CHEMISTRY FORM 3 NOTES- EDITABLE

<p><strong> &period;3UNIT 2&colon; NITROGEN AND ITS COMPOUNDS&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Unit checklist&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Introduction<&sol;li>&NewLine;<li>Preparation of nitrogen<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Isolation from air<&sol;li>&NewLine;<li>Isolation from liquid air<&sol;li>&NewLine;<li>Laboratory preparation<&sol;li>&NewLine;<li>Preparation from ammonia<&sol;li>&NewLine;<li>Properties of nitrogen<&sol;li>&NewLine;<li>Oxides of nitrogen&NewLine;<ul>&NewLine;<li>Nitrogen &lpar;I&rpar; oxide<&sol;li>&NewLine;<li>Nitrogen &lpar;II&rpar; oxide<&sol;li>&NewLine;<li>Nitrogen &lpar;IV&rpar; oxide<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"3">&NewLine;<li>Action of heat on nitrates&period;<&sol;li>&NewLine;<li>Ammonia gas<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Preparation<&sol;li>&NewLine;<li>Laboratory preparation<&sol;li>&NewLine;<li>Preparation from caustic soda<&sol;li>&NewLine;<li>Test for ammonia<&sol;li>&NewLine;<li>Fountain experiment<&sol;li>&NewLine;<li>Properties and reactions of ammonia<&sol;li>&NewLine;<li>Large scale manufacture of ammonia gas&colon; the Haber process<&sol;li>&NewLine;<li>Uses of ammonia<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"5">&NewLine;<li>Nitric &lpar;V&rpar; acid<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Laboratory preparation<&sol;li>&NewLine;<li>Industrial manufacture of nitric &lpar;V&rpar; acid&colon; The Otswald’s process&period;<&sol;li>&NewLine;<li>Reactions of dilute nitric acid<&sol;li>&NewLine;<li>Reactions of concentrated nitric acid<&sol;li>&NewLine;<li>Uses of nitric acid<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"6">&NewLine;<li>Test for nitrates&period;<&sol;li>&NewLine;<li>Pollution effects of nitrogen and its compounds<&sol;li>&NewLine;<li>Reducing pollution environmental pollution by nitrogen compounds&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Introduction&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; About 78&percnt; of air is nitrogen&comma; existing as N<sub>2<&sol;sub> molecules&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The two atoms in the molecules are firmly held together&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen does not take part in many chemical reactions due to its low reactivity&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Its presence in air dilutes oxygen and slows down respiration&comma; burning and rusting&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Preparation of nitrogen&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Isolation from air&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Air is driven out of the aspirator by passing water into the aspirator from a tap&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The air is the passed through a wash bottle containing concentrated potassium hydroxide solution&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To remove carbon &lpar;IV&rpar; oxide from air&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>2KOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub>                   K<sub>2<&sol;sub>CO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Then<&sol;p>&NewLine;<p>K<sub>2<&sol;sub>CO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;         <&sol;sub>            2KHCO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Thus&semi;<&sol;p>&NewLine;<p>KOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub>                     KHCO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The carbon &lpar;IV&rpar; oxide-free air is then passed into a combustion tube with heated copper metal&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To remove oxygen from the air&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>In this reaction the brown copper metal is oxidized to black copper &lpar;II&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;      <&sol;sub>            2CuO<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Brown                                                Black<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Alternatively oxygen can be removed by passing the carbon &lpar;IV&rpar; oxide-free air through pyrogallic acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The remaining part of air is mainly nitrogen and is collected over water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen obtained by this method contains noble gases like xenon&comma; argon etc as impurities&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Purer nitrogen may be obtained by heating ammonium nitrite&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>4<&sol;sub>NO<sub>3&lpar;s&rpar;<&sol;sub>       <strong><em><sup>Heat<&sol;sup><&sol;em><&sol;strong>       N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Summary&period;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Removal from liquid air&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Liquid air is primarily a mixture of nitrogen and oxygen with small amounts of noble gases&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This method involves manufacture of liquid air and consequent fractional distillation&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>The chemical process&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Step 1&colon; removal of dust particles&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dust particles are first removed by either of the two processes&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Electrostatic precipitation<&sol;li>&NewLine;<li><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>&lpar;i&rpar;&period; Electrostatic precipitation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Air is passed through oppositely charged plates hence an electric field&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dust particles &lpar;charged&rpar; are consequently attracted to plates of opposite charges&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Diagram&colon; electrostatic precipitation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Filtration&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The air is passed through a series of filters which traps dust particles as the air is forced through&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Step 2&colon; removal of carbon &lpar;IV&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The dust-free air is passed through a solution of potassium hydroxide&semi; to remove carbon &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>2KOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub>                        K<sub>2<&sol;sub>CO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Then&colon;<&sol;p>&NewLine;<p>K<sub>2<&sol;sub>CO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub>                 2KHCO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Excess&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Alternatively&comma; sodium hydroxide may be used in place of potassium hydroxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Step 3&colon; Removal of water vapour&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The dustless&comma; carbon &lpar;IV&rpar; oxide-free air is next passed into a chamber with <strong>concentrated sulphuric acid<&sol;strong> or <strong>anhydrous calcium chloride<&sol;strong> in which water vapour is separated and removed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>To remove water vapour&comma; air may be alternatively passed into a <strong>freezing chamber<&sol;strong> where it is condensed at -25<sup>o<&sol;sup>C&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The water vapour <strong>solidifies<&sol;strong> and is then absorbed by <strong>silica gel<&sol;strong> and separated out&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Air is freed from carbon &lpar;IV&rpar; oxide&comma; water vapour and dust particles &lpar;before compression&rpar; so as to prevent <strong>blockage<&sol;strong> of the pipes caused by  solid materials at liquefaction temperatures i&period;e&period; carbon &lpar;IV&rpar; oxide and water vapour form solids which may block the collection pipes&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Step 4&colon; Liquification of air&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The air free from dust&comma; carbon &lpar;IV&rpar; oxide and water vapour is then compressed at about 200 atmospheres&comma; cooled and allowed to expand through fine jet&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This sudden expansion causes further cooling and the gases eventually liquefy&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The liquid is tapped off through a valve while gas which has escaped liquefaction returns to the compressor&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Liquid air is a transparent <strong>pale blue liquid<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This liquid is then fractionally distilled&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Step 5&colon; Fractional distillation of liquid air&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The boiling point of nitrogen is -196<sup>o<&sol;sup>C &lpar;77K&rpar; and that of oxygen is -183<sup>o<&sol;sup>C &lpar;90K&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Consequently when liquid air is allowed to warm up&comma; the nitrogen boils off first and the remaining liquid becomes richer in oxygen&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The top of the fractionating column is a few degrees cooler than the bottom&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Oxygen&comma; the liquid with the higher boiling point &lpar;-183<sup>o<&sol;sup>C&rpar; collects at the bottom as the liquid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The gas at the top of the column is nitrogen which ahs a lower boiling point&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The more easily vapourised nitrogen is taken off&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This way about 99&period;57&percnt; nitrogen is obtained&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The separation of nitrogen and oxygen from air is a proof that air is a mixture and not a compound&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Summary&colon; Fractional distillation of liquid air&period;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"215"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td width&equals;"102">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td><strong>AIR<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Step 1&colon; Elimination of dust by Filtration<&sol;p>&NewLine;<p>and electrostatic precipitation<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"179"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Step 2&colon; CO<sub>2<&sol;sub> removal&comma; pass dust free air<&sol;p>&NewLine;<p>through KOH or NaOH<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"179"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Step 3&colon; Removal of water vapour&semi; through<&sol;p>&NewLine;<p>condensation -25<sup>o<&sol;sup>C&rpar; or conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"179"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Recycling<&sol;em><&sol;strong>                        Step 4&colon; Compression at approximately 200<&sol;p>&NewLine;<p>atmospheres&semi; cooling and expansion of air<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"155"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Step 5&colon; Fractional distillation<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"83"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Laboratory preparation method&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated solutions of sodium nitrite and ammonium chloride are heated together in a round bottomed flask&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Colourless gas &lpar;nitrogen&rpar; is evolved rapidly and is collected over water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Equation&period;<&sol;strong><&sol;p>&NewLine;<p>NaNO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>Cl<sub>&lpar;aq&rpar;<&sol;sub>            <sup>heat<&sol;sup>       NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;&period;<&sol;sub><&sol;p>&NewLine;<p><sub> <&sol;sub><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> the resultant gas is less dense than that isolated from air&period;<&sol;p>&NewLine;<p><strong>Reason&colon; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It does not contain impurities&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;d&rpar;&period; Preparation from ammonia&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dry ammonia gas is passed over a heated metal oxide e&period;g&period; copper metal&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The <strong>metal oxide<&sol;strong> is r<strong>educed<&sol;strong> to the metal while <strong>ammonia gas<&sol;strong> is itself <strong>oxidized<&sol;strong> to <strong>nitrogen<&sol;strong> and <strong>water<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Water is condensed and collected in a u-tube immersed in ice cubes&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen produced is collected <strong>over water<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;iii&rpar;&period; Observations and explanations&period;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Copper &lpar;II&rpar; oxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>3CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub>                           3Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Black&rpar;                                                                            &lpar;Brown&rpar;    &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Zinc &lpar;II&rpar; oxide<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>3ZnO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub>                           3Zn<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Yellow-hot&rpar;                                                                  &lpar;Grey&rpar;    &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>&lpar;White-cold&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Lead &lpar;II&rpar; oxide<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>3PbO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub>                           3Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red-hot&rpar;                                                                      &lpar;Grey&rpar;    &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>&lpar;Yellow-cold&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Properties of nitrogen&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Physical properties&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is a colourless&comma; odourless and tasteless gas&semi; almost completely insoluble in water&period;<&sol;li>&NewLine;<li>Slightly lighter than air&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Chemical properties&period;<&sol;strong><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>It is inert &lpar;unreactive&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The inert nature of nitrogen is due to the strong covalent bonds between the two nitrogen atoms in the molecule&semi; N<sub>2<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Structurally&semi;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"83"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; In air&comma; it neither burns nor supports combustion and acts mainly as a diluent for the oxygen&semi; slowing down the rate of burning&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Chemical test for nitrogen&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A gas is proved to be nitrogen by elimination&colon; &&num;8211&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>It extinguishes a lighted splint and dos not burn&semi; hence it is not oxygen&comma; hydrogen or carbon &lpar;II&rpar; oxide&period;<&sol;li>&NewLine;<li>It has neither <strong>smell<&sol;strong> nor <strong>colour<&sol;strong>&semi; and therefore is not chlorine&comma; ammonia&comma; sulphur &lpar;IV&rpar; oxide or hydrogen chloride&period;<&sol;li>&NewLine;<li>It does not form a <strong>white precipitate<&sol;strong> in lime water&comma; and so it is not carbon &lpar;IV&rpar; oxide&period;<&sol;li>&NewLine;<li>It is <strong>neutral<&sol;strong> to litmus and therefore cannot be carbon &lpar;IV&rpar; oxide&comma; hydrogen sulphide&comma; ammonia&comma; hydrogen chloride<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Reaction with hydrogen&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Under special conditions &lpar;i&period;e&period; high pressure&comma; low temperatures and presence of iron catalyst&rpar;&comma; nitrogen combines with hydrogen to produce ammonia&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 3H<sub>2&lpar;g&rpar;<&sol;sub>                2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; This reaction forms the basis of <strong>Haber process<&sol;strong> used in the manufacture of ammonia&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Reaction with burning magnesium&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A