&period;<&sol;li>&NewLine;<li>Place the glass block on the paper and trace its outline&comma; label it ABCD as shown below&period;<&sol;li>&NewLine;<li>Draw a normal NON at point O&period;<&sol;li>&NewLine;<li>Replace the glass block to its original position&period;<&sol;li>&NewLine;<li>Stick two pins P<sub>1 <&sol;sub>and P<sub>2<&sol;sub> on the line such that they are at least 6cm apart and upright&period;<&sol;li>&NewLine;<li>Viewing pins P<sub>1<&sol;sub> and P<sub>2<&sol;sub> from opposite side&comma; fixpins P<sub>3<&sol;sub> and P<sub>4<&sol;sub> such that they’re in a straight line&period;<&sol;li>&NewLine;<li>Remove the pins and the glass block&period;<&sol;li>&NewLine;<li>Draw a line joining P<sub>3<&sol;sub> and P<sub>4<&sol;sub> and produce it to meet the outline face AB at point O<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Explanation of refraction&period;<&sol;p>&NewLine;<p>Light travels at a velocity of <strong>3&period;0<&sol;strong><strong>×<&sol;strong><strong>10<sup>8<&sol;sup><&sol;strong>in a vacuum&period; Light travels with different velocities in different media&period;<em> When a ray of light travels from an optically less dense media to more dense media&comma; it is refracted towards the normal<&sol;em>&period; The glass block experiment gives rise to a very important law known as<strong> the law of reversibility<&sol;strong> which states that <strong><em>&OpenCurlyDoubleQuote;if a ray of light is reversed&comma; it always travels along its original path”&period;<&sol;em><&sol;strong> If the glass block is parallel-sided&comma; the emergent ray will be parallel to the incident ray but displaced laterally as shown<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&OpenCurlyQuote;e’<&sol;strong> is called the angle of emergence&period; The direction of the light is not altered but displaced sideways&period; This displacement is called lateral displacement and is denoted by&OpenCurlyQuote;d’&period; Therefore<&sol;p>&NewLine;<p><strong><em>XY&equals; t&sol;Cos r   YZ&equals; Sin &lpar;i-r&rpar;<&sol;em><&sol;strong> ×<strong><em>xy<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>So&comma; lateral displacement&comma;<strong> d &equals; t Sin &lpar;i-r&rpar;&sol;Cos r<&sol;strong><&sol;em><&sol;p>&NewLine;<p>Laws of refraction<&sol;p>&NewLine;<ol>&NewLine;<li><strong><em>The incident ray&comma; the refracted ray and the normal at the point of incidence all lie on the same plane&period;<&sol;em><&sol;strong><&sol;li>&NewLine;<li><strong><em>The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant for a given pair of media&period;<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>Sin i&sol;sin r &equals; constant &lpar;k&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Refractive index<&sol;p>&NewLine;<p><strong><em>Refractive index &lpar;n&rpar; is the constant of proportionality in Snell’s law<&sol;em><&sol;strong>&semi; hence<&sol;p>&NewLine;<p><strong><em>Sin i&sol; sin r &equals; n<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Therefore <strong><em>sin i&sol;sin r&equals;n&equals;1&sol;sin r&sol;sin i<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Examples<&sol;em><em>                                                              <&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>Calculate the refractive index for light travelling from glass to air given that<&sol;em><em><sub>a<&sol;sub><&sol;em><em>n<sub>g<&sol;sub><&sol;em><em>&equals; 1&period;5<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p><sub>g<&sol;sub>n<sub>a<&sol;sub>&equals; 1&sol;<sub>a<&sol;sub>n<sub>g<&sol;sub> &equals; 1&sol;1&period;5&equals;0&period;67<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>Calculate the angle of refraction for a ray of light from air striking an air-glass interface&comma; making an angle of 60<sup>0<&sol;sup> with the interface&period; &lpar;<&sol;em><em><sub>a<&sol;sub><&sol;em><em>n<sub>g<&sol;sub><&sol;em><em>&equals; 1&period;5&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Angle of incidence &lpar;i&rpar; &equals; 90<sup>0<&sol;sup>-60<sup>0<&sol;sup>&equals;30<sup>0<&sol;sup><&sol;p>&NewLine;<p>1&period;5&equals;sin 30<sup>o<&sol;sup>&sol;sin r&comma; sin r &equals;sin 30<sup>0<&sol;sup>&sol; 1&period;5&equals;0&period;5&sol;1&period;5<&sol;p>&NewLine;<p>Sin r&equals;0&period;3333&comma; sin<sup>-1<&sol;sup>0&period;3333&equals; 19&period;5<sup>0<&sol;sup><&sol;p>&NewLine;<p>R&equals; 19&period;5<sup>0<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Refractive index in terms of velocity&period;<&sol;p>&NewLine;<p>Refractive index can be given in terms of velocity by the use of the following equation&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em><sub>1<&sol;sub><&sol;em><&sol;strong><strong><em>n<&sol;em><&sol;strong><strong><em><sub>2<&sol;sub><&sol;em><&sol;strong><strong><em> &equals; velocity of light in medium 1&sol;velocity of light in medium 2<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>When a ray of light is travelling from vacuum to a medium the refractive index is referred to as absolute refractive index of the medium denoted by <strong>&OpenCurlyQuote;n’<&sol;strong><&sol;p>&NewLine;<p><strong><em>Refractive index of a material &OpenCurlyQuote;n’&equals;velocity of light in a vacuum&sol;velocity of light in material &OpenCurlyQuote;n’<&sol;em><&sol;strong><&sol;p>&NewLine;<p>The absolute refractive indices of some common materials is given below<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"38">&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"134"><strong>Material<&sol;strong><&sol;td>&NewLine;<td width&equals;"158"><strong>Refractive index<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">1<&sol;td>&NewLine;<td width&equals;"134">Air &lpar;ATP&rpar;<&sol;td>&NewLine;<td width&equals;"158">1&period;00028<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">2<&sol;td>&NewLine;<td width&equals;"134">Ice<&sol;td>&NewLine;<td width&equals;"158">1&period;31<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">3<&sol;td>&NewLine;<td width&equals;"134">Water<&sol;td>&NewLine;<td width&equals;"158">1&period;33<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">4<&sol;td>&NewLine;<td width&equals;"134">Ethanol<&sol;td>&NewLine;<td width&equals;"158">1&period;36<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">5<&sol;td>&NewLine;<td width&equals;"134">Kerosene<&sol;td>&NewLine;<td width&equals;"158">1&period;44<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">6<&sol;td>&NewLine;<td width&equals;"134">Glycerol<&sol;td>&NewLine;<td width&equals;"158">1&period;47<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">7<&sol;td>&NewLine;<td width&equals;"134">Perspex<&sol;td>&NewLine;<td width&equals;"158">1&period;49<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">8<&sol;td>&NewLine;<td width&equals;"134">Glass &lpar;crown&rpar;<&sol;td>&NewLine;<td width&equals;"158">1&period;55<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">9<&sol;td>&NewLine;<td width&equals;"134">Glass &lpar;flint&rpar;<&sol;td>&NewLine;<td width&equals;"158">1&period;65<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">10<&sol;td>&NewLine;<td width&equals;"134">Ruby<&sol;td>&NewLine;<td width&equals;"158">1&period;76<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"38">11<&sol;td>&NewLine;<td width&equals;"134">Diamond<&sol;td>&NewLine;<td width&equals;"158">2&period;72<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A ray of light is incident on