piece of burning magnesium ribbon is introduced into a gas jar full of nitrogen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The magnesium ribbon continues to burn and a <strong>white solid<&sol;strong>&semi; magnesium nitride is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>3Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub>     <sup>Heat<&sol;sup>     Mg<sub>3<&sol;sub>N<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; When magnesium nitride is treated with water or a solution of sodium hydroxide&semi; the characteristic pungent smell of ammonia can be detected&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>In water<&sol;strong><&sol;p>&NewLine;<p>Mg<sub>3<&sol;sub>N<sub>2&lpar;s&rpar;<&sol;sub> &plus; 6H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                   2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 3Mg&lpar;OH&rpar;<sub>2&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>In sodium hydroxide&colon;<&sol;strong><&sol;p>&NewLine;<p>Mg<sub>3<&sol;sub>N<sub>2&lpar;s&rpar;<&sol;sub> &plus; NaOH<sub>&lpar;aq&rpar;      <&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Reaction with oxygen&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; When nitrogen and oxygen in air are passed through an electric arc small quantities of nitrogen &lpar;II&rpar; oxide are formed&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>N<sub>2&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                      2NO<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen reacts with oxygen under various conditions to give different types of nitrogen oxides&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of nitrogen<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Used in the <strong>Haber process<&sol;strong> in the manufacture of <strong>ammonia&period;<&sol;strong><&sol;li>&NewLine;<li>Due to its <strong>inert nature<&sol;strong>&comma; it is mixed with argon to fill electric bulbs &lpar;to avoid soot formation&rpar;&period;<&sol;li>&NewLine;<li>In liquid state it is used as an inert <strong>refrigerant<&sol;strong> e&period;g&period; storage of semen for artificial insemination&period;<&sol;li>&NewLine;<li>Due to its <strong>inert nature<&sol;strong>&comma; it is used in food preservation particularly for canned products i&period;e&period; it prevents combination of oxygen and oil which tends to enhance rusting&period;<&sol;li>&NewLine;<li>It is used in oil field operation called enhanced oil recovery where it helps to force oil from subterranean deposits&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Oxides of nitrogen&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The three main oxides of nitrogen are&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Nitrogen &lpar;I&rpar; oxide&comma; N<sub>2<&sol;sub>O<&sol;li>&NewLine;<li>Nitrogen &lpar;II&rpar; oxide&comma; NO<&sol;li>&NewLine;<li>Nitrogen &lpar;IV&rpar; oxide&comma; NO<sub>2<&sol;sub><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong> Nitrogen &lpar;I&rpar; oxide&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Preparation of nitrogen &lpar;I&rpar; oxide&comma; N2O<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonium nitrate is gently heated in a boiling tube and gas produced collected over warm water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Heating is stopped while excess ammonium nitrate still remains&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To avoid chances of an <strong>explosion&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The solid &lpar;ammonium nitrate&rpar; <strong>melts <&sol;strong>and gives off nitrogen &lpar;I&rpar; oxide which is collected over <strong>warm water&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Reasons&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;I&rpar; oxide is <strong>slightly soluble<&sol;strong> in cold water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>4<&sol;sub>NO<sub>3&lpar;s&rpar;<&sol;sub>       <sup>Heat<&sol;sup>       NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties&colon;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is a colourless gas&comma; denser than air&comma; fairly soluble in cold water and neutral to litmus&period;<&sol;li>&NewLine;<li>It supports combustion by <strong>oxidizing <&sol;strong>elements like sulphur&comma; magnesium and phosphorus under strong heat&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub> &plus; Mg<sub>&lpar;s&rpar;<&sol;sub>    <sup>Heat<&sol;sup>     MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar;<&sol;sub>     <sup>Heat<&sol;sup>     SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub> &plus; C<sub>&lpar;s&rpar;<&sol;sub>     <sup>Heat<&sol;sup>     CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>5N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub> &plus; 2P<sub>&lpar;s&rpar;<&sol;sub>   <sup>Heat<&sol;sup>     P<sub>2<&sol;sub>O<sub>5&lpar;g&rpar;<&sol;sub> &plus; 5N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>Magnesium <strong>decomposes<&sol;strong> the gas and continues to burn in it&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub> &plus; Mg<sub>&lpar;s&rpar;<&sol;sub>    <sup>Heat<&sol;sup>     MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li>When exposed over red-hot finely divided copper it is reduced to <strong>nitrogen<&sol;strong>&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub> &plus; Cu<sub>&lpar;s&rpar;<&sol;sub>     <sup>Heat<&sol;sup>     CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li>Chemical test&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>It <strong>relights<&sol;strong> a glowing splint&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>It can be distinguished from oxygen by the following tests&colon;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ul>&NewLine;<li>It has a <strong>sweet sickly smell<&sol;strong>&semi; oxygen is odourless&period;<&sol;li>&NewLine;<li>It will not give <strong>brown fumes<&sol;strong> &lpar;NO<sub>2<&sol;sub>&rpar; with nitrogen &lpar;II&rpar; oxide&semi; oxygen does&period;<&sol;li>&NewLine;<li>It is <strong>fairly soluble<&sol;strong> in cold water&semi; oxygen is insoluble&period;<&sol;li>&NewLine;<li>It extinguishes feebly burning <strong>sulphur<&sol;strong>&semi; oxygen does not&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of nitrogen &lpar;I&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It was formerly used in hospitals as an <strong>aesthetic<&sol;strong> for <strong>dental surgery<&sol;strong> but has since been discontinued due to availability of more efficient anaesthetics&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;I&rpar; oxide is also called <strong>laughing gas<&sol;strong>&semi; because patients regaining consciousness from its effects may laugh hysterically&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Nitrogen &lpar;II&rpar; oxide&comma; NO&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Preparation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Action of heat on 50&percnt; concentrated nitric acid on copper turnings&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Not any heat is required&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>3Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; 8HNO<sub>3&lpar;aq&rpar;<&sol;sub>                              3Cu&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 4H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NO<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; An <strong>effervescence <&sol;strong>occurs in the flask&semi; with <strong>brown fumes<&sol;strong> because the nitrogen &lpar;II&rpar; oxide produced reacts with oxygen of the air in the flask to form a brown gas&comma; nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>              2NO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Colourless    Colourless                   Brown<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The brown fumes eventually disappear and the gas collected over water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The NO<sub>2<&sol;sub> fumes dissolve in the water in the trough&comma; resulting into an acidic solution of nitrous acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The residue in the flask is a <strong>green<&sol;strong> solution of <strong>copper &lpar;II&rpar; nitrate<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Industrially&comma; the gas is obtained when ammonia reacts with oxygen in the presence of platinum catalyst&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This is the first stage in the production of nitric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Properties&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is a colourless&comma; <strong>insoluble<&sol;strong> and <strong>neutral<&sol;strong> to litmus&period; It is also slightly denser than air&period;<&sol;li>&NewLine;<li>Readily combines with oxygen in air and forms brown fumes of nitrogen &lpar;IV&rpar; oxide&period;<&sol;li>&NewLine;<li>Does not support combustion except in the case of <strong>strongly burning magnesium<&sol;strong> and <strong>phosphorus<&sol;strong>&semi; which continues to burn in it&comma; thereby reducing it i&period;e&period; it is an oxidizing agent&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong><&sol;p>&NewLine;<p>2Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NO<sub>&lpar;g&rpar;<&sol;sub>                       2MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>4P<sub>&lpar;s&rpar;<&sol;sub> &plus; 10NO<sub>&lpar;g&rpar;<&sol;sub>             2P<sub>2<&sol;sub>O<sub>5&lpar;s&rpar;<&sol;sub> &plus; 5N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li>When passed over red-hot finely divided copper&comma; it is reduced to nitrogen gas&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NO<sub>&lpar;g&rpar;<&sol;sub>                        2CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Reaction with iron &lpar;II&rpar; sulphate&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; When iron &lpar;II&rpar; sulphate solution &lpar;freshly prepared&rpar; is poured into a gas jar of nitrogen &lpar;II&rpar; oxide&comma; a dark brown colouration of <strong>Nitroso-iron &lpar;II&rpar; sulphate is obtained<&sol;strong>&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>FeSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; NO<sub>&lpar;g&rpar;<&sol;sub>                                 FeSO4&period;NO<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Green solution                                                                         Dark brown <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>                                                                                                    &lpar;Nitroso-iron &lpar;II&rpar; sulphate&sol; nitrogen &lpar;II&rpar; oxide iron &lpar;II&rpar; sulphate complex&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> It is also a reducing agent&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2NO<sub>&lpar;g&rpar;<&sol;sub>                       2ClNO<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Chloro nitrogen &lpar;II&rpar; oxide&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"7">&NewLine;<li><strong> Reaction with hydrogen&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; When electrically sparked with hydrogen&comma; NO is reduced to <strong>nitrogen&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2H<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2NO<sub>&lpar;g&rpar;<&sol;sub>          2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Chemical test&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; When exposed to air&comma; nitrogen &lpar;II&rpar; oxide forms brown fumes of nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of Nitrogen &lpar;II&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon; &&num;8211&semi;<&sol;strong>It is not easy to handle owing to its ease of <strong>oxidation&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is an intermediate material in the manufacture of nitric acid<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Nitrogen &lpar;IV&rpar; oxide&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Preparation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Action of conc&period; Nitric acid on copper metal&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; 4HNO<sub>3&lpar;l&rpar;<&sol;sub>                              Cu&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; NO<sub>2<&sol;sub> is also prepared by the action of heat on <strong>nitrates of heavy metals<&sol;strong> like lead nitrate&period;<&sol;p>&NewLine;<p>&&num;8211&semi; NO<sub>2<&sol;sub> is given off together with <strong>oxygen<&sol;strong> when nitrates of heavy metals are heated&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is best prepared by heating <strong>lead &lpar;II&rpar; nitrate<&sol;strong> in a hard glass test tube&period;<&sol;p>&NewLine;<ul>&NewLine;<li>Lead &lpar;II&rpar; nitrate is the most suitable because it crystallizes without <strong>water of crystallization<&sol;strong> &lpar;like other nitrates&rpar; which would interfere with preparation of nitrogen &lpar;IV&rpar; oxide that is <strong>soluble<&sol;strong> in water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The gas evolved passes into a U-tube immersed in an ice-salt mixture&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Apparatus&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Equation&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>2Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>                         2PbO<sub>&lpar;s&rpar;<&sol;sub> &plus; 4NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Observations&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The heated <strong>white<&sol;strong> lead &lpar;II&rpar; nitrate crystals decompose and <strong>decrepitates<&sol;strong> &lpar;cracking sound&rpar; to yield <strong>red<&sol;strong> lead &lpar;II&rpar; oxide&semi; which turns <strong>yellow<&sol;strong> on cooling&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A <strong>colourless gas<&sol;strong>&comma; oxygen is liberated&comma; followed immediately by <strong>brown fumes<&sol;strong> of nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;IV&rpar; oxide is condensed as a <strong>yellow liquid&semi; dinitrogen tetroxide<&sol;strong> &lpar;N<sub>2<&sol;sub>O<sub>4<&sol;sub>&rpar;&semi; and is collected in the U-tube&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; At room temperature&comma; nitrogen &lpar;IV&rpar; oxide consists of <strong>nitrogen &lpar;IV&rpar; oxide<&sol;strong> and <strong>dinitrogen tetroxide<&sol;strong> in equilibrium with each other&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<br &sol;>&NewLine;<&sol;strong>2NO<sub>2&lpar;g&rpar;<&sol;sub>                                    N<sub>2<&sol;sub>O<sub>4&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Nitrogen &lpar;IV&rpar; oxide&rpar;                                       &lpar;Dinitrogen tetroxide&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The oxygen being liberated does not condense because it ahs a low boiling point of -183oC&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties of nitrogen &lpar;IV&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong>Red-brown<&sol;strong> gas with a pungent chocking smell<&sol;li>&NewLine;<li>It is extremely poisonous&period;<&sol;li>&NewLine;<li>It is <strong>acidic<&sol;strong>&comma; hence turns moist litmus paper red&period;<&sol;li>&NewLine;<li>When reacted with water&comma; the brown fumes dissolve showing that it is readily <strong>soluble in water<&sol;strong>&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                           HNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; HNO<sub>2&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Nitric &lpar;V&rpar; acid&rpar;     &lpar;Nitrous &lpar;III&rpar; acid&rpar;When liquid nitrogen <&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Like carbonic &lpar;IV&rpar; acid&comma; nitrous &lpar;III&rpar; acid could not be isolated&period; It is easily oxidized to nitric &lpar;V&rpar; acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NHO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                         2NHO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Nitric &lpar;III&rpar; acid&rpar;                                                &lpar;Nitrous &lpar;V&rpar; acid&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Reaction with magnesium&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;IV&rpar; oxide does not support combustion&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However burning magnesium continues to burn in it&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The high <strong>heat of combustion<&sol;strong> of burning magnesium decomposes the nitrogen &lpar;IV&rpar; oxide to nitrogen and oxygen&semi; the oxygen then supports the burning of the magnesium&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>4MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub>                               4MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Generally nitrogen &lpar;IV&rpar; oxide oxidizes hot metals and non-metals to oxides and itself reduced to nitrogen gas&period;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Copper&colon;<&sol;strong><&sol;p>&NewLine;<p>4Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub>                                   4CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Phosphorus&colon;<&sol;strong><&sol;p>&NewLine;<p>8P<sub>&lpar;s&rpar;<&sol;sub> &plus; 10NO<sub>2&lpar;g&rpar;<&sol;sub>                           4P<sub>2<&sol;sub>O<sub>5&lpar;s&rpar;<&sol;sub> &plus; 5N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Sulphur&colon;<&sol;strong><&sol;p>&NewLine;<p>2S<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub>                        2SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; NO<sub>2<&sol;sub> reacts with burning substances because the heat decomposes it to NO<sub>2<&sol;sub> and O<sub>2<&sol;sub>&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NO<sub>2&lpar;g&rpar;<&sol;sub>      <strong><em><sup>Heat<&sol;sup> <&sol;em><&sol;strong>       2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; This is the oxidizing property of nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The resultant oxygen supports the burning&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Effects of heat&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; On heating&comma; nitrogen &lpar;IV&rpar; oxide dissociates to nitrogen &lpar;II&rpar; oxide and oxygen and will support a burning splint&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NO<sub>2&lpar;g&rpar;<&sol;sub>       <strong><em><sup>Heat<&sol;sup><&sol;em><&sol;strong>          2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"7">&NewLine;<li>&&num;8211&semi; When liquid nitrogen &lpar;IV&rpar; oxide or dinitrogen tetroxide is warmed&comma; it produces a <strong>pale brown vapour<&sol;strong>&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; This is due to the reversible set of reactions&colon;<&sol;p>&NewLine;<p><strong><em>Heat                                                                    Heat<&sol;em><&sol;strong><&sol;p>&NewLine;<p>N<sub>2<&sol;sub>O<sub>4&lpar;l&rpar;<&sol;sub>                                     2NO<sub>2&lpar;g&rpar;<&sol;sub>                                    2NO<sub>&lpar;g&rpar;<&sol;sub>     &plus;    O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Dinitrogen tetroxide&rpar;      Cool                &lpar;Nitrogen &lpar;IV&rpar; oxide&rpar;               Cool               &lpar;Nitrogen &lpar;II&rpar; oxide&rpar;   &lpar;Oxygen&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>Pale yellow                                                               Brown                                                                <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>          Colourless<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Percentage of each in the equilibrium depends on temperature&period;<&sol;p>&NewLine;<p>&&num;8211&semi; At low temperatures&comma; percentage of N<sub>2<&sol;sub>O<sub>4<&sol;sub> is high and the mixture is pale yellow in colour&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Percentage of nitrogen &lpar;IV&rpar; oxide increases with increase in temperature and the colour darkens till at 150<sup>o<&sol;sup>C when the gas is entirely NO<sub>2<&sol;sub> and is almost black&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Still at higher temperatures&comma; nitrogen &lpar;IV&rpar; oxide dissociates into colourless gas &lpar;NO and O<sub>2<&sol;sub>&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"8">&NewLine;<li><strong> Reaction with alkalis&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; A solution of aqueous sodium hydroxide is added to a gas jar of nitrogen &lpar;IV&rpar; oxide and shaken&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The brown fumes disappear&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Explanation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Formation of sodium nitrate and sodium nitrite&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;      <&sol;sub>            2NaNO<sub>3&lpar;g&rpar;<&sol;sub> &plus; NaNO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub>                        NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; NO<sub>2<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Conclusion&colon;<&sol;strong><&sol;p>&NewLine;<p>Nitrogen &lpar;IV&rpar; oxide is an acidic gas because it can react with an alkali&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of nitrogen &lpar;IV&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Mainly used in the manufacture of nitric &lpar;V&rpar; acid&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Summary on comparison between oxides of nitrogen&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"165">&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"225"><strong>Nitrogen &lpar;I&rpar; oxide<&sol;strong><&sol;td>&NewLine;<td width&equals;"240"><strong>Nitrogen &lpar;II&rpar; oxide<&sol;strong><&sol;td>&NewLine;<td width&equals;"207"><strong>Nitrogen &lpar;IV&rpar; oxide<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"165">Colour<&sol;td>&NewLine;<td width&equals;"225">&&num;8211&semi; Colourless gas<&sol;p>&NewLine;<p>&&num;8211&semi; Sweet sickly smell<&sol;td>&NewLine;<td width&equals;"240">&&num;8211&semi; Colourless&semi; turns brown in air&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Odourless<&sol;td>&NewLine;<td width&equals;"207">&&num;8211&semi; Red brown gas&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Choking pungent smell&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"165">2&period; Solubility<&sol;td>&NewLine;<td width&equals;"225">&&num;8211&semi; Fairly soluble in cold water&semi; but less soluble in hot water&semi;<&sol;td>&NewLine;<td width&equals;"240">&&num;8211&semi; Almost insoluble in water<&sol;td>&NewLine;<td width&equals;"207">&&num;8211&semi; Readily soluble in water to form nitric &lpar;V&rpar; acid and nitrous &lpar;III&rpar; acid&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"165">3&period; Action on litmus<&sol;td>&NewLine;<td width&equals;"225">&&num;8211&semi; Neutral to litmus<&sol;td>&NewLine;<td width&equals;"240">&&num;8211&semi; Neutral to litmus<&sol;td>&NewLine;<td width&equals;"207">&&num;8211&semi; Turns moist blue litmus paper red&semi; i&period;e&period; acidic&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"165">4&period; Combustion<&sol;td>&NewLine;<td width&equals;"225">&&num;8211&semi; Supports combustion&semi; relights a glowing splint&semi;<&sol;td>&NewLine;<td width&equals;"240">&&num;8211&semi; Does not support combustion&semi;<&sol;td>&NewLine;<td width&equals;"207">&&num;8211&semi; Does not support combustion&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"165">5&period; Density<&sol;td>&NewLine;<td width&equals;"225">&&num;8211&semi; Denser than air<&sol;td>&NewLine;<td width&equals;"240">&&num;8211&semi; Slightly denser than air<&sol;td>&NewLine;<td width&equals;"207">&&num;8211&semi; Denser than air&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"165">6&period; Raw materials and conditions<&sol;td>&NewLine;<td width&equals;"225">&&num;8211&semi; Ammonium nitrate and heat&semi;<&sol;td>&NewLine;<td width&equals;"240">&&num;8211&semi; Copper and 50&percnt; nitric acid&semi;<&sol;td>&NewLine;<td width&equals;"207">&&num;8211&semi; Copper metal and concentrated nitric acid&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Action of heat on nitrates&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; All nitrates except ammonium nitrate decompose on heating tom produce oxygen gas as one of the products&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitrates can be categorized into 4 categories based on the products formed when they are heated&period;<&sol;p>&NewLine;<p><strong>&&num;8211&semi; <&sol;strong>The ease with which nitrates decompose increases down the electrochemical series of metals&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Nitrates of metals higher in the electrochemical series like sodium and potassium decompose on heating to give the corresponding metal nitrite and oxygen&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>2NaNO<sub>3&lpar;s&rpar;<&sol;sub>        <sup>Heat<&sol;sup>    2NaNO<sub>2&lpar;s&rpar;<&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>2KNO<sub>3&lpar;s&rpar;<&sol;sub>          <sup>Heat<&sol;sup>    2KNO<sub>2&lpar;s&rpar;<&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Nitrates of most other metals &lpar;heavy metals&rpar; that are average in the electrochemical series decompose on heating to give the metals oxide&semi; nitrogen &lpar;IV&rpar; oxide and oxygen gas&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon; action of heat on lead &lpar;II&rpar; nitrate&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Solid white lead &lpar;II&rpar; nitrate crystals are strongly heated in a boiling &lpar;ignition&rpar; tube&period;<&sol;p>&NewLine;<p><strong>&&num;8211&semi; <&sol;strong>Products are passed into a U- tube immerse in ice&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Excess gases are channeled out to a fume chamber&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The white crystalline solid decrepitates&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A colourless gas &lpar;<strong>oxygen<&sol;strong>&rpar; is liberated and immediately followed by a red brown fumes&sol; gas &lpar;<strong>nitrogen &lpar;IV&rpar; oxide<&sol;strong>&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A pale yellow liquid &lpar;<strong>dinitrogen tetroxide<&sol;strong>&rpar; condenses in the U-tube in the ice cubes&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This is due to condensation of nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A residue which is <strong>red<&sol;strong> when hot and <strong>yellow<&sol;strong> on cooling remains in the boiling &lpar;ignition&rpar; tube<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>      <sup>Heat<&sol;sup>       2PbO<sub>&lpar;s&rpar;<&sol;sub> &plus; 4NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White crystalline solid&rpar;                 &lpar;Red-hot            Brown Fumes     Colourless gas<br &sol;>&NewLine;yellow-cold&rpar;<&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong>Further examples&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2Ca&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>      <sup>Heat<&sol;sup>       2CaO<sub>&lpar;s&rpar;<&sol;sub>  &plus;   4NO<sub>2&lpar;g&rpar;  <&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                   &lpar;White solid&rpar;      Brown Fumes     Colourless gas<&sol;p>&NewLine;<p><&sol;em><&sol;p>&NewLine;<p>2Mg&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>     <sup>Heat<&sol;sup>       2MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; 4NO<sub>2&lpar;g&rpar;<&sol;sub>   &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                  &lpar;White solid&rpar;       Brown Fumes     Colourless gas<br &sol;>&NewLine;<&sol;em><&sol;p>&NewLine;<p>2Zn&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>      <sup>Heat<&sol;sup>       2ZnO<sub>&lpar;s&rpar;<&sol;sub>  &plus;  4NO<sub>2&lpar;g&rpar;<&sol;sub>    &plus;   O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                    &lpar;Yellow-hot       Brown Fumes      Colourless gas<br &sol;>&NewLine;White-cold&rpar;<&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p>2Cu&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>      <sup>Heat<&sol;sup>       2CuO<sub>&lpar;s&rpar;<&sol;sub>   &plus;  4NO<sub>2&lpar;g&rpar;<&sol;sub>   &plus;   O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;Blue solid&rpar;                                     &lpar;Black solid&rpar;       Brown Fumes     Colourless gas<&sol;p>&NewLine;<p><&sol;em><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Some nitrates are <strong>hydrated<&sol;strong> and when heated first give out their water of crystallization&semi; and then proceed to as usual on further heating&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>Ca&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub>&period;4H<sub>2<&sol;sub>O<sub>&lpar;s&rpar;<&sol;sub>          <sup>Heat<&sol;sup>       Ca&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>  &plus;   4H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;  <&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                                       &lpar;White solid&rpar;             Colourless gas<&sol;p>&NewLine;<p><&sol;em><&sol;p>&NewLine;<p>On further heating&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>2Ca&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>      <sup>Heat<&sol;sup>       2CaO<sub>&lpar;s&rpar;<&sol;sub>  &plus;   4NO<sub>2&lpar;g&rpar;  <&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                   &lpar;White solid&rpar;      Brown Fumes     Colourless gas<&sol;p>&NewLine;<p><&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>Nitrates of metals lower in the reactivity series e&period;g&period; <strong>mercury<&sol;strong> and <strong>silver<&sol;strong> decompose on heating to give the metal&comma; nitrogen &lpar;IV&rpar; oxide and oxygen&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>Hg&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub>       <sup>Heat<&sol;sup>       Hg<sub>&lpar;s&rpar;<&sol;sub>  &plus;   2NO<sub>2&lpar;g&rpar;  <&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                                          Brown Fumes     Colourless gas<&sol;p>&NewLine;<p><&sol;em><&sol;p>&NewLine;<p>2AgNO<sub>3&lpar;s&rpar;<&sol;sub>          <sup>Heat<&sol;sup>       2Ag<sub>&lpar;s&rpar;<&sol;sub> &plus;  2NO<sub>2&lpar;g&rpar;  <&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>&lpar;White solid&rpar;                                                        Brown Fumes     Colourless gas<&sol;p>&NewLine;<p><&sol;em><&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li>Ammonium nitrate decomposes to nitrogen &lpar;I&rpar; oxide and water vapour&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>4<&sol;sub>NO<sub>3&lpar;s&rpar;<&sol;sub>         <sup>Heat<&sol;sup>       N<sub>2<&sol;sub>O<sub>&lpar;g&rpar;  <&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><em>                                                     Colourless gas    Colourless gas<br &sol;>&NewLine;<&sol;em><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>This reaction is potentially dangerous as ammonium nitrate <strong>explodes<&sol;strong> on strong heating&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ammonia&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is a compound of nitrogen and hydrogen and is the most important hydride of nitrogen&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is formed when any <strong>ammonium salt<&sol;strong> is heated with an <strong>alkali<&sol;strong> whether in solid or solution form&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is a <strong>colourless<&sol;strong> gas with a pungent smell of <strong>urine<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is <strong>alkaline<&sol;strong> and turns moist red litmus paper to blue when introduced to it&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Laboratory preparation of ammonia&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Reagents&period;<&sol;strong><&sol;p>&NewLine;<p>Base &plus; ammonium salt                     NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Procedure&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonium chloride &lpar;NH<sub>4<&sol;sub>Cl&rpar;&sol; sal-ammoniac is mixed with a little dry slaked lime i&period;e&period; Ca&lpar;OH&rpar;<sub>2<&sol;sub> and the mixture thoroughly ground in a mortar&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To increase surface area for the reactions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture is then heated in a round-bottomed flask&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A round-bottomed flask ensures <strong>uniform distribution<&sol;strong> of heat while heating the reagents&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The flask should not be <strong>thin-walled<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>The pressure of ammonia gas liberated during heating may easily <strong>crack or break<&sol;strong> it&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The flask is positioned <strong>slanting downwards<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; So that as water condenses from the reaction&comma; it does not run back to the hot parts of the flask and crack it&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture on heating produces ammonia&comma; calcium chloride and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Ca&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub>                   CaCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Slaked lime&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Drying&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia is dried by passing it through a tower or U-tube filled with quicklime &lpar;calcium oxide&rpar; or pellets of caustic potash but not caustic soda which is <strong>deliquescent&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Ammonia cannot be dried with the usual drying agents&semi; concentrated sulphuric acid and calcium chloride as it