a water-glass interface as shown&period; Calculate &OpenCurlyQuote;r’&period; &lpar;Take the refractive index of glass and water as 3&sol;2 and 4&sol;3 respectively&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Since <sub>a<&sol;sub>n<sub>w<&sol;sub> sin θ<sub>w<&sol;sub>&equals;<sub>a<&sol;sub>n<sub>g<&sol;sub> sin<sub>g<&sol;sub><&sol;p>&NewLine;<p>4&sol;3 sin 30<sup>0<&sol;sup>&equals; 3&sol;2 sin r<&sol;p>&NewLine;<p>3&sol;2 sin r&equals; 4&sol;3× 0&period;5<&sol;p>&NewLine;<p>Sin r &equals;4&sol;6×2&sol;3&equals;4&sol;9&equals; 0&period;4444<&sol;p>&NewLine;<p>r &equals; 26&period;4<sup>0<&sol;sup><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>The refractive index of water is 4&sol;3 and that of glass is 3&sol;2&period; Calculate the refractive index of glass with respect to water&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p><sub>w<&sol;sub>n<sub>g<&sol;sub>&equals; <sub>g<&sol;sub>n<sub>a<&sol;sub>×<sub>a<&sol;sub>n<sub>g<&sol;sub>&comma; but <sub>w<&sol;sub>n<sub>a<&sol;sub> &equals; 1&sol; <sub>a<&sol;sub>n<sub>w<&sol;sub>&equals;3&sol;4<&sol;p>&NewLine;<p><sub>w<&sol;sub>n<sub>g<&sol;sub>&equals;3&sol;4×3&sol;2&equals;9&sol;8&equals; 1&period;13<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Real and apparent depth<&sol;em><&sol;p>&NewLine;<p>Consider the following diagram<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The depth of the water OM is the real depth&comma; and the distance IM is known as the apparent depth&period; OI is the distance through which the coin has been displaced and is known as the vertical displacement&period; The relationship between refractive index and the apparent depth is given by&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong><em>Refractive index of a material&equals;real depth&sol;apparent depth<&sol;em><&sol;strong><&sol;p>&NewLine;<p>NB<&sol;p>&NewLine;<p>This is true only if the object is viewed normally&period;<&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A glass block of thickness 12 cm is placed on a mark drawn on a plain paper&period; The mark is viewed normally through the glass&period; Calculate the apparent depth of the mark and hence the vertical displacement&period; &lpar;Refractive index of glass &equals;3&sol;2&rpar;<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p><sub>a<&sol;sub>n<sub>g<&sol;sub>&equals; real depth&sol;apparent depth<&sol;p>&NewLine;<p>apparent depth&equals; real depth&sol; <sub>a<&sol;sub>n<sub>g<&sol;sub>&equals;&lpar;12×2&rpar;&sol;3&equals; 8 cm<&sol;p>&NewLine;<p>vertical displacement&equals; 12-8&equals;4 cm<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Applications of refractive index<&sol;p>&NewLine;<p>Total internal reflection<&sol;p>&NewLine;<p>This occurs when light travels from a denser optical medium to a less dense medium&period; The refracted ray moves away from the normal until a critical angle is reached usually <strong>90<sup>0<&sol;sup><&sol;strong> where the refracted ray is parallel to the boundary between the two media&period; If this critical angle is exceeded total internal reflection occurs and at this point no refraction occurs but the ray is reflected internally within the denser medium&period;<&sol;p>&NewLine;<p><em>Relationship between the critical angle and refractive index&period;<&sol;em><&sol;p>&NewLine;<p>Consider the following diagram<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>From <strong>Snell’s law<&sol;strong><&sol;p>&NewLine;<p><strong><sub>g<&sol;sub><&sol;strong><strong>n<sub>w<&sol;sub> &equals; sin C&sol;sin 90<sup>0<&sol;sup><&sol;strong>&comma;but <strong><sub>a<&sol;sub>n<sub>g<&sol;sub> &equals; 1&sol;<sub>g<&sol;sub>n<sub>a<&sol;sub><&sol;strong> since <strong>sin 90<sup>0<&sol;sup> &equals; 1<&sol;strong><&sol;p>&NewLine;<p>Therefore<strong><sub>a<&sol;sub>n<sub>g<&sol;sub>&equals; 1&sol;sin C<&sol;strong>&comma; hence<strong> sin C&equals;1&sol;n or n&equals;1&sol;sin C<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>Calculate the critical angle of diamond given that its refractive index is 2&period;42<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Sin C&equals; 1&sol;n&equals;1&sol; 2&period;42&equals; 0&period;4132&equals; 24&period;4<sup>0<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Effects of total internal reflection<&sol;p>&NewLine;<ol>&NewLine;<li>Mirage&colon; These are &OpenCurlyQuote;pools of water’ seen on a tarmac road during a hot day&period; They are also observed in very cold regions but the light curves in opposite direction such that a polar bear seems to be upside down in the sky&period;<&sol;li>&NewLine;<li>Atmospheric refraction&colon; the earths’ atmosphere refracts light rays so that the sun can be seen even when it has set&period; Similarly the sun is seen before it actually rises&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Applications of total internal reflection<&sol;p>&NewLine;<ol>&NewLine;<li>Periscope&colon; a prism periscope consists of two right angled glass prisms of angles <strong>45<sup>0<&sol;sup>&comma;90<sup>0<&sol;sup><&sol;strong> and <strong>45<sup>0<&sol;sup><&sol;strong> arranged as shown below&period; They are used to observe distant objects&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Prism binoculars&colon; the arrangement of lenses and prisms is as shown below&period; Binoculars reduce the distance of objects such that they seem to be nearer&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>Pentaprism&colon; used in cameras to change the inverted images formed into erect and actual image in front of the photographer&period;<&sol;li>&NewLine;<li>Optical fibre&colon; this is a flexible glass rod of small diameter&period; A light entering through them undergoes repeated internal reflections&period; They are used in medicine to observe or view internal organs of the body<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li>Dispersion of white light&colon; the splitting of light into its constituent colours is known as dispersion&period; Each colour represents a different wavelength as they strike the prism and therefore refracted differently as shown&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>CHAPTER THREE<&sol;strong><&sol;p>&NewLine;<p><strong>NEWTON’S LAWS OF MOTION<&sol;strong><&sol;p>&NewLine;<p><strong>Newton’s first law &lpar;law of inertia&rpar;<&sol;strong><&sol;p>&NewLine;<p>This law states that <strong><em>&OpenCurlyDoubleQuote;A body continues in its state of rest or uniform motion unless an unbalanced force acts on it”&period; <&sol;em><&sol;strong>The mass of a body is a measure of its inertia&period; Inertia is the property that keeps an object in its state of motion and resists any efforts to change it&period;<&sol;p>&NewLine;<p><strong>Newton’s second law &lpar;law of momentum&rpar;<&sol;strong><&sol;p>&NewLine;<p>Momentum of a body is defined as the product of its mass and its velocity&period;<&sol;p>&NewLine;<p><strong>Momentum &OpenCurlyQuote;p’&equals;mv&period;<&sol;strong> The SI unit for momentum is <strong>kgm&sol;s<&sol;strong> or<strong> Ns<&sol;strong>&period; The Newton’s second law states that &OpenCurlyDoubleQuote;<strong><em>The rate of change of momentum of a body is proportional to the applied force and takes place in the direction in which the force acts”<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Change in momentum&equals; <strong>mv-mu<&sol;strong><&sol;p>&NewLine;<p>Rate of change of momentum&equals; <strong>mv-mu&sol;<&sol;strong><strong>∆<&sol;strong><strong>t<&sol;strong><&sol;p>&NewLine;<p>Generally