reacts with them&period;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With concentrated sulphuric acid&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With fused calcium chloride&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>CaCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 4NH<sub>3&lpar;g&rpar;<&sol;sub>                  CaCl<sub>2<&sol;sub>&period;4NH<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; i&period;e&period; ammonia reacts forming <strong>complex ammonium salt&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Collection&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dry ammonia gas is collected by <strong>upward delivery<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Reasons&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is <strong>lighter<&sol;strong> than air&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is <strong>soluble<&sol;strong> in water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Other methods of preparing ammonia&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&lpar;b&rpar;&period; Ammonia from caustic soda &lpar;sodium hydroxide&rpar; or caustic potash &lpar;potassium hydroxide&rpar;<&sol;p>&NewLine;<p>Note&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; The slaked lime is replaced by either of the above solutions&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus the solid reactant is ammonium chloride and the liquid reactant is potassium hydroxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;i&rpar;&period; Apparatus&colon;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The flask is not slanted&period; It is vertical and heated on a tripod stand and wire gauze&period;<&sol;p>&NewLine;<p>Reason&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; No need of slanting since water produced is in liquid form and not gaseous&period; Thus there is no possibility of condensation of water on hotter parts&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; With caustic soda&colon;<&sol;strong><&sol;p>&NewLine;<p>NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub>                NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub>               Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hence&semi;<&sol;strong> NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; With caustic potash&colon;<&sol;strong><&sol;p>&NewLine;<p>KOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub>                  KCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>K<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub>                 K<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hence&semi;<&sol;strong> NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Ammonium sulphate could be used in place of ammonium chloride in either case&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; With caustic soda&colon;<&sol;strong><&sol;p>&NewLine;<p>2NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub>            Na<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>2Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub>                   2Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hence&semi;<&sol;strong> &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>               SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; With caustic potash&colon;<&sol;strong><&sol;p>&NewLine;<p>2KOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub>              K<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>2K<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub>                     2K<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hence&semi;<&sol;strong> &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>               SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; With calcium hydroxide&colon;<&sol;strong><&sol;p>&NewLine;<p>Ca&lpar;OH&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub>             CaSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Ca<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub>                    Ca<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hence&semi;<&sol;strong> &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                 SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Reaction with calcium hydroxide however stops prematurely&comma; almost as soon as the reaction starts&period;<&sol;p>&NewLine;<p><strong>Reason&semi;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Formation of insoluble calcium sulphate which coats the ammonium sulphate preventing further reaction&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Preparation of ammonium solution&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The apparatus is altered as above&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The drying tower is removed and the gas produced is directly passed into water by an inverted funnel&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Reasons for the inverted broad funnel&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It increases the <strong>surface area<&sol;strong> for the <strong>dissolution<&sol;strong> of thereby preventing water from “<strong>sucking back<&sol;strong>” into the hot flask and hence prevents chances of an <strong>explosion&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Equation&period;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>           NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The solution cannot be prepared by leading the gas directly to water by the delivery tube&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia gas is <strong>very soluble<&sol;strong> in water and so water would rush up the delivery tube and into the hot flask causing it to crack&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The rim of the inverted funnel is <strong>just below<&sol;strong> the water surface&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Tests for ammonia&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is a colourless gas with a <strong>pungent smell&period;<&sol;strong><&sol;li>&NewLine;<li>It is the only common gas that is <strong>alkaline<&sol;strong> as it turns moist red litmus paper blue&period;<&sol;li>&NewLine;<li>When ammonia is brought into contact with hydrogen chloride gas&comma; <strong>dense white fumes<&sol;strong> of ammonium chloride are formed&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; HCl<sub>&lpar;g&rpar;                     <&sol;sub>            NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Fountain experiment&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Diagram&colon;<&sol;p>&NewLine;<p><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dry ammonia is collected in a round-bottomed flask and set up as above&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The clip is open and solution let to rise up the tube&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The clip is closed when the solution reaches the top of the tube after which it is again opened fro a while&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations and explanations&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; When a drop of water gets to the jet&comma; it dissolves so much of the ammonia gas that a <strong>partial vacuum<&sol;strong> is created inside the flask&period;<&sol;p>&NewLine;<p>&&num;8211&semi; As the ammonia in the flask dissolves&comma; the pressure in the flask is <strong>greatly reduced<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The atmospheric pressure on the water surface in the beaker forces water into the flask vigorously&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The drawn-out jet of the tube causes a <strong>fountain <&sol;strong>to be produced&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The fountain appears <strong>blue <&sol;strong>due to the <strong>alkaline <&sol;strong>nature of ammonia&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Caution&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia is highly soluble in water forming an alkaline solution of ammonium hydroxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>1 volume of water dissolves about 750 volumes of ammonia at room temperature&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties and reactions of ammonia&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong>Smell&colon;<&sol;strong> has a characteristic pungent smell&period;<&sol;li>&NewLine;<li><strong>Solubility&colon;<&sol;strong> it is highly soluble in water&period; The dissolved ammonia molecule reacts partially with water to form ammonium ions &lpar;NH<sub>4<&sol;sub><sup>&plus;<&sol;sup>&rpar; and hydroxyl ions &lpar;OH<sup>&&num;8211&semi;<&sol;sup>&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                       NH4<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Formation of hydroxyl ions means that the aqueous solution of ammonia is &lpar;weakly&rpar; alkaline and turns universal indicator purple&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Reaction with acids&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Sulphuric acid and concentrated ammonia solution are put in a dish and heated slowly&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture is evaporated to dryness&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A white solid is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                             &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>2NH<sub>4<&sol;sub><sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    2NH<sub>4<&sol;sub><sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Then&semi;<&sol;p>&NewLine;<p>2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; To some of the resultant white solid&comma; a little NaOH<sub>&lpar;aq&rpar;<&sol;sub> was added and the mixture warmed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The gas evolved was tested fro ammonia&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The resultant gas tested positive for ammonia&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2NaOH<sub>&lpar;aq&rpar;<&sol;sub>                   Na<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Evolution of ammonia shows that the white solid formed is an <strong>ammonium salt&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The ammonia reacts with acids to from ammonium salt and water only&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Further examples&colon;<br &sol;>&NewLine;<&sol;strong>HCl<sub>&lpar;aq&rpar; <&sol;sub>&plus; NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub>                      NH<sub>4<&sol;sub>Cl<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>HNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub>                   NH<sub>4<&sol;sub>NO<sub>3&lpar;aq&rpar; <&sol;sub>&plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionic equation&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                         NH<sub>4<&sol;sub><sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Reaction of ammonia with oxygen&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Ammonia <strong>extinguishes<&sol;strong> a lighted taper because it dos not support burning&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is <strong>non-combustible<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However it burns in air enriched with oxygen with a <strong>green-yellow flame<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Experiment&colon; Burning ammonia in oxygen&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dry oxygen is passed in the U-tube for a while to drive out air&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dry ammonia gas is then passed into the tube&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A lighted splint is then passed into the tube&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A colourless gas is liberated&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Droplets of a colourless liquid collect on cooler parts of the tube&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The conditions for the reactions are&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Dry ammonia and oxygen gas i&period;e&period; the gases must be <strong>dry<&sol;strong>&period;<&sol;li>&NewLine;<li>All air must be driven out of the tube&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Ammonia burns continuously in oxygen &lpar;air enriched with oxygen&rpar; forming nitrogen and water vapour i&period;e&period; ammonia is oxidized as hydrogen is removed from it leaving nitrogen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>4NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 3O<sub>2&lpar;g&rpar;<&sol;sub>                                   2N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 6H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Sample question&colon;<&sol;strong><&sol;p>&NewLine;<p><em>Suggest the role of glass wool in the tube&period;<&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Solution&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To slow down the escape of oxygen in the combustion tube&comma; thus providing more time for combustion of ammonia&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Ammonia as a reducing agent&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It reduces oxides of metals below iron in the reactivity series&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Experiment&colon; reaction between ammonia and copper &lpar;II&rpar; oxide&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;&period; Apparatus&period;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"76">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Ice cubes<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Copper &lpar;II&rpar; oxide is heated strongly and dry ammonia is passed over it&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The products are then passed through a U-tube immersed in cold water &lpar;ice cubes&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The copper &lpar;II&rpar; oxide <strong>glows<&sol;strong> as the reaction is <strong>exothermic<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A <strong>colourless liquid<&sol;strong> collects in the U-tube&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A <strong>colourless gas<&sol;strong> is collected over water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The <strong>black<&sol;strong> copper &lpar;II&rpar; oxide changes to <strong>brown<&sol;strong> copper metal&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanations&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia gas <strong>reduces<&sol;strong> copper &lpar;II&rpar; oxide to copper and is itself <strong>oxidized<&sol;strong> to nitrogen and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>3CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>3&lpar;g&rpar;<&sol;sub>                                3Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Black                                                                                         red-brown                        &lpar;colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The water produced condenses in the U-tube immersed in cold &lpar;ice&rpar; water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The resultant nitrogen is collected by downward displacement of water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The nitrogen gas collected is ascertained indirectly as follows&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>A lighted splint is extinguished and the gas does not burn&semi; thus it is not oxygen&comma; hydrogen&comma; or carbon &lpar;II&rpar; oxide&period;<&sol;li>&NewLine;<li>It has neither smell nor colour&semi; it is not ammonia&comma; chlorine&comma; sulphur &lpar;IV&rpar; oxide or nitrogen &lpar;IV&rpar; oxide&period;<&sol;li>&NewLine;<li>It is not carbon &lpar;II&rpar; oxide because it does not turn lime water into a white precipitate&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This experiment proves that ammonia contains nitrogen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Reaction with chlorine&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia gas is passed into a bell jar containing chlorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The ammonia catches fire and burns for a while at the end of the tube&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The flame then goes out and the jar then gets filled with dense white fumes of ammonium chloride&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 3Cl<sub>2&lpar;g&rpar;<&sol;sub>                      6HCl<sub>&lpar;g&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Then&semi;<&sol;p>&NewLine;<p>6HCl<sub>&lpar;g&rpar;<&sol;sub> &plus; 6NH<sub>3&lpar;g&rpar;<&sol;sub>                     6NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Overall equation&colon;<&sol;strong><&sol;p>&NewLine;<p>8NH<sub>3&lpar;g&rpar; <&sol;sub>&plus; 3Cl<sub>2&lpar;g&rpar;                 <&sol;sub>            6NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub> &plus; N<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"7">&NewLine;<li><strong> Ammonia solution as an alkali&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Solution of ammonia in water contains hydroxyl ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>             NH<sub>4<&sol;sub><sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus it has many properties of a <strong>typical alkali&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia salts are similar to metallic salts&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The group &lpar;NH<sub>4<&sol;sub><sup>&plus;<&sol;sup>&rpar; precipitates in the reaction as a whole without splitting in any way&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It exhibits unit valency in its compounds and therefore called a <strong>basic radical&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It cannot exist freely as ammonia gas &lpar;NH<sub>3<&sol;sub>&rpar; which is a compound&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Like other alkalis&comma; ammonia solution precipitates insoluble metallic hydroxides by double decomposition when mixed with solution of salts of the metals&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"8">&NewLine;<li><strong> Reaction with air in the presence of platinum wire&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated ammonia solution is put in a conical flask&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The platinum &lpar;or even copper&rpar; wire is heated until white-hot&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Oxygen gas or air is then passed through the ammonia solution&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The red-hot platinum &lpar;copper&rpar; wire is then put into the flask containing the concentrated ammonia&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The hot platinum wire <strong>glows<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Red-brown fumes are evolved&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The hot platinum coil glows when it comes into contact with the ammonia fumes&comma; which come from the concentrated ammonia solution&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Reaction between ammonia and oxygen takes place on the <strong>surface of the platinum<&sol;strong> wire that acts a s a <strong>catalyst&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A lot of <strong>heat<&sol;strong> is produced in the reaction that enables the platinum coil to continue glowing&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia is oxidized to <strong>nitrogen &lpar;IV&rpar; oxide<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>4NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 5O<sub>2&lpar;g&rpar;     <&sol;sub><strong><sup>Platinum catalyst<&sol;sup>   <&sol;strong>4NO<sub>&lpar;g&rpar;<&sol;sub> &plus; 6H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Red-brown fumes of nitrogen &lpar;IV&rpar; oxide are produced due to further <strong>oxidation<&sol;strong> of the nitrogen &lpar;II&rpar; oxide to from nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                     2NO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"9">&NewLine;<li><strong> Action of aqueous ammonia on solution of metallic salts<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To about 2cm<sup>3<&sol;sup> of solutions containing ions of calcium&comma; magnesium&comma; aluminium&comma; zinc&comma; iron&comma; lead&comma; copper etc in separate test tubes&semi; aqueous ammonia is added dropwise till in excess&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>The various metal ions reacted as summarized in the table below&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td rowspan&equals;"2" width&equals;"195"><strong>Metal ions in solution<&sol;strong><&sol;td>&NewLine;<td colspan&equals;"2" width&equals;"615"><strong>Observations on addition of ammonia<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"308"><strong>Few drops of ammonia<&sol;strong><&sol;td>&NewLine;<td width&equals;"308"><strong>Excess drops of ammonia<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Ca<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">White precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Mg<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Al<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Zn<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate dissolves&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Fe<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">Pale green precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi; slowly turns red-brown on exposure to air&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Fe<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">Red-brown precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Pb<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Cu<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">Pale blue precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate dissolves forming a deep blue solution&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Most metal ions in solution react with ammonia solution to form insoluble metal hydroxides&period;<&sol;p>&NewLine;<p>&&num;8211&semi; In excess ammonia&comma; some of the so formed hydroxides dissolve forming complex ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Equations&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Mg<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> from MgCl<sub>2<&sol;sub>&semi;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>MgCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub>                             Mg&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>4<&sol;sub>Cl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Mg<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                            Mg&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                        &lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Fe<sup>2&plus;<&sol;sup> from Fe&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub>&semi;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Fe&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub>                 Fe&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>4<&sol;sub>NO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    Fe&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Pale green ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Fe<sup>3&plus;<&sol;sup> from FeCl<sub>3<&sol;sub>&semi;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Fe<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    Fe&lpar;OH&rpar;<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red brown ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub>and Cu<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> dissolve in excess ammonia solution forming complex ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Zinc ions and ammonia solution&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With little ammonia&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>ZnCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2NH<sub>4<&sol;sub>OH<sub>&lpar;aq&rpar;<&sol;sub>                     Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2NH<sub>4<&sol;sub>Cl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                &lpar;White ppt&period;&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>In excess ammonia&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The white precipitate of Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> dissolves in excess ammonia to form a colourless solution&semi; proof that solution has Zn<sup>2&plus; <&sol;sup>ions&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The colourless solution is a complex salt of tetra-amine zinc &lpar;II&rpar; ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 4NH<sub>3&lpar;aq&rpar;<&sol;sub>                          &lbrack;Zn&lpar;NH<sub>3<&sol;sub>&rpar;<sub>4<&sol;sub>&rsqb;<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White ppt&period;&rpar;                                                                              &lpar;Colourless solution-tetra amine zinc &lpar;II&rpar; ions&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Copper &lpar;II&rpar; ions&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With little ammonia&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; A pale blue precipitate is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Cu<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   Cu&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Pale blue ppt&period;&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>In excess ammonia&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The pale blue precipitate of Cu&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> dissolves in excess ammonia to form a deep blue solution&semi; proof that solution has Cu<sup>2&plus; <&sol;sup>ions&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The deep blue solution is a complex salt of tetra-amine copper &lpar;II&rpar; ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cu&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 4NH<sub>3&lpar;aq&rpar;<&sol;sub>                         &lbrack;Cu&lpar;NH<sub>3<&sol;sub>&rpar;<sub>4<&sol;sub>&rsqb;<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Pale blue ppt&period;&rpar;                                                                       &lpar;Deep blue solution-tetra amine copper &lpar;II&rpar; ions&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of ammonia gas and its solution&colon;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Ammonia gas is used in the manufacture of <strong>nitric acid<&sol;strong> and nylon&period;<&sol;li>&NewLine;<li>Ammonia gas is important in the preparation of <strong>ammonium salts<&sol;strong> used as <strong>fertilizers<&sol;strong>&period;<&sol;li>&NewLine;<li>It liquefies fairly easily &lpar;B&period;P is -33<sup>o<&sol;sup>C&rpar; and the liquid is used as a <strong>refrigerant<&sol;strong> in large cold storages and ice cream factories&period;<&sol;li>&NewLine;<li>Liquid ammonia is injected directly into the soil as a high nitrogen content <strong>fertilizer<&sol;strong>&period;<&sol;li>&NewLine;<li>Ammonia solution is used in <strong>laundry work<&sol;strong> as a <strong>water softener<&sol;strong> and a <strong>cleansing agent<&sol;strong> &lpar;stain remover&rpar;<&sol;li>&NewLine;<li>Ammonia is used in the manufacture of sodium carbonate in the <strong>Solvay process<&sol;strong>&period;<&sol;li>&NewLine;<li>Ammonia is used in “<strong>smelling salts<&sol;strong>”&period; It has a slightly stimulating effect on the action of the heart and so may prevent fainting<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Qualitative analysis for cations using sodium hydroxide solution<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To about 2cm<sup>3<&sol;sup> of solutions containing ions of calcium&comma; magnesium&comma; aluminium&comma; zinc&comma; iron&comma; lead&comma; copper etc in separate test tubes&semi; aqueous sodium hydroxide is added dropwise till in excess&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>The various metal ions reacted as summarized in the table below&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td rowspan&equals;"2" width&equals;"195"><strong>Metal ions in solution<&sol;strong><&sol;td>&NewLine;<td colspan&equals;"2" width&equals;"615"><strong>Observations on addition of ammonia<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"308"><strong>Few drops of ammonia<&sol;strong><&sol;td>&NewLine;<td width&equals;"308"><strong>Excess drops of ammonia<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Ca<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">White precipitate persists<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Mg<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Al<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate dissolves&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Zn<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate dissolves&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Fe<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">Pale green precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi; slowly turns red-brown on exposure to air&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Fe<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">Red-brown precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate persists&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Pb<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">White precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate dissolves&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"195">Cu<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"308">Pale blue precipitate<&sol;td>&NewLine;<td width&equals;"308">Precipitate dissolves forming a deep blue solution&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Most metal ions in solution react with sodium hydroxide solution to form insoluble metal hydroxides&period;<&sol;p>&NewLine;<p>&&num;8211&semi; In excess sodium hydroxide&comma; some of the so formed hydroxides &lpar;hydroxides of Zn&comma; Al&comma; Pb and Cu&rpar; dissolve forming complex ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>Ca<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                             Ca&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                        &lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>Mg<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                            Mg&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                        &lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Al<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                              Al&lpar;OH&rpar;<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                        &lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Zn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                             Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                        &lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Pb<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                              Pb&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                        &lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Cu<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                             Cu&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                       &lpar;Pale blue ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    Fe&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Pale green ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Fe<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    Fe&lpar;OH&rpar;<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red brown ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Hydroxides of Zn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub>&semi; Pb<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub>&semi; and Al<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> dissolve in excess ammonia solution forming complex ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong> Zinc ions and sodium hydroxide solution&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With little sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Zn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                &lpar;White ppt&period;&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>In excess sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The white precipitate of Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> dissolves in excess sodium hydroxide to form a colourless solution&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The colourless solution is a complex salt of tetra-hydroxo zinc &lpar;II&rpar; ions &lpar;zincate ion&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                          &lbrack;Zn&lpar;OH&rpar;<sub>4<&sol;sub>&rsqb;<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White ppt&period;&rpar;                                                                              &lpar;Colourless solution-tetra hydroxo- zinc &lpar;II&rpar; ion&sol; zincate ion&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Aluminium ions and sodium hydroxide solution&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With little sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Al<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    Al&lpar;OH&rpar;<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                &lpar;White ppt&period;&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>In excess sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The white precipitate of Al&lpar;OH&rpar;<sub>3&lpar;s&rpar;<&sol;sub> dissolves in excess sodium hydroxide to form a colourless solution&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The colourless solution is a complex salt of tetra-hydroxo aluminium &lpar;III&rpar; ions &lpar;aluminate ion&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Al&lpar;OH&rpar;<sub>3&lpar;s&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                     &lbrack;Al&lpar;OH&rpar;<sub>4<&sol;sub>&rsqb;<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White ppt&period;&rpar;                                                          &lpar;Colourless solution-tetra hydroxo- aluminium &lpar;III&rpar; ion&sol;aluminate ion<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Lead &lpar;II&rpar; ions and sodium hydroxide solution&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With little sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Pb<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    Pb&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                &lpar;White ppt&period;&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>In excess sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The white precipitate of Pb&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> dissolves in excess sodium hydroxide to form a colourless solution&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The colourless solution is a complex salt of tetra-hydroxo lead &lpar;II&rpar; ions &lpar;plumbate ions&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                          &lbrack;Zn&lpar;OH&rpar;<sub>4<&sol;sub>&rsqb;<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White ppt&period;&rpar;                                                                              &lpar;Colourless solution-tetra hydroxo- lead &lpar;II&rpar; ion&sol; plumbate ion&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Summary and useful information on qualitative analysis&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>Colours of substances in solids and solutions in water&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<table width&equals;"845">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td colspan&equals;"2" width&equals;"363"><strong>COLOUR<&sol;strong><&sol;td>&NewLine;<td rowspan&equals;"2" width&equals;"482"><strong>IDENTITY<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131"><strong>SOLID<&sol;strong><&sol;td>&NewLine;<td width&equals;"233"><strong>AQUESOUS SOLUTION <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;IF SOLUBLE&rpar;<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">1&period; White<&sol;td>&NewLine;<td width&equals;"233">Colourless<&sol;td>&NewLine;<td width&equals;"482">Compound of K<sup>&plus;<&sol;sup>&semi; Na<sup>&plus;<&sol;sup>&comma; Ca<sup>2&plus;<&sol;sup>&semi; Mg<sup>2&plus;<&sol;sup>&semi; Al<sup>3&plus;<&sol;sup>&semi; Zn<sup>2&plus;<&sol;sup>&semi; Pb<sup>2&plus;<&sol;sup>&semi; NH<sub>4<&sol;sub><sup>&plus;<&sol;sup><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td rowspan&equals;"2" width&equals;"131">2&period; Yellow<&sol;td>&NewLine;<td width&equals;"233">Insoluble<&sol;td>&NewLine;<td width&equals;"482">Zinc oxide&comma; ZnO &lpar;turns white on cooling&rpar;&semi; Lead oxide&comma; PbO &lpar;remains yellow on cooling&comma; red when hot&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"233">Yellow<&sol;td>&NewLine;<td width&equals;"482">Potassium or sodium chromate&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">3&period; Blue<&sol;td>&NewLine;<td width&equals;"233">Blue<&sol;td>&NewLine;<td width&equals;"482">Copper &lpar;II&rpar; compound&comma; Cu<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">4&period; Pale green<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Green<&sol;td>&NewLine;<td width&equals;"233">Pale green &lpar;almost colourless&rpar;<&sol;p>&NewLine;<p>Green<&sol;td>&NewLine;<td width&equals;"482">Iron &lpar;II&rpar; compounds&comma;Fe<sup>2&plus;<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Nickel &lpar;II&rpar; compound&comma; Ni<sup>2&plus;<&sol;sup>&semi; Chromium &lpar;II&rpar; compounds&comma; Cr<sup>3&plus;<&sol;sup>&semi; &lpar;Sometimes copper &lpar;II&rpar; compound&comma; Cu<sup>2&plus;<&sol;sup>&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">5&period; Brown<&sol;td>&NewLine;<td width&equals;"233">Brown &lpar;sometimes yellow&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Insoluble<&sol;td>&NewLine;<td width&equals;"482">Iron &lpar;III&rpar; compounds&comma; Fe<sup>3&plus;<&sol;sup>&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Lead &lpar;IV&rpar; oxide&comma; PbO<sub>2<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">6&period; Pink<&sol;td>&NewLine;<td width&equals;"233">Pink &lpar;almost colourless&rpar;<&sol;p>&NewLine;<p>Insoluble<&sol;td>&NewLine;<td width&equals;"482">Manganese &lpar;II&rpar; compounds&comma; Mn<sup>2&plus;<&sol;sup>&semi;<&sol;p>&NewLine;<p>Copper metal as element &lpar;sometimes brown but will turn black on heating in air&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">7&period; Orange<&sol;td>&NewLine;<td width&equals;"233">Insoluble<&sol;td>&NewLine;<td width&equals;"482">Red lead&comma; Pb<sub>3<&sol;sub>O<sub>4<&sol;sub> &lpar;could also be mercury &lpar;II&rpar; oxide&comma; HgO&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"131">8&period; Black<&sol;td>&NewLine;<td width&equals;"233">Purple<&sol;p>&NewLine;<p>Brown<&sol;p>&NewLine;<p>Insoluble<&sol;td>&NewLine;<td width&equals;"482">Manganate &lpar;VII&rpar; ions &lpar;MnO<sup>&&num;8211&semi;<&sol;sup>&rpar; as in KMnO<sub>4<&sol;sub>&semi;<&sol;p>&NewLine;<p>Iodine &lpar;element&rpar;-purple vapour<&sol;p>&NewLine;<p>Manganese &lpar;IV&rpar; oxide&comma; MnO<sub>2<&sol;sub><&sol;p>&NewLine;<p>Copper &lpar;II&rpar; oxide&comma; CuO<&sol;p>&NewLine;<p>Carbon powder &lpar;element&rpar;<&sol;p>&NewLine;<p>Various metal powders &lpar;elements&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Reactions of cations with common laboratory reagents and solubilities of some salts in water<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<table width&equals;"848">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"105"><strong>CATION<&sol;strong><&sol;td>&NewLine;<td width&equals;"165"><strong>SOLUBLE COMPOUNDS &lpar;IN WATER&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"173"><strong>INSUOLUBLE COMPOUNDS &lpar;IN WATER&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"203"><strong>REACTION WITH AQUEOUS SODIUM HYDROXIDE<&sol;strong><&sol;td>&NewLine;<td width&equals;"203"><strong>REACTION WITH AQUEOUS AMMONIA SOLUTION<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Na<sup>&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">All<&sol;td>&NewLine;<td width&equals;"173">None<&sol;td>&NewLine;<td width&equals;"203">No reaction<&sol;td>&NewLine;<td width&equals;"203">No reaction<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">K<sup>&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">All<&sol;td>&NewLine;<td width&equals;"173">None<&sol;td>&NewLine;<td width&equals;"203">No reaction<&sol;td>&NewLine;<td width&equals;"203">No reaction<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Ca<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">Cl<sup>&&num;8211&semi;<&sol;sup>&semi; NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"173">CO<sub>3<&sol;sub><sup>2-<&sol;sup>&semi; O<sup>2-<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup>&semi; OH<sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"203">White precipitate insoluble in excess<&sol;td>&NewLine;<td width&equals;"203">White precipitate insoluble in excess&comma; on standing&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Al<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">Cl<sup>&&num;8211&semi;<&sol;sup>&semi; NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;td>&NewLine;<td width&equals;"173">O<sup>2-<&sol;sup>&semi; OH<sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"203">White precipitate soluble in excess<&sol;td>&NewLine;<td width&equals;"203">White precipitate insoluble in excess<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Pb<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi; ethanoate&semi;<&sol;td>&NewLine;<td width&equals;"173">All others&semi;<&sol;td>&NewLine;<td width&equals;"203">White precipitate soluble in excess<&sol;td>&NewLine;<td width&equals;"203">White precipitate insoluble in excess<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Zn<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">Cl<sup>&&num;8211&semi;<&sol;sup>&semi; NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;td>&NewLine;<td width&equals;"173">CO<sub>3<&sol;sub><sup>2-<&sol;sup>&semi; O<sup>2-<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup>&semi; OH<sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"203">White precipitate soluble in excess<&sol;td>&NewLine;<td width&equals;"203">White precipitate soluble in excess<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Fe<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">Cl<sup>&&num;8211&semi;<&sol;sup>&semi; NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;td>&NewLine;<td width&equals;"173">CO<sub>3<&sol;sub><sup>2-<&sol;sup>&semi; O<sup>2-<&sol;sup>&semi; OH<sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"203">&lpar;Dark&rpar; pale green precipitate insoluble in excess<&sol;td>&NewLine;<td width&equals;"203">&lpar;Dark&rpar; pale green precipitate insoluble in excess<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Fe<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">Cl<sup>&&num;8211&semi;<&sol;sup>&semi; NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;td>&NewLine;<td width&equals;"173">CO<sub>3<&sol;sub><sup>2-<&sol;sup>&semi; O<sup>2-<&sol;sup>&semi; OH<sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"203">&lpar;Red&rpar; brown precipitate insoluble in excess<&sol;td>&NewLine;<td width&equals;"203">&lpar;Red&rpar; brown precipitate insoluble in excess<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">Cu<sup>2&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">Cl<sup>&&num;8211&semi;<&sol;sup>&semi; NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup>&semi; SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;td>&NewLine;<td width&equals;"173">CO<sub>3<&sol;sub><sup>2-<&sol;sup>&semi; O<sup>2-<&sol;sup>&semi; OH<sup>&&num;8211&semi;<&sol;sup>&semi;<&sol;td>&NewLine;<td width&equals;"203">Pale blue precipitate insoluble in excess<&sol;td>&NewLine;<td width&equals;"203">Pale blue precipitate soluble in excess forming a deep blue solution<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"105">NH<sub>4<&sol;sub><sup>&plus;<&sol;sup><&sol;td>&NewLine;<td width&equals;"165">All<&sol;td>&NewLine;<td width&equals;"173">None&semi;<&sol;td>&NewLine;<td width&equals;"203">Ammonias gas on warming<&sol;td>&NewLine;<td width&equals;"203">Not applicable&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Qualitative analysis for common anions&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"143"><strong> <&sol;strong><&sol;td>&NewLine;<td width&equals;"173"><strong>SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;strong><&sol;td>&NewLine;<td width&equals;"184"><strong>Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;strong><&sol;td>&NewLine;<td width&equals;"169"><strong>NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;strong><&sol;td>&NewLine;<td width&equals;"169"><strong>CO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"143">TEST<&sol;td>&NewLine;<td width&equals;"173">Add Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> ions from Ba&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub>&semi; acidify with dilute HNO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;td>&NewLine;<td width&equals;"184">Add Ag<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> from AgNO<sub>3&lpar;aq&rpar;<&sol;sub>&period;<&sol;p>&NewLine;<p>Acidify with dilute HNO<sub>3<&sol;sub><&sol;p>&NewLine;<p>Alternatively&semi;<&sol;p>&NewLine;<p>Add Pb<sup>2&plus;<&sol;sup> from Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub> and warm<&sol;td>&NewLine;<td width&equals;"169">Add FeSO<sub>4&lpar;aq&rpar;<&sol;sub>&semi;<&sol;p>&NewLine;<p>Tilt the tube and carefully add 1-2 cm<sup>3<&sol;sup> of concentrated H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;td>&NewLine;<td width&equals;"169">Add dilute HNO<sub>3&lpar;aq&rpar;<&sol;sub>&semi; bubble gas through lime water&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"143">OBSERVATION<&sol;td>&NewLine;<td width&equals;"173">The formation of a white precipitate shows presence of SO<sub>4<&sol;sub><sup>2-<&sol;sup> ion&semi;<&sol;td>&NewLine;<td width&equals;"184">The formation of a white precipitate shows presence of Cl<sup>&&num;8211&semi;<&sol;sup> ion&semi;<&sol;p>&NewLine;<p>Formation of a white precipitate that dissolves on warming shown presence of Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> ions<&sol;td>&NewLine;<td width&equals;"169">The formation of a brown ring shows the presence of NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup> ions<&sol;td>&NewLine;<td width&equals;"169">Evolution of a colourless gas that forma a white precipitate with lime water&comma; turns moist blue litmus paper red&semi; and extinguishes a glowing splint shows presence of CO<sub>3<&sol;sub><sup>2-<&sol;sup> ions<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"143">EXPLANATION<&sol;td>&NewLine;<td width&equals;"173">Only BaSO<sub>4<&sol;sub> and BaCO<sub>3<&sol;sub> can be formed as white precipitates&period;<&sol;p>&NewLine;<p>BaCO<sub>3<&sol;sub> is soluble in dilute acids and so BaSO<sub>4<&sol;sub> will remain on adding dilute nitric acid<&sol;td>&NewLine;<td width&equals;"184">Only AgCl and AgCO<sub>3<&sol;sub> can be formed as white precipitates&period;<&sol;p>&NewLine;<p>AgCO<sub>3<&sol;sub> is soluble in dilute acids but AgCl is not&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; PbCl<sub>2<&sol;sub> is the only white precipitate that dissolves on warming<&sol;td>&NewLine;<td width&equals;"169">Concentrated H<sub>2<&sol;sub>SO<sub>4<&sol;sub> forms nitrogen &lpar;II&rpar; oxide with NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> and this forms brown ring complex &lpar;FeSO<sub>4<&sol;sub>&period;NO&rpar; with FeSO<sub>4<&sol;sub>&semi;<&sol;td>&NewLine;<td width&equals;"169">All CO<sub>3<&sol;sub><sup>2-<&sol;sup> or HCO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup> will liberate carbon &lpar;IV&rpar; oxide with dilute acids<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Checklist&colon;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Why is it not possible to use dilute sulphuric acid in the test for SO<sub>4<&sol;sub><sup>2-<&sol;sup> ions&semi;<&sol;li>&NewLine;<li>Why is it not possible to use dilute hydrochloric acid in the test for chloride ions&quest;<&sol;li>&NewLine;<li>Why is it best to use dilute nitric acid instead of the other two mineral acids in the test for CO<sub>3<&sol;sub><sup>2- <&sol;sup>ions&quest;<&sol;li>&NewLine;<li>How would you distinguish two white solids&comma; Na<sub>2<&sol;sub>CO<sub>3<&sol;sub> and NaHCO<sub>3<&sol;sub>&quest;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>What to look for when a substance is heated&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table width&equals;"857">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"434">1&period; Sublimation<&sol;td>&NewLine;<td width&equals;"423">White solids on cool&comma; parts of a test tube indicates NH<sub>4<&sol;sub><sup>&plus;<&sol;sup> compounds&semi;<&sol;p>&NewLine;<p>Purple vapour condensing to black solid indicates iodine crystals&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"434">2&period; Water vapour &lpar;condensed&rpar;<&sol;td>&NewLine;<td width&equals;"423">Colourless droplets on cool parts of the test tube indicate water of crystallization or HCO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup> &lpar;see below&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"434">3&period; Carbon &lpar;IV&rpar; oxide<&sol;td>&NewLine;<td width&equals;"423">CO<sub>3<&sol;sub><sup>2-<&sol;sup> of Zn<sup>2&plus;<&sol;sup>&semi; Pb<sup>2&plus;<&sol;sup>&semi; Fe<sup>2&plus;<&sol;sup>&semi; Fe<sup>3&plus;<&sol;sup>&semi; Cu<sup>2&plus;<&sol;sup>&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"434">4&period; Carbon &lpar;IV&rpar; oxide and water vapour &lpar;condensed&rpar;<&sol;td>&NewLine;<td width&equals;"423">HCO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"434">5&period; Nitrogen &lpar;IV&rpar; oxide<&sol;td>&NewLine;<td width&equals;"423">NO<sub>3<&sol;sub><sup>&&num;8211&semi; <&sol;sup>of Cu<sup>2&plus;<&sol;sup>&semi; Al<sup>3&plus;<&sol;sup>&semi; Zn<sup>2&plus;<&sol;sup>&semi; Pb<sup>2&plus;<&sol;sup>&semi; Fe<sup>2&plus;<&sol;sup>&semi; Fe<sup>3&plus;<&sol;sup><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"434">6&period; Oxygen<&sol;td>&NewLine;<td width&equals;"423">NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup> or BaO<sub>2<&sol;sub>&semi; MnO<sub>2<&sol;sub>&semi; PbO<sub>2<&sol;sub>&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Industrial manufacture of ammonia-The Haber process&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Most of the world’s supply of ammonia is from the synthesis of Nitrogen and hydrogen in the Haber process&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Raw materials<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Nitrogen<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Usually obtained from liquid air by fractional distillation<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Hydrogen<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Obtained from water gas in the <strong>Bosch process&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Also from crude oil &lpar;cracking&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; General equation<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 3 H<sub>2&lpar;g&rpar;<&sol;sub>                        