the second law gives rise to the equation of force<strong> F&equals;ma<&sol;strong><&sol;p>&NewLine;<p>Hence <strong>F&equals;mv-mu&sol;<&sol;strong><strong>∆<&sol;strong><strong>t <&sol;strong>and <strong>F<&sol;strong><strong>∆<&sol;strong><strong>t&equals;mv-mu<&sol;strong><&sol;p>&NewLine;<p>The quantity <strong>F<&sol;strong><strong>∆<&sol;strong><strong>t<&sol;strong> is called impulse and is equal to the change of momentum of the body&period;  The SI unit for impulse is <strong>Ns<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A van of mass 3 metric tons is travelling at a velocity of 72 km&sol;h&period; Calculate the momentum of the vehicle&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Momentum&equals;mv&equals;72km&sol;h&equals;&lpar;20m&sol;s&rpar;×3×10<sup>3<&sol;sup> kg<&sol;p>&NewLine;<p>&equals;6&period;0×10<sup>4<&sol;sup>kgm&sol;s<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A truck weighs 1&period;0<&sol;em><em>×<&sol;em><em>10<sup>5 <&sol;sup>N and is free to move&period; What force willgiveit an acceleration of 1&period;5 m&sol;s<sup>2<&sol;sup>&quest; &lpar;take g&equals;10N&sol;kg&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Mass of the truck &equals; &lpar;1&period;0×10<sup>5<&sol;sup>&rpar;&sol;10&equals;6&period;0×10<sup>4<&sol;sup><&sol;p>&NewLine;<p>Using F&equals;ma<&sol;p>&NewLine;<p>&equals;1&period;5×10×10<sup>4<&sol;sup><&sol;p>&NewLine;<p>&equals;1&period;5×10<sup>4<&sol;sup> N<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><em>A car of mass 1&comma;200 kg travelling at 45 m&sol;s is brought to rest in 9 seconds&period; Calculate the average retardation of the car and the average force applied by the brakes&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Since the car comes to rest&comma; v&equals;0&comma; a&equals;&lpar;v-u&rpar;&sol;t &equals;&lpar;0-45&rpar;&sol;9&equals;-5m&sol;s &lpar;retardation&rpar;<&sol;p>&NewLine;<p>F&equals;ma &equals;&lpar;1200×-5&rpar; N &equals;-6&comma;000 N &lpar;braking force&rpar;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><em>A truck of mass 2&comma;000 kg starts from rest on horizontal rails&period; Find the speed 3 seconds after starting if the tractive force by the engine is 1&comma;000 N&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Impulse &equals; Ft&equals;1&comma;000×3&equals; 3&comma;000 Ns<&sol;p>&NewLine;<p>Let v be the velocity after 3 seconds&period; Since the truck was initially at rest then u&equals;0&period;<&sol;p>&NewLine;<p>Change in momentum&equals;mv-mu<&sol;p>&NewLine;<p>&equals; &lpar;2&comma;000×v&rpar; &&num;8211&semi; &lpar;2&comma;000×0&rpar;<&sol;p>&NewLine;<p>&equals;2&comma;000 v<&sol;p>&NewLine;<p>But impulse&equals;change in momentum<&sol;p>&NewLine;<p>2&comma;000 v &equals; 3&comma;000<&sol;p>&NewLine;<p>v &equals; 3&sol;2&equals;1&period;5 m&sol;s&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Weight of a body in a lift or elevator<&sol;em><&sol;p>&NewLine;<p>When a body is in a lift at rest then the weight<&sol;p>&NewLine;<p><strong>W&equals;mg<&sol;strong><&sol;p>&NewLine;<p>When the lift moves upwards with acceleration &OpenCurlyQuote;a’ then the weight becomes<&sol;p>&NewLine;<p><strong>W &equals; m &lpar;a&plus;g&rpar;<&sol;strong><&sol;p>&NewLine;<p>If the lift moves downwards with acceleration &OpenCurlyQuote;a’ then the weight becomes<&sol;p>&NewLine;<p><strong>W &equals; m &lpar;g-a&rpar; <&sol;strong><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A girl of mass stands inside a lift which is accelerated upwards at a rate of 2 m&sol;s<sup>2<&sol;sup>&period; Determine the reaction of the lift at the girls’ feet&period;<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Let the reaction at the girls’ feet be &OpenCurlyQuote;R’ and the weight &OpenCurlyQuote;W’<&sol;p>&NewLine;<p>The resultant force F&equals; R-W<&sol;p>&NewLine;<p>&equals; &lpar;R-500&rpar; N<&sol;p>&NewLine;<p>Using F &equals; ma&comma; then R-500&equals; 50×2&comma; R&equals; 100&plus;500 &equals; 600 N&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Newton’s third law &lpar;law of interaction&rpar;<&sol;strong><&sol;p>&NewLine;<p>This law states that <strong><em>&OpenCurlyDoubleQuote;For every action or force there is an equal and opposite force or reaction”<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A girl of mass 50 Kg stands on roller skates near a wall&period; She pushes herself against the wall with a force of 30N&period; If the ground is horizontal and the friction on the roller skates is negligible&comma; determine her acceleration from the wall&period;<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Action &equals; reaction &equals; 30 N<&sol;p>&NewLine;<p>Force of acceleration from the wall &equals; 30 N<&sol;p>&NewLine;<p>F &equals; ma<&sol;p>&NewLine;<p>a &equals; F&sol;m &equals; 30&sol;50 &equals; 0&period;6 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Linear collisions<&sol;p>&NewLine;<p><strong><em>Linear collision occurs when two bodies collide head-on and move along the same straight line&period;<&sol;em><&sol;strong> There are two types of collisions&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Inelastic collision&colon; &&num;8211&semi; this occurs when two bodies collide and stick together i&period;e&period; hitting putty on a wall&period; Momentum is conserved&period;<&sol;li>&NewLine;<li>Elastic collision&colon; &&num;8211&semi; occurs when bodies collide and bounce off each other after collision&period; Both momentum and kinetic energy are conserved&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Collisions bring about a law derived from both Newton’s third law and conservation of momentum&period; This law is known as <strong>the law of conservation of linear momentum<&sol;strong> which states that <strong><em>&OpenCurlyDoubleQuote;when no outside forces act on a system of moving objects&comma; the total momentum of the system stays constant”<&sol;em><&sol;strong>&period;<&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A bullet of mass 0&period;005 kg is fired from a gun of mass 0&period;5 kg&period; If the muzzle velocity of the bullet is 300 m&sol;s&comma; determine the recoil velocity of the gun&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Initial momentum of the bullet and the gun is zero since they are at rest&period;<&sol;p>&NewLine;<p>Momentum of the bullet after firing &equals; &lpar;0&period;005×350&rpar; &equals; 1&period;75 kgm&sol;s<&sol;p>&NewLine;<p>But momentum before firing &equals; momentum after firing hence<&sol;p>&NewLine;<p>0 &equals; 1&period;75 &plus; 0&period;5 v where &OpenCurlyQuote;v’ &equals; recoil velocity<&sol;p>&NewLine;<p>0&period;5 v &equals; -1&period;75<&sol;p>&NewLine;<p>v &equals;-1&period;75&sol;0&period;5 &equals; &&num;8211&semi; 3&period;5 m&sol;s &lpar;recoil velocity&rpar;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A resultant force of 12 N acts on a body of mass 2 kg for 10 seconds&period; What is the change in momentum of the body&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Change in momentum &equals; ∆P &equals; mv – mu&equals; Ft<&sol;p>&NewLine;<p>&equals; 12×10 &equals; 12 Ns<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><em>A minibus of mass 1&comma;500 kg travelling at a constant velocity of 72 km&sol;h collides head-on with a stationary car of mass 900 kg&period; The impact takes 2 seconds before the two move together at a constant velocity