2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; heat&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen and hydrogen combine in the ratio 1&colon;3 respectively to form two volumes of ammonia gas plus heat&period;<&sol;p>&NewLine;<p>-The reaction is <strong>exothermic<&sol;strong> releasing heat to the surrounding&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong><em>&lpar;<&sol;em>iii&rpar;&period; Conditions<&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>High pressures<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The process is favoured by high pressures and thus a pressure of approximately 200 to 300 atmospheres is used&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Reason&colon; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The volume of gaseous reactants from equation is higher than volume of gaseous products&period; Thus increased pressure shifts the equilibrium to the right&semi; favoring the production of more ammonia&period;<&sol;p>&NewLine;<p><strong>Note&colon; <&sol;strong><&sol;p>&NewLine;<p>Such high pressures are however uneconomical&period;<&sol;p>&NewLine;<p><em><u> <&sol;u><&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Low temperatures<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Low temperatures favour production of ammonia&semi;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The reaction is exothermic &lpar;releases heat to the surrounding&rpar; hence lower temperature will favour the forward reaction &lpar;shift the equilibrium to the right&rpar;&comma; producing more ammonia&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Catalyst<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; The low temperatures make the reaction slow and therefore a catalyst is used to increase the rate of reaction<&sol;p>&NewLine;<p>&&num;8211&semi; The catalyst used is <strong>finely divided iron<&sol;strong>&semi; impregnated with Aluminium oxide &lpar;Al<sub>2<&sol;sub>O<sub>3<&sol;sub>&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; The chemical processes<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Step 1&colon; Purification<&sol;strong><&sol;p>&NewLine;<p>-The raw materials&comma; nitrogen and hydrogen are passed through a purification chamber in which impurities are removed&period;<&sol;p>&NewLine;<p>-The main impurities are CO<sub>2<&sol;sub>&comma; water vapour&comma;  dust particles&comma; SO<sub>2<&sol;sub>&comma; CO<sub>2<&sol;sub> and O<sub>2<&sol;sub>&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>The impurities would poison the catalyst<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong>Step 2&colon; Compression<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The purified Nitrogen and Hydrogen gases are compressed in a compressor at 500 atmospheres&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Reasons&colon;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>To increase chances of molecules reacting&semi;<&sol;li>&NewLine;<li>To increase rate of <strong>collision<&sol;strong> of the reacting particles&period;<&sol;li>&NewLine;<li>To increase pressure &lpar;attain desired pressures&rpar;&semi; and hence increase concentration of reacting particles&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Step 3&colon; Heat exchanger reactions<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Upon compression the gaseous mixture&comma; nitrogen and hydrogen are channeled into a heat exchanger&semi; which <strong>heats them<&sol;strong> increasing their temperature&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This enables the reactants &lpar;hydrogen and nitrogen&rpar; to attain the <strong>optimum temperatures<&sol;strong> for the succeeding reactions &lpar;in the catalytic chamber&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; From the heat exchanger the gases go to the catalyst chamber&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Step 4&colon; Catalytic chamber&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The gases then combine in the ratio of 1&colon;3 &lpar;N<sub>2<&sol;sub>&colon;H<sub>2 <&sol;sub>respectively&rpar;&comma; to form ammonia&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This reaction occurs in presence of a <strong>catalyst<&sol;strong>&semi; which speeds up the rate of ammonia formation&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The catalyst is <strong>finely divided iron<&sol;strong> impregnated with <strong>aluminium oxide <&sol;strong>&lpar;Al<sub>2<&sol;sub>O<sub>3<&sol;sub> increases the catalytic activity of iron&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation in catalytic chamber<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>N<sub>2&lpar;g&rpar;<&sol;sub> &plus; 3H<sub>2&lpar;g&rpar;            <&sol;sub>              2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; Heat &lpar;-92kjmol<sup>&&num;8211&semi;<&sol;sup>&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Only about 6-10&percnt; of the gases combine&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Due to the high heat evolution involved&comma; the products are again taken back to the heat exchanger&semi; to cool the gases coming from the catalytic chamber&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong>Step 5&colon; Heat exchanger<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The gases from the catalytic chamber enter the heat exchanger a second time&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To <strong>cool<&sol;strong> the gases coming from the catalytic chamber&comma; thus reduce cost of condensation&period;<&sol;p>&NewLine;<p>-The gaseous mixture&semi; ammonia and uncombined nitrogen and hydrogen are the passed through a condenser&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Step 6&colon; The condenser reactions &lpar;cooling chamber&rpar;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The pressure and the low temperatures in this chamber liquefy ammonia&comma; which is then drawn off&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The uncombined &lpar;unreacted&rpar; gases are recirculated back to the compressor&comma; from where they repeat the entire process&period;<&sol;p>&NewLine;<p><strong>Summary&colon; flow chart of Haber process&period;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"0"><&sol;td>&NewLine;<td width&equals;"126"><&sol;td>&NewLine;<td width&equals;"78"><&sol;td>&NewLine;<td width&equals;"78"><&sol;td>&NewLine;<td width&equals;"102"><&sol;td>&NewLine;<td width&equals;"90"><&sol;td>&NewLine;<td width&equals;"42"><&sol;td>&NewLine;<td width&equals;"150"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td width&equals;"126">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Fractional distillation of air<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<td><&sol;td>&NewLine;<td rowspan&equals;"2" width&equals;"78">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Nitrogen<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<td><&sol;td>&NewLine;<td rowspan&equals;"2" width&equals;"90">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Hydrogen<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<td><&sol;td>&NewLine;<td rowspan&equals;"2" width&equals;"150">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Crude oil cracking&semi; or water gas in Bosch process<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"311"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Purifier<&sol;strong>&colon; removal of duct particles&semi; CO<sub>2<&sol;sub>&semi; H<sub>2<&sol;sub>O vapour etc<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"95"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Unreacted gases<&sol;p>&NewLine;<p>&lpar;recycling&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>6-10&percnt; ammonia &plus; air&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"239"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>LIQUID AMMONIA<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Citing a Haber process plant<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; When choosing a site for this industrial plant&comma; the following factors are considered&colon;<&sol;p>&NewLine;<ol>&NewLine;<li>Availability of raw materials &lpar;natural gas and crude oil&rpar;<&sol;li>&NewLine;<li>Presence of cheap sources of energy&period;<&sol;li>&NewLine;<li>Availability of transport and marketing&period;<&sol;li>&NewLine;<li>Availability of appropriate technology and labour force&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Ammonium salts as fertilizers<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonium salts are prepared by the reaction between ammonia and the appropriate acid in dilute solution followed by evaporation and crystallization<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Ammonium sulphate <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is prepared by absorbing ammonia in sulphuric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>2NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                          &lpar;NH<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> It is a cheap fertilizer&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;<strong>b&rpar;&period; Ammonium nitrate<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is prepared by neutralization nitric acid by ammonia&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation<&sol;strong>&colon;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;aq&rpar;<&sol;sub>                    NH<sub>4<&sol;sub>NO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; As there is some danger of exploding during storage&comma; ammonium nitrate is mixed with finely powdered limestone &lpar;CaCO<sub>3<&sol;sub>&rpar;&period;<&sol;p>&NewLine;<p>-The mixture&comma; sold as nitro-chalk is much safer&period;<&sol;p>&NewLine;<p>&lpar;<strong>c&rpar;&period; Ammonium phosphate<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is particularly useful as it supplies both nitrogen and phosphorus to the soil&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is prepared by neutralizing <strong>othophosphoric<&sol;strong> acid by ammonia<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>3NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>3<&sol;sub>PO<sub>4&lpar;aq&rpar;<&sol;sub>                       &lpar;NH<sub>4<&sol;sub>&rpar;<sub>3<&sol;sub> PO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;d&rpar; Urea CO &lpar;NH<sub>2<&sol;sub>&rpar;<sub>2<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is made from ammonia and carbon &lpar;IV&rpar; oxide<&sol;p>&NewLine;<p>&&num;8211&semi; Its nitrogen content by mass is very high&semi; nearly 47&percnt;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><em><u> <&sol;u><&sol;em><&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus;CO<sub>2&lpar;g&rpar;<&sol;sub>                       CO &lpar;NH<sub>2<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;  <&sol;sub>&plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>    <&sol;strong><&sol;p>&NewLine;<p><strong>Nitric &lpar;V&rpar; acid<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is a monobasic acid &lpar;has only one replaceable Hydrogen atom&rpar;&semi; and has been known as strong water &lpar;aqua forty&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is a compound of hydrogen&comma; oxygen and nitrogen&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Laboratory preparation of nitric &lpar;V&rpar; acid <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus<&sol;strong><&sol;p>&NewLine;<p><strong>            <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Reagents<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitric acid is prepared in the laboratory by action of concentrated sulphuric acid on solid nitrates e&period;g&period; potassium nitrate &lpar;KNO<sub>3<&sol;sub>&rpar; and sodium nitrate &lpar;NaNO<sub>3<&sol;sub>&rpar;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; 30-40 grams of small crystal of KNO<sub>3<&sol;sub> are put in a retort flask&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated sulphuric acid is added just enough to cover the nitrate&semi; and then heated &lpar;warmed&rpar; gently&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The apparatus is all glass&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitric &lpar;V&rpar; acid would attack rubber connections&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The neck of the retort flask is inserted into a flask that is kept cool continually under running water&semi; this is where nitric acid is collected&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>The cold water running over the collection flask is meant to cool &lpar;condense&rpar; the hot fumes of nitric &lpar;V&rpar; acid&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Observations and explanations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Fumes of nitric are observed in the retort&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>KNO<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                      KHSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus;HNO<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; If Lead &lpar;II&rpar; nitrate was used&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                  PbSO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2HNO<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> with lead &lpar;II&rpar; nitrate the reaction soon stops because the insoluble lead &lpar;II&rpar; sulphate coats the surface of the nitrate preventing further reaction&semi; yield of nitric &lpar;V&rpar; acid is thus lower&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>-These fumes of nitric acid appear brown&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Due to the presence of nitrogen &lpar;iv&rpar; oxide gas formed by thermal decomposition of nitric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;p>&NewLine;<p><&sol;strong><&sol;p>&NewLine;<p>4HNO<sub>3&lpar;aq&rpar;<&sol;sub>                       4NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Pure nitric &lpar;V&rpar; acid is colourless but may appear yellow &lpar;brown&rpar; due to the presence of Nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The brown colour can be removed by blowing air through the acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Fuming nitric acid boils at 83<sup>o<&sol;sup>C and is 99&percnt; pure&semi; while concentrated nitric acid is only 70&percnt; acid and 30&percnt; water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon; Nitric acid is usually stored in dark bottles&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To avoid its decomposition by light to nitrogen &lpar;IV&rpar; oxide&comma; oxygen and water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The reaction in the retort flask is a typical displacement reaction&semi; in which the more volatile nitric &lpar;V&rpar; acid is displaced from nitrates by the less volatile sulphuric acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The nitric acid distills over because it is more volatile than sulphuric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties of concentrated nitric acid<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitric &lpar;V&rpar; acid readily gives oxygen and therefore is called an oxidizer&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The acid is usually reduced to nitrogen &lpar;IV&rpar; oxide and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong> Effects of heat on concentrated nitric acid<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;i&rpar; Apparatus<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar; Observations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Brown fumes are seen in the hard glass tube&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Colourless gas is collected over water&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Explanations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Sand soaked in concentrated nitric acid produces nitric solid vapour on heating&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The hot glass wool catalyzes the decomposition of nitric acid to nitrogen &lpar;IV&rpar; oxide &lpar;brown fumes&rpar;&comma; water vapour and oxygen&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>4HNO<sub>3&lpar;l&rpar;<&sol;sub>                    4NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                            &lpar;Brown fumes&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The so formed nitrogen &lpar;IV&rpar; oxide dissolves in water forming both nitric and nitrous acids&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                    HNO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><sub> <&sol;sub><&sol;p>&NewLine;<p>&&num;8211&semi; The oxygen gas is collected over water&semi; and with the solution becoming acidic&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Reaction with saw dust<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Saw dust contains compounds of carbon Hydrogen and oxygen&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Some saw dust is heated in an evaporating dish and some few drops of concentrated nitric &lpar;V&rpar; acid on it &lpar;this is done in a fume cupboard&rpar;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A