for 20 seconds&period; Calculate <&sol;em><&sol;li>&NewLine;<li><em>The common velocity<&sol;em><&sol;li>&NewLine;<li><em>The distance moved after the impact<&sol;em><&sol;li>&NewLine;<li><em>The impulsive force<&sol;em><&sol;li>&NewLine;<li><em>The change in kinetic energy<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>Let the common velocity be &OpenCurlyQuote;v’<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Momentum before collision &equals; momentum after collision<&sol;p>&NewLine;<p>&lpar;1500×20&rpar; &plus; &lpar;900×0&rpar; &equals; &lpar;1500 &plus;900&rpar;v<&sol;p>&NewLine;<p>30&comma;000 &equals; 2&comma;400v<&sol;p>&NewLine;<p>v &equals; 30&comma;000&sol;2&comma;400 &equals; 12&period;5 m&sol;s &lpar;common velocity&rpar;<&sol;p>&NewLine;<ol start&equals;"12">&NewLine;<li>After impact&comma; the two bodies move together as one with a velocity of 12&period;5 m&sol;s<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Distance &equals; velocity × time<&sol;p>&NewLine;<p>&equals; 12&period;5×20<&sol;p>&NewLine;<p>&equals; 250m<&sol;p>&NewLine;<ol>&NewLine;<li>Impulse &equals; change in momentum<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals; 1500 &lpar;20-12&period;5&rpar; for minibus or<&sol;p>&NewLine;<p>&equals;900 &lpar;12&period;5 – 0&rpar; for the car<&sol;p>&NewLine;<p>&equals; 11&comma;250 Ns<&sol;p>&NewLine;<p>Impulse force F &equals; impulse&sol;time &equals; 11&comma;250&sol;2 &equals; 5&comma;625 N<&sol;p>&NewLine;<ol>&NewLine;<li>E before collision &equals; &half; × 1&comma;500 × 20<sup>2<&sol;sup> &equals; 3 × 10<sup>5<&sol;sup> J<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>K&period;E after collision &equals; &half; × 2400 × 12&period;5<sup>2<&sol;sup> &equals; 1&period;875×10<sup>5<&sol;sup> J<&sol;p>&NewLine;<p>Therefore&comma; change in K&period;E &equals;&lpar;3&period;00 – 1&period;875&rpar; × 10<sup>5<&sol;sup> &equals; 1&period;25× 10<sup>5<&sol;sup> J<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Some of the applications of the law of conservation of momentum<&sol;p>&NewLine;<ol>&NewLine;<li>Rocket and jet propulsion&colon; &&num;8211&semi; rocket propels itself forward by forcing out its exhaust gases&period; The hot gases are pushed through exhaust nozzle at high velocity therefore gaining momentum to move forward&period;<&sol;li>&NewLine;<li>The garden sprinkler&colon; &&num;8211&semi; as water passes through the nozzle at high pressure it forces the sprinkler to rotate&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Solid friction<&sol;p>&NewLine;<p><strong><em>Friction is a force which opposes or tends to oppose the relative motion of two surfaces in contact with each other<&sol;em><&sol;strong>&period;<&sol;p>&NewLine;<p><em>Measuring frictional forces<&sol;em><&sol;p>&NewLine;<p>We can relate weight of bodies in contact and the force between them&period; This relationship is called coefficient of friction&period; <strong><em>Coefficient of friction is defined as the ratio of the force needed to overcome friction <&sol;em>F<sub>f<&sol;sub><em> to the perpendicular force between the surfaces <&sol;em>F<sub>n<&sol;sub><em>&period; <&sol;em><&sol;strong>Hence<&sol;p>&NewLine;<p><strong>µ<&sol;strong><strong> &equals; F<sub>f<&sol;sub>&sol; F<sub>n<&sol;sub><&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A box of mass 50 kg is dragged on a horizontal floor by means of a rope tied to its front&period; If the coefficient of kinetic friction between the floor and the box is 0&period;30&comma; what is the force required to move the box at uniform speed&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>F<sub>f<&sol;sub> &equals; µF<sub>n<&sol;sub><&sol;p>&NewLine;<p>F<sub>n<&sol;sub>&equals; weight &equals; 50×10 &equals; 500 N<&sol;p>&NewLine;<p>F<sub>f<&sol;sub> &equals; 0&period;30 × 500 &equals; 150 N<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A block of metal with a mass of 20 kg requires a horizontal force of 50 N to pull it with uniform velocity along a horizontal surface&period; Calculate the coefficient of friction between the surface and the block&period; &lpar;take g &equals; 10 m&sol;s&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Since motion is uniform&comma; the applied force is equal to the frictional force<&sol;p>&NewLine;<p>F<sub>n<&sol;sub> &equals; normal reaction &equals; weight &equals; 20 ×10 &equals; 200 N<&sol;p>&NewLine;<p>Therefore&comma; µ &equals;F<sub>f<&sol;sub>&sol; F<sub>n<&sol;sub> &equals; 50&sol; 200 &equals; 0&period;25&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Laws of friction<&sol;em><&sol;p>&NewLine;<p>It is difficult to perform experiments involving friction and thus the following statements should therefore be taken merely as approximate descriptions&colon; &&num;8211&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Friction is always parallel to the contact surface and in the opposite direction to the force tending to produce or producing motion&period;<&sol;li>&NewLine;<li>Friction depends on the nature of the surfaces and materials in contact with each other&period;<&sol;li>&NewLine;<li>Sliding &lpar;kinetic&rpar; friction is less than static friction &lpar;friction before the body starts to slide&rpar;&period;<&sol;li>&NewLine;<li>Kinetic friction is independent of speed&period;<&sol;li>&NewLine;<li>Friction is independent of the area of contact&period;<&sol;li>&NewLine;<li>Friction is proportional to the force pressing the two surfaces together&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Applications of friction<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>Match stick<&sol;li>&NewLine;<li>Chewing food<&sol;li>&NewLine;<li>Brakes<&sol;li>&NewLine;<li>Motion of motor vehicles<&sol;li>&NewLine;<li>Walking<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Methods of reducing friction<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>Rollers<&sol;li>&NewLine;<li>Ball bearings in vehicles and machines<&sol;li>&NewLine;<li>Lubrication &sol; oiling<&sol;li>&NewLine;<li>Air cushioning in hovercrafts<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A wooden box of mass 30 kg rests on a rough floor&period; The coefficient of friction between the floor and the box is 0&period;6&period; Calculate<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>The force required to just move the box<&sol;em><&sol;li>&NewLine;<li><em>If a force of 200 N is applied the box with what acceleration will it move&quest; <&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>Frictional force F<sub>f<&sol;sub>&equals; µF<sub>n<&sol;sub> &equals; µ&lpar;mg&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals; 0&period;6×30×10 &equals; 180 N<&sol;p>&NewLine;<ol>&NewLine;<li>The resultant force &equals; 200 – 180 &equals; 20 N<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>From F &equals;ma&comma; then 20 &equals; 30 a<&sol;p>&NewLine;<p>a &equals; 20 &sol; 30 &equals; 0&period;67 m&sol;s<sup>2<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Viscosity<&sol;p>&NewLine;<p><strong><em>This is the internal friction of a fluid<&sol;em><&sol;strong>&period; Viscosity of a liquid decreases as temperature increases&period; When a body is released in a viscous fluid it accelerates at first then soon attains a steady velocity called terminal velocity&period; Terminal velocity is attained when<strong><em> F &plus; U &equals; mg <&sol;em><&sol;strong>where<strong> F<&sol;strong> is viscous force&comma; <strong>U<&sol;strong> is upthrust and <strong>mg<&sol;strong> is weight&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>CHAPTER FOUR<&sol;strong><&sol;p>&NewLine;<p><strong> ENERGY&comma; WORK&comma; POWER AND MACHINES<&sol;strong><&sol;p>&NewLine;<p><em>Energy<&sol;em><&sol;p>&NewLine;<p><strong><em>This is the ability to do work&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Forms of energy&period;<&sol;p>&NewLine;<ol>&NewLine;<li>Chemical energy&colon; &&num;8211&semi; this is found in foods&comma; oils charcoal firewood etc&period;<&sol;li>&NewLine;<li>Mechanical energy&colon; &&num;8211&semi; there are two types&semi;<&sol;li>&NewLine;<li>Potential energy – a body possesses potential energy due to its relative position or state<&sol;li>&NewLine;<li>Kinetic energy – energy possessed by a body due to its motion i&period;e&period; wind&comma; water<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Wave energy – wave energy may be produced by vibrating objects or particles i&period;e&period; light&comma; sound or tidal waves&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>Electrical energy – this is energy formed by conversion of other forms of energy i&period;e&period; generators&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Transformation and conservation of energy<&sol;em><&sol;p>&NewLine;<p>Any device that facilitates energy transformations is called <strong>transducer<&sol;strong>&period; Energy can be transformed from one form to another i&period;e&period; mechanical – electrical – heat energy&period; <strong>The law of conservation of energy <&sol;strong>states that <strong><em>&OpenCurlyDoubleQuote;energy cannot be created or destroyed&semi; it can only be transformed from one form to another”&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Work<&sol;em><&sol;p>&NewLine;<p><strong><em>Work is done when a force acts on a body and the body moves in the direction of the force&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Work done &equals; force × distance moved by object<&sol;p>&NewLine;<p><strong><em>W &equals; F <&sol;em><&sol;strong><strong><em>×<&sol;em><&sol;strong><strong><em> d<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Work is measured in <strong>Nm&period; 1 Nm &equals; 1 Joule &lpar;J&rpar;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>Calculate the work done by a stone mason lifting a stone of mass 15 kg through a height of 2&period;0 m&period; &lpar;take g&equals;10N&sol;kg&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Work done &equals; force × distance<&sol;p>&NewLine;<p>&equals; &lpar;15× 10&rpar; × 2 &equals; 300 Nm or 300 J<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A girl of mass 50 kg walks up a flight of 12 steps&period; If each step is 30 cm high&comma; calculate the work done by the girl climbing the stairs&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Work done &equals; force × distance<&sol;p>&NewLine;<p>&equals; &lpar;50× 10&rpar; × &lpar;12 ×30&rpar; ÷ 100 &equals; 500 × 3&period;6 &equals; 1&comma;800 J<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><em>A force of 7&period;5 N stretches a certain spring by 5 cm&period; How much work is done in stretching this spring by 8&period;0 cm&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>A force of 7&period;5 produces an extension of 5&period;0 cm&period;<&sol;p>&NewLine;<p>Hence 8&period;0 cm &equals; &lpar;7&period;5 ×8&rpar;&sol; 5 &equals; 12&period;0 N<&sol;p>&NewLine;<p>Work done &equals; &half; × force × extension<&sol;p>&NewLine;<p>&equals; &half; × 12&period;0 × 0&period;08 &equals; 0&period;48 J<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><em>A car travelling at a speed of 72 km&sol;h is uniformly retarded by an applicationof brakes and comes to rest after 8 seconds&period; If the car with its occupants has a mass of 1&comma;250 kg&period; Calculate&semi;<&sol;em><&sol;li>&NewLine;<li><em>The breaking force<&sol;em><&sol;li>&NewLine;<li><em>The work done in bringing it to rest<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>F &equals; ma and a &equals; v – u&sol;t<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>But 72 km&sol;h &equals; 20m&sol;s<&sol;p>&NewLine;<p>a &equals; 0 -20&sol;8 &equals; &&num;8211&semi; 2&period;5 m&sol;s<&sol;p>&NewLine;<p>Retardation &equals; 2&period;5 m&sol;s<&sol;p>&NewLine;<p>Braking force F &equals; 1&comma;250 × 2&period;5<&sol;p>&NewLine;<p>&equals; 3&comma;125 N<&sol;p>&NewLine;<ol>&NewLine;<li>Work done &equals; kinetic energy lost by the car<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals; &half; mv<sup>2<&sol;sup> – &half; mu<sup>2<&sol;sup><&sol;p>&NewLine;<p>&equals; &half; × 1250 × 0<sup>2<&sol;sup> – &half; × 1250 × 20<sup>2<&sol;sup><&sol;p>&NewLine;<p>&equals; &&num;8211&semi; 2&period;5 × 10<sup>5<&sol;sup> J<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><em>A spring constant k &equals; 100 Nm is stretched to a distance of 20 cm&period; calculate the work done by the spring&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Work &equals; &half; ks<sup>2<&sol;sup><&sol;p>&NewLine;<p>&equals; &half; × 100 × 0&period;2<sup>2<&sol;sup><&sol;p>&NewLine;<p>&equals; 2 J<&sol;p>&NewLine;<p><em>Power<&sol;em><&sol;p>&NewLine;<p><strong><em>Poweris the time rate of doing work or the rate of energy conversion&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Power &lpar;P&rpar; &equals; work done &sol; time<&sol;p>&NewLine;<p><strong>  P &equals; W &sol; t<&sol;strong><&sol;p>&NewLine;<p>The SI unit for power is the <strong>watt &lpar;W&rpar;<&sol;strong> or <strong>joules per second &lpar;J&sol;s<&sol;strong>&rpar;&period;<&sol;p>&NewLine;<p><em>Examples <&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A person weighing 500 N takes 4 seconds to climb upstairs to a height of 3&period;0 m&period; what is the average power in climbing up the height&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Power &equals; work done &sol; time &equals; &lpar;force × distance&rpar; &sol; time<&sol;p>&NewLine;<p>&equals; &lpar;500 ×3&rpar; &sol; 4 &equals; 375 W<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A box of mass 500 kg is dragged along a level ground at a speed of 12 m&sol;s&period; If the force of friction between the box and floor is 1200 N&period; Calculate the power developed&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Power &equals; F v<&sol;p>&NewLine;<p>&equals; 2&comma;000 × 12<&sol;p>&NewLine;<p>&equals; 24&comma;000 W &equals; 24 kW&period;<&sol;p>&NewLine;<p><em>Machines<&sol;em><&sol;p>&NewLine;<p><strong><em>A machine is any device that uses a force applied at one point to overcome a force at another point<&sol;em><&sol;strong>&period; Force applied is called the <strong>effort<&sol;strong> while the resisting force overcome is called<strong> load<&sol;strong>&period; Machines makes work easier or convenient to be done&period; Three quantities dealing with machines are&semi;-<&sol;p>&NewLine;<ol>&NewLine;<li><strong><em>Mechanical advantage &lpar;M&period;A&period;&rpar;<&sol;em><&sol;strong> &&num;8211&semi; this is defined as the ratio of the load &lpar;L&rpar; to the effort &lpar;E&rpar;&period; It has no units&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>M&period;A &equals; load &lpar;L&rpar; &sol; effort &lpar;E&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong><em>Velocity ratio<&sol;em><&sol;strong> – this is the ratio  of thedistance moved by the effort to the distance moved by the load<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>V&period;R &equals; distance moved by effort&sol; distance moved by the load<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>c&rpar; <strong><em>Efficiency<&sol;em><&sol;strong> – is obtained by dividing the work output by the work input and the getting                      percentage<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Efficiency &equals; &lpar;work output&sol;work input&rpar; × 100<&sol;p>&NewLine;<p>&equals; <strong><em>&lpar;M&period;A &sol; V&period;R&rpar; <&sol;em><&sol;strong><strong><em>×<&sol;em><&sol;strong><strong><em> 100<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&equals; &lpar;work done on load &sol; work done on effort&rpar; × 100<&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A machine&semi; the load moves 2 m when the effort moves 8 m&period; If an effort of 20 N is used to raise a load of 60 N&comma; what is the efficiency of the machine&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Efficiency &equals;   &lpar;M&period;A &sol; V&period;R&rpar; × 100    M&period;A &equals; load&sol;effort &equals;60&sol;20 &equals; 3<&sol;p>&NewLine;<p>V&period;R &equals;D<sub>E<&sol;sub>&sol; D<sub>L<&sol;sub> &equals; 8&sol;2 &equals; 4<&sol;p>&NewLine;<p>Efficiency &equals; ¾ × 100 &equals; 75&percnt;<&sol;p>&NewLine;<p><em>Some simple machines<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>Levers<&sol;em>– this is a simple machine whose operation relies on the principle of moments<&sol;li>&NewLine;<li><em>Pulleys<&sol;em> – this is a wheel with a grooved rim used for lifting heavy loads to high levels&period; The can be used as a single fixed pulley&comma; or as a block-and-tackle system&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>M&period;A &equals; Load&sol; Effort<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>V&period;R &equals; no&period; of pulleys&sol; no&period; of strings supporting the load<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Example <&sol;em><&sol;p>&NewLine;<p><em>A block and tackle system has 3 pulleys in the upper fixed block and two in the lower moveable block&period; What load can be lifted by an effort of 200 N if the efficiency of the machine is 60&percnt;&quest;<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>V&period;R &equals; total number of pulleys &equals; 5<&sol;p>&NewLine;<p>Efficiency &equals; &lpar;M&period;A &sol;V&period;R&rpar; × 100 &equals; 60&percnt;<&sol;p>&NewLine;<p>0&period;6 &equals; M&period;A&sol; 5 &equals;3&comma; but M&period;A &equals; Load&sol;Effort<&sol;p>&NewLine;<p>Therefore&comma; load &equals; 3 ×200 &equals; 600 N<&sol;p>&NewLine;<ol>&NewLine;<li><em>Wheel and axle<&sol;em>– consists of a large wheel of big radius attached to an axle of smaller radius&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>V&period;R &equals; R&sol;r and M&period;A &equals; R&sol;r<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A wheel and axle is used to raise a load of 280 N by a force of 40 N applied to the rim of the wheel&period; If the radii of the wheel and axle are 70 cm and 5 cm respectively&period; Calculate the M&period;A&comma; V&period;Rand efficiency&period;<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>M&period;A &equals; 280 &sol; 40 &equals; 7<&sol;p>&NewLine;<p>V&period;R &equals; R&sol;r &equals; 70&sol;5 &equals; 14<&sol;p>&NewLine;<p>Efficiency &equals; &lpar;M&period;A&sol; V&period;R&rpar; × 100 &equals; 7&sol;14 × 100 &equals; 50 &percnt;<&sol;p>&NewLine;<ol>&NewLine;<li>Inclined plane&colon; &&num;8211&semi;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>V&period;R &equals; 1&sol; sin <&sol;strong><strong>θ<&sol;strong><strong>           M&period;A &equals; Load&sol; Effort<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A man uses an inclined plane to lift a 50 kg load through a vertical height of 4&period;0 m&period; the inclined plane makes an angle of 30<sup>0<&sol;sup> with the horizontal&period; If the efficiency of the inclined plane is 72&percnt;&comma; calculate&semi;<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>The effort needed to move the load up the inclined plane at a constant velocity&period;<&sol;em><&sol;li>&NewLine;<li><em>The work done against friction in raising the load through the height of 4&period;0 m&period; &lpar;take g&equals; 10 N&sol;kg&rpar;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>R &equals; 1 &sol; sin C &equals; 1&sol; sin 30<sup>0<&sol;sup> &equals; 2 M&period;A &equals; efficiency × V&period;R &equals; &lpar;72&sol;100&rpar;× 2 &equals; 1&period;44<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Effort &equals; load &lpar;mg&rpar; &sol; effort &lpar;50×10&rpar;&sol; 1&period;44 &equals; 347&period;2 N<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Work done against friction &equals; work input – work output<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Work output &equals; mgh &equals; 50×10×4 &equals; 2&comma;000 J<&sol;p>&NewLine;<p>Work input &equals; effort × distance moved by effort<&sol;p>&NewLine;<p>347&period;2 × &lpar;4× sin 30<sup>0<&sol;sup>&rpar; &equals; 2&comma;777&period;6 J<&sol;p>&NewLine;<p>Therefore work done against friction &equals; 2&comma;777&period;6 – 2&comma;000 &equals; 777&period;6 J<&sol;p>&NewLine;<ol>&NewLine;<li>The screw&colon; &&num;8211&semi; the distance between two successive threads is called the pitch<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>V&period;R of screw &equals; circumference of screw head &sol; pitch P<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>                        <&sol;em><&sol;strong><strong><em>&equals; 2<&sol;em><&sol;strong><strong><em>π<&sol;em><&sol;strong><strong><em>r &sol; P<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>A car weighing 1&comma;600 kg is lifted with a jack-screw of 11 mm pitch&period; If the handleis 28 cmfrom the screw&comma; find the force applied&period;<&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Neglecting friction M&period;A &equals; V&period;R<&sol;p>&NewLine;<p>V&period;R &equals; 2πr &sol;P &equals; M&period;A &equals; L &sol; E<&sol;p>&NewLine;<p>1&comma;600 &sol; E &equals; &lpar;2π× 0&period;28&rpar; &sol; 0&period;011<&sol;p>&NewLine;<p>E &equals; &lpar;1&comma;600 × 0&period;011 × 7&rpar; &sol; 22×2×0&period;28 &equals;10 N<&sol;p>&NewLine;<ol>&NewLine;<li>Gears&colon; &&num;8211&semi; the wheel in which effort is applied is called the driver while the load wheel is the driven wheel&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>V&period;R &equals; revolutions of driver wheel &sol; revolutions of driven wheel<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>            Or<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>V&period;R &equals; no&period;of teeth in the driven wheel&sol; no&period; of teeth in the driving wheel<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Example<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Pulley belts&colon; -these are used in bicycles and other industrial machines<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>V&period;R &equals; radius of the driven pulley &sol; radius of the driving pulley <&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Hydraulic machines<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>V&period;R &equals; R<sup>2<&sol;sup> &sol; r<sup>2<&sol;sup> where R- radius of the load piston and r- radius of the effort piston<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>The radius of the effort piston of a hydraulic lift is 1&period;4 cm while that of the load piston is 7&period;0 cm&period; This machine is used to raise a load of 120 kg at a constant velocity through a height of 2&period;5 cm&period; given that the machine is 80&percnt; efficient&comma; calculate&semi;<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>The effort needed<&sol;em><&sol;li>&NewLine;<li><em>The energy wasted using the machine<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>R &equals; R<sup>2<&sol;sup> &sol; r<sup>2<&sol;sup> &equals; &lpar;7×7&rpar; &sol; 1&period;4 × 1&period;4 &equals; 25<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Efficiency &equals; M&period;A &sol; V&period;R &equals; &lpar;80 &sol;100&rpar; × 25 &equals; 20<&sol;p>&NewLine;<p>But M&period;A &equals; Load &sol; Effort &equals; &lpar;120×10&rpar; &sol; 20 &equals; 60 N<&sol;p>&NewLine;<ol>&NewLine;<li>Efficiency &equals; work output &sol; work input &equals; work done on load &lpar;<em>m g h<&sol;em>&rpar; &sol;80<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals; &lpar;120 × 10× 2&period;5&rpar; &sol; work input<&sol;p>&NewLine;<p>80 &sol; 100 &equals; 3&comma;000 &sol; work input<&sol;p>&NewLine;<p>Work input &equals; &lpar;3&comma;000 × 100&rpar; &sol;80 &equals; 3&comma;750 J<&sol;p>&NewLine;<p>Energy wasted &equals; work input – work output<&sol;p>&NewLine;<p>&equals; 3&comma;750 – 3&comma;000 &equals; 750 J<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>CHAPTER FIVE<&sol;strong><&sol;p>&NewLine;<p><strong>CURRENT ELECTRICITY<&sol;strong><&sol;p>&NewLine;<p><em>Electric potential difference and electric current<&sol;em><&sol;p>&NewLine;<p>Electric current<&sol;p>&NewLine;<p><strong><em>Electric potential difference &lpar;p&period; d&rpar; is defined as the work done per unit charge in moving charge from one point to another<&sol;em><&sol;strong>&period; It is measured in <strong>volts<&sol;strong>&period;<&sol;p>&NewLine;<p><strong><em>Electric current is the rate of flow of charge&period;<&sol;em><&sol;strong> P&period; d is measured using a voltmeter while current is measured using an ammeter&period; The SI units for charge is <strong>amperes &lpar;A&rpar;&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Ammeters and voltmeters<&sol;p>&NewLine;<p>In a circuit an ammeter is always connected in series with the battery while a voltmeter is always connected parallel to the device whose voltage is being measured&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Ohm’s law<&sol;p>&NewLine;<p>This law gives the relationship between the voltage across a conductor and the current flowing through it&period; Ohm’s law states that <strong><em>&OpenCurlyDoubleQuote;the current flowing through a metal conductor is directly proportional to the potential difference across the ends of the wire provided that temperature and other physical conditions remain constant<&sol;em><&sol;strong>”<&sol;p>&NewLine;<p>Mathematically <strong>V <&sol;strong><strong>α<&sol;strong><strong> I<&sol;strong><&sol;p>&NewLine;<p>So <strong><em>V &sol;I &equals; constant<&sol;em><&sol;strong>&comma; this constant of proportionality is called <strong>resistance<&sol;strong><&sol;p>&NewLine;<p><strong><em>V &sol; I &equals; Resistance &lpar;R&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Resistance is measured in <strong>ohms<&sol;strong> and given the symbol <strong>Ω<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A current of 2mA flows through a conductor of resistance 2 kΩ&period; Calculate the voltage across the conductor&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Solution<&sol;p>&NewLine;<p>V &equals; IR &equals; &lpar;2 × 10<sup>-3<&sol;sup>&rpar; × &lpar;2 × 10<sup>3<&sol;sup>&rpar; &equals; 4 V&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A wire of resistance 20Ω is connected across a battery of 5 V&period; What current is flowing in the circuit&quest;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>I &equals; V&sol;R &equals; 5 &sol; 20 &equals; 0&period;25 A<&sol;p>&NewLine;<p>Ohmic and non-ohmic conductors<&sol;p>&NewLine;<p><strong><em>Ohmic conductors are those that obey Ohms law&lpar;V <&sol;em><&sol;strong><strong><em>α<&sol;em><&sol;strong><strong><em> I&rpar; <&sol;em><&sol;strong>and a good example is nichrome wire i&period;e&period; the nichrome wire is not affected by temperature&period;<&sol;p>&NewLine;<p><strong><em>Non-ohmic conductors do not obey Ohms law<&sol;em><&sol;strong> i&period;e&period; bulb filament &lpar;tungsten&rpar;&comma; thermistor couple&comma; semi-conductor diode etc&period; They are affected by temperature hence non-linear&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Factors affecting the resistance of a metallic conductor<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>Temperature<&sol;em> – resistance increases with increase in temperature<&sol;li>&NewLine;<li><em>Length of the conductor<&sol;em>– increase in length increases resistance<&sol;li>&NewLine;<li><em>Cross-sectional area<&sol;em>– resistance is inversely proportional to the cross-sectional area of a conductor of the same material&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Resistivity<&sol;strong> of a material is numerically equal to the resistance of a material of unit length and unit cross-sectional area&period; It is symbolized by <strong>ρ<&sol;strong> and the units are ohmmeter <strong>&lpar;<&sol;strong><strong>Ω<&sol;strong><strong>m&rpar;&period;<&sol;strong> It is given by the following formula&semi;<&sol;p>&NewLine;<p><strong><em>ρ<&sol;em><&sol;strong><strong><em> &equals; AR &sol;l<&sol;em><&sol;strong><em>where A – cross-sectional area&comma; R – resistance&comma; l – length<&sol;em><&sol;p>&NewLine;<p><em>Example<&sol;em><&sol;p>&NewLine;<p><em>Given that the resistivity of nichrome is 1&period;1<&sol;em><em>×<&sol;em><em> 10<sup>-6<&sol;sup><&sol;em><em>Ω<&sol;em><em>m&comma; what length of nichrome wire of diameter 0&period;42 mm is needed to make a resistance of 20 <&sol;em><em>Ω<&sol;em><em>&quest;<&sol;em><&sol;p>&NewLine;<p>Solution<&sol;p>&NewLine;<p><em>ρ<&sol;em><em> &equals; AR &sol;l<&sol;em>&comma; hence l &equals; RA&sol; ρ &equals; 20 × 3&period;142 × &lpar;2&period;1×10<sup>-4<&sol;sup>&rpar; &sol; 1&period;1 × 10<sup>-6<&sol;sup> &equals; 2&period;52 m<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Resistors<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Resistors are used to regulate or control the magnitude of current and voltage in a circuit according to Ohms law&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Types of resistors<&sol;p>&NewLine;<ol>&NewLine;<li><&sol;li>&NewLine;<&sol;ol>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Carbon resistor<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<ul>&NewLine;<li>Fixed resistors – they are wire-wound or carbon resistors and are designed togive a fixed resistance&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>ii&rpar; Variable resistors – they consist of the rheostat and potentiometer&period; The resistance can be varied by sliding a metal contact to generate desirable resistance&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Wire-wound resistor<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Resistor combination<&sol;p>&NewLine;<ol>&NewLine;<li>Series combination<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Consider the following loop<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Since it is in series then&comma;<&sol;p>&NewLine;<p><strong>V<sub>T<&sol;sub> &equals; V<sub>1 <&sol;sub>&plus; V<sub>2<&sol;sub> &plus; V<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>The same current &lpar;I&rpar; flows through the circuit &lpar;resistors&rpar;&comma; hence<&sol;p>&NewLine;<p><strong>IR<sub>T <&sol;sub>&equals; I &lpar;R<sub>1 <&sol;sub>&plus; R<sub>2<&sol;sub> &plus; R<sub>3<&sol;sub>&rpar;&comma;<&sol;strong> dividing through by I&comma; then<&sol;p>&NewLine;<p><strong>R<sub>T<&sol;sub> &equals; R<sub>1<&sol;sub> &plus; R<sub>2<&sol;sub> &plus; R<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>Therefore for resistors connected in series the equivalent resistance <strong>&lpar;R<sub>eq<&sol;sub>&rpar; <&sol;strong>is equal to the total sum of their individual resistances&period;<&sol;p>&NewLine;<p><strong>R<sub>eq<&sol;sub> &equals; R<sub>1<&sol;sub> &plus; R<sub>2<&sol;sub> &plus; R<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p><strong><sub> <&sol;sub><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Parallel combination<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Consider the following circuit<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Total current is given by&semi;<&sol;p>&NewLine;<p><strong>I<sub>T<&sol;sub> &equals; I<sub>1<&sol;sub> &plus; I<sub>2<&sol;sub> &plus; I<sub>3&period;  <&sol;sub>But I<sub>T<&sol;sub> &equals; V<sub>T<&sol;sub>&sol;R<sub>T<&sol;sub> &equals; V<sub>1<&sol;sub>&sol;R<sub>1<&sol;sub> &plus; V<sub>2<&sol;sub>&sol;R<sub>2<&sol;sub> &plus; V<sub>3<&sol;sub>&sol;R<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>Since in parallel&comma; <strong>V<sub>T<&sol;sub> &equals; V<sub>1<&sol;sub> &equals; V<sub>2<&sol;sub> &equals; V<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>Then <strong>1&sol;R<sub>T<&sol;sub> &equals; 1&sol;R<sub>1<&sol;sub> &plus; 1&sol;R<sub>2<&sol;sub> &plus;1&sol;R<sub>3<&sol;sub><&sol;strong>&comma; for &OpenCurlyQuote;<strong>n<&sol;strong>’ resistors in parallel<&sol;p>&NewLine;<p><strong>1&sol;R<sub>T<&sol;sub> &equals; 1&sol;R<sub>1<&sol;sub> &plus; 1&sol;R<sub>2<&sol;sub> &plus;1&sol;R<sub>3 <&sol;sub>………… 1&sol;R<sub>n<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>If only two resistors are involved then the equivalent resistance becomes<&sol;p>&NewLine;<p><strong>1&sol;R<sub>eq <&sol;sub>&equals; 1&sol;R<sub>1<&sol;sub> &plus; 1&sol;R<sub>2 <&sol;sub>&equals; &lpar;R<sub>1<&sol;sub> &plus; R<sub>2<&sol;sub>&rpar;&sol; R<sub>1<&sol;sub> R<sub>2<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>Calculate the effective resistance in the following<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>This reduces to<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Combining the two in parallel&semi;<&sol;p>&NewLine;<p>1&sol;R<sub>eq<&sol;sub> &equals; &lpar;R<sub>1<&sol;sub> &plus; R<sub>2<&sol;sub>&rpar;&sol;R<sub>1<&sol;sub> R<sub>2<&sol;sub> &equals; 20&sol;96<&sol;p>&NewLine;<p>1&sol;R<sub>eq<&sol;sub> &equals; 20&sol;96&comma; therefore R<sub>eq<&sol;sub> &equals; 96&sol;20 &equals; 4&period;8 Ω<&sol;p>&NewLine;<p>Lastly combining the two in series&semi;<&sol;p>&NewLine;<p>Then R<sub>eq<&sol;sub> &equals; 4 Ω &plus; 4&period;8 Ω &equals; 8&period;8 Ω<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>In the diagram below&comma; a current of 0&period;8 A&comma; passing through an arrangement of resistors as shown below&period; Find the current through the 10 <&sol;em><em>Ω<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Combining those in series then this can be replaced by two resistors of 60 Ω and 40 Ω&period;<&sol;p>&NewLine;<p>Current through 10 Ω &equals; &lpar;p&period;d&period; between P and R&rpar;&sol; &lpar;30 &plus; 10&rpar; Ω<&sol;p>&NewLine;<p>p&period;d between P and R &equals; 0&period;8 × R<sub>eq<&sol;sub>&period; R<sub>eq<&sol;sub> &equals; &lpar;40 × 60&rpar;&sol; 40 &plus; 60 &equals; 2400&sol; 100 &equals; 24 Ω<&sol;p>&NewLine;<p>p&period;d across R and P &equals; 0&period;8 × 24 &lpar;V&equals;IR&rpar;<&sol;p>&NewLine;<p>therefore&comma; current through 10 Ω &equals; 19&period;2 &sol; 10 &plus; 30 &equals; 0&period;48 A<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Electromotive force and internal resistance<&sol;p>&NewLine;<p><strong><em>Electromotive force &lpar;e&period;m&period;f&period;&rpar; is the p&period;d across a cell when no current is being drawn from the cell<&sol;em><&sol;strong>&period; The p&period;d across the cell when the circuit is closed is referred to as the terminal voltage of the cell&period; Internal resistance of a cell is therefore the resistance of flow of current that they generate&period; Consider the following diagram&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The current flowing through the circuit is given by the equation&comma;<&sol;p>&NewLine;<p><strong> Current &equals; e&period;m&period;f &sol; total resistance<&sol;strong><&sol;p>&NewLine;<p><strong><em>I &equals; E &sol; R &plus; r<&sol;em><&sol;strong><em>where E – e&period;m&period;f of the cell<&sol;em><&sol;p>&NewLine;<p>Therefore <strong><em>E &equals; I &lpar;R &plus; r&rpar; &equals; IR &plus; I r &equals; V &plus; I r<&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Examples<&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li><em>A cell drives a current of 0&period;6 A through a resistance of 2 <&sol;em><em>Ω<&sol;em><em>&period; if the value of resistance is increased to 7 <&sol;em><em>Ω<&sol;em><em> the current becomes 0&period;2 A&period; calculate the value of e&period;m&period;f of the cell and its internal resistance&period;<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>Let the internal resistance be &OpenCurlyQuote;r’ and e&period;m&period;f be &OpenCurlyQuote;E’&period;<&sol;p>&NewLine;<p>Using E &equals; V &plus; I r &equals; IR &plus; I r<&sol;p>&NewLine;<p>Substitute for the two sets of values for I and R<&sol;p>&NewLine;<p>E &equals; 0&period;6 × &lpar;2 &plus; 0&period;6 r&rpar; &equals; 1&period;2 &plus; 0&period;36 r<&sol;p>&NewLine;<p>E &equals; 0&period;6 × &lpar;7 × 0&period;2 r&rpar; &equals; 1&period;4 &plus; 0&period;12 r<&sol;p>&NewLine;<p>Solving the two simultaneously&comma; we have&comma;<&sol;p>&NewLine;<p>E &equals; 1&period;5 v and R &equals; 0&period;5 Ω<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><em>A battery consists of two identical cells&comma; each of e&period;m&period;f 1&period;5 v and internal resistance of 0&period;6 <&sol;em><em>Ω<&sol;em><em>&comma; connected in parallel&period; Calculate the current the battery drives through a 0&period;7 <&sol;em><em>Ω<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution<&sol;em><&sol;p>&NewLine;<p>When two identical cells are connected in series&comma; the equivalent e&period;m&period;f is equal to that of only one cell&period; The equivalent internal resistance is equal to that of two such resistance connected in parallel&period; Hence R<sub>eq<&sol;sub> &equals; R<sub>1<&sol;sub> R<sub>2<&sol;sub> &sol; R<sub>1<&sol;sub> &plus; R<sub>2<&sol;sub> &equals; &lpar;0&period;6 × 0&period;6&rpar; &sol; 0&period;6 &plus; 0&period;6 &equals; 0&period;36 &sol; 1&period;2 &equals; 0&period;3 Ω<&sol;p>&NewLine;<p>Equivalent e&period;m&period;f &equals;1&period;5 &sol; &lpar;0&period;7 &plus; 0&period;3&rpar; &equals; 1&period;5 A<&sol;p>&NewLine;<p>Hence current flowing through 0&period;7 Ω resistor is 1&period;5 A<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;

Leave a Reply

Your email address will not be published. Required fields are marked *