violent reaction occurs&comma; the saw dust catches fire easily and a lot of brown fumes of nitrogen &lpar;IV&rpar; oxide given off&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitric &lpar;V&rpar; acid oxidizes the compounds in saw dust to CO<sub>2<&sol;sub> and water&semi; and itself it is reduced to nitrogen &lpar;IV&rpar; oxide and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&lpar;C&comma; H&comma; O&rpar;<sub> n&lpar;s&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;l&rpar;<&sol;sub>                      NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus;H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Saw dust<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Warm concentrated nitric &lpar;V&rpar; acid oxidizes pure carbon and many other compounds containing carbon&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>C<sub>&lpar;s&rpar;<&sol;sub> &plus; 4HNO<sub>3&lpar;l&rpar;<&sol;sub>                         2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 4NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Reaction with sulphur<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; 2 cm<sup>3 <&sol;sup>of concentrated nitric &lpar;V&rpar; acid is added to a little sulphur in a test tube and warmed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture is filtered to remove excess sulphur and the filtrate diluted with distilled water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Drops of barium chloride are then added to the resultant solution&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Red brown gas&comma; nitrogen &lpar;IV&rpar; oxide &lpar;NO<sub>2<&sol;sub>&rpar; is evolved and the sulphur is oxidized to sulphuric acid&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation <&sol;strong><&sol;p>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; 6HNO<sub>3&lpar;l&rpar;<&sol;sub>                          H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 6NO<sub>2&lpar;g&rpar;<&sol;sub> &plus;2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; On addition of barium chloride to the solution&comma; a white precipitate is formed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This is due to formation of barium sulphate and is a confirmation for the presence of SO<sub>4<&sol;sub><sup>2<&sol;sup>&&num;8211&semi; ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                     BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>                                                <&sol;strong><strong><em>&lpar;White precipitate&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Reaction with metals<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Concentrated nitric &lpar;V&rpar; acid reacts with metals except <strong>gold<&sol;strong> and <strong>platinum<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Actual reaction depends on the concentration of the acid and the position of the metal in the reactivity series&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The reaction results in a metal nitrate&comma; NO<sub>2 <&sol;sub>and water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Copper&comma; which is low in the reactivity series&comma; reduces conc&period; HNO<sub>3<&sol;sub> to NO<sub>2<&sol;sub>&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p>C<sub>u&lpar;s&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;l&rpar;<&sol;sub>                   C<sub>u<&sol;sub>&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Metals more reactive than copper e&period;g&period; Magnesium may reduce nitric acid to dinitrogen monoxide &lpar;N<sub>2<&sol;sub>O&rpar; or Nitrogen &lpar;N<sub>2<&sol;sub>&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Some metals like iron and aluminium form insoluble layers when reacted with nitric acid thus stopping any further reaction&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Reaction with iron &lpar;II&rpar; salts<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Few crystals of iron &lpar;II&rpar; sulphate are dissolved in dilute sulphuric acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A little concentrated nitric &lpar;V&rpar; acid is added to the solution and mixture warmed&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Green solution turns brown&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>6FeSO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus;3HNO<sub>3&lpar;l&rpar;<&sol;sub>                    4H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus;2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; 3Fe<sub>2<&sol;sub> &lpar;SO<sub>4<&sol;sub>&rpar;<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Explanation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitric acid oxidizes green iron &lpar;II&rpar; salts &lpar;Fe<sup>2&plus;<&sol;sup>&rpar; to brown iron &lpar;III&rpar; salts &lpar;Fe<sup>3&plus;<&sol;sup>&rpar; and itself is reduced to Nitrogen &lpar;II&rpar; Oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; In air&comma; nitrogen &lpar;II&rpar; oxide is readily oxidized to nitrogen &lpar;IV&rpar; oxide&semi; resulting to brown fumes&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Equation&colon;<br &sol;>&NewLine;2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar; <&sol;sub>                          2NO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Reduction of nitric &lpar;V&rpar; acid by hydrogen sulphide&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A few drops of conc&period; nitric &lpar;V&rpar; acid are added to a gas jar full of hydrogen sulphide and the jar then covered&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Fumes &lpar;brown&rpar; of Nitrogen &lpar;IV&rpar; oxide and yellow deposits of sulphur&semi;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is a REDOX reaction&period;<&sol;p>&NewLine;<p><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; 2HNO<sub>3&lpar;l&rpar;<&sol;sub>                       2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus;S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Properties of dilute nitric &lpar;V&rpar; acid<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Reaction with metals<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Dilute nitric &lpar;V&rpar; acid reacts with most metals to form nitrogen &lpar;II&rpar; oxide instead of hydrogen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong><&sol;p>&NewLine;<p>3Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; 8HNO<sub>3&lpar;aq&rpar;<&sol;sub>                  3Mg&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus;2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; 4H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; In fact HNO<sub>3 <&sol;sub>is reduced to NO and water but NO soon gets oxidized in air to form brown fumes of NO<sub>2<&sol;sub>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However very dilute HNO<sub>3 <&sol;sub>&lpar;cold&rpar; reacts with more active metals such as Magnesium to produce <strong>Hydrogen&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong>Dilute nitric &lpar;V&rpar; acid as a typical acid<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&lpar;a&rpar;&period; It turns blue litmus paper red&period;<&sol;p>&NewLine;<p>&lpar;b&rpar;&period; It reacts with metal oxides and metal hydroxides to form a metal nitrate and water &lpar;Neutralization&rpar;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Examples<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HNO<sub>3&lpar;aq&rpar;<&sol;sub>          Cu &lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar; <&sol;sub>&plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>                  &lpar;Black&rpar;                                                                                &lpar;Blue&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Zn&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2HNO<sub>3&lpar;aq&rpar;<&sol;sub>            Zn &lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>                   &lpar;White ppt&rpar;                                                                      &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>KOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;aq&rpar;<&sol;sub>            KNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>                 &lpar;Alkali&rpar;                &lpar;Acid&rpar;                                                 &lpar;Salt&rpar;              &lpar;Water&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Reaction with metal carbonates and hydrogen carbonates<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Dilute HNO<sub>3 <&sol;sub>reacts with metal carbonates and hydrogen carbonates to form a nitrate&comma; CO<sub>2 <&sol;sub>and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&period;<&sol;strong><&sol;p>&NewLine;<p>CuCO<sub>3<&sol;sub>&lpar;s&rpar; &plus; 2HNO<sub>3&lpar;aq&rpar;<&sol;sub>                   Cu&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Green&rpar;                                                                      &lpar;Blue solution&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>NaHCO<sub>3&lpar;s&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;aq&rpar;<&sol;sub>                    NaNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Test for nitrates&sol;nitric acid<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Oxidation of iron &lpar;ii&rpar; sulphate<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Concentrated HNO<sub>3<&sol;sub> oxidizes green Iron &lpar;II&rpar; sulphate in presence of sulphuric acid into Iron &lpar;III&rpar; sulphate &lpar;yellow&sol;brown&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; However the solution turns dark brown due to formation of a compound&comma; FeSO<sub>4<&sol;sub>&period;NO<&sol;p>&NewLine;<p>&&num;8211&semi; NO is produced by reduction of nitrate to nitrogen monoxide by Fe<sup>2&plus;<&sol;sup><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Fe<sup>2<&sol;sup><sub>&plus;&lpar;aq&rpar;<&sol;sub>                       Fe<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub><sup> <&sol;sup> &plus;   e<sup>&&num;8211&semi;<&sol;sup> &lpar;oxidized&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; e<sup>&&num;8211&semi;<&sol;sup>                   NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &lpar;reduced&rpar;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Brown ring test<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Procedure&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; An unknown solid is dissolved then acidified using dilute H<sub>2<&sol;sub>SO<sub>4<&sol;sub>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Some FeSO<sub>4<&sol;sub> solution is then added&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The test tube is then held at an angle and concentrated sulphuric &lpar;V&rpar; acid is added slowly &lpar;dropwise&rpar; to the mixture&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The oily liquid &lpar;conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub>&rpar; is denser than water hence sinks to the bottom&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A brown ring forms between the two liquid layers if the solid is a nitrate&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Diagrams&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Suppose the solution tested isKNO<sub>3<&sol;sub>&comma; the conc&period; H<sub>2<&sol;sub>SO<sub>4 <&sol;sub>and the KNO<sub>3 <&sol;sub>reacted to produce HNO<sub>3<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>KNO<sub>3<&sol;sub>&lpar;aq&rpar; &plus;H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                  KHSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; HNO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup> from nitric acid oxidizes some of the FeSO<sub>4<&sol;sub> to Fe<sub>2 <&sol;sub>&lpar;SO<sub>4<&sol;sub>&rpar;<sub>3<&sol;sub> &lpar;Fe<sup>2&plus;<&sol;sup> toFe<sup>3&plus;<&sol;sup>&rpar; and itself reduced to NO by the Fe<sup>2&plus;<&sol;sup><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>-The NO so formed reacts with more FeSO4 to give a brown compound &lpar;FeSO4 NO&rpar; which appears as a brown ring&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>FeSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; NO<sub>&lpar;g&rpar;<&sol;sub>               FeSO<sub>4<&sol;sub>&period; NO<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Green&rpar;                                                         &lpar;Brown&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 5H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; NO<sub>&lpar;g&rpar;<&sol;sub>                   &lbrack;Fe&lpar;H<sub>2<&sol;sub>O&rpar;<sub>5<&sol;sub>NO&rsqb;<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Green&rpar;                                                                                      &lpar;Brown&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Heat<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Nitrates of less reactive metals decompose easily with gentle heating&semi; clouds of brown NO<sub>2<&sol;sub> can be seen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Cu&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2 <&sol;sub>       <sup>heat <&sol;sup>        2CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; 4NO<sub>2&lpar;g&rpar;<&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                      &lpar;Brown&comma; acidic&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The nitrates of more reactive metals need much stronger heating and decompose in a different way&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Na NO<sub>3&lpar;s&rpar;<&sol;sub>      <sup> heat <&sol;sup>     2NaNO<sub>2&lpar;s&rpar;<&sol;sub>  &plus;  O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Uses of nitric acid  <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Large quantities are used in fertilizer manufacture&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Manufacture of explosives &lpar;TNT&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; Manufacture of dyes<&sol;p>&NewLine;<p>&&num;8211&semi; Making nitrate salts<&sol;p>&NewLine;<p>&&num;8211&semi; Etching of metals&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Manufacture of nylon and terylene<&sol;p>&NewLine;<p>&&num;8211&semi; Refining precious metals<&sol;p>&NewLine;<p>&&num;8211&semi; An oxidizing agent&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Industrial manufacture of nitric acid<&sol;strong><&sol;p>&NewLine;<p><strong>The Otswald’s process<&sol;strong><&sol;p>&NewLine;<p><strong> &lpar;a&rpar;&period; Introduction<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Nitric acid is manufactured by the catalyst oxidation of ammonia and dissolving the products in water&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Raw materials<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Atmosphere air<&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia from Haber process&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Conditions<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Platinum-rhodium<&sol;strong> catalyst or platinum gauze&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The ammonia-air mixture must be cleaned &lpar;purified&rpar; to remove dust particles which could otherwise poison the catalyst&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;d&rpar;&period; Chemical reactions<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Step 1&colon; Compressor reactions&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Ammonia and excess air &lpar;oxygen&rpar; &lpar;1&colon;10 by volume&rpar; is slightly compressed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture is then cleaned to remove particles which would otherwise <strong>poison<&sol;strong> the catalyst&period;<&sol;p>&NewLine;<p>&&num;8211&semi; They are then passed to the heat exchanger&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong>Step 2&colon; Heat exchanger and catalytic chamber&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; In the heat exchanger&comma; the gaseous mixture is heated to about 900<sup>o<&sol;sup>C and then passed over a platinum-rhodium catalytic chamber&period;<&sol;p>&NewLine;<p>&&num;8211&semi; An <strong>exothermic<&sol;strong> reaction occurs and ammonia is oxidized to <strong>nitrogen &lpar;II&rpar; oxide<&sol;strong> and <strong>steam<&sol;strong>&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>4NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 5O<sub>2&lpar;g&rpar;<&sol;sub>                       4NO<sub>&lpar;g&rpar;<&sol;sub> &plus; 6H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub>  &plus; Heat&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The exothermic reaction once started&comma; provides the <strong>heat<&sol;strong> necessary to maintain the required <strong>catalytic temperature<&sol;strong>&period;<&sol;p>&NewLine;<p>-This is of <strong>economical advantage<&sol;strong> i&period;e&period; electrical heating of catalyst is not continued hence lowering production costs&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Step 3&colon; Heat exchanger&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The hot products from catalytic chamber are again passed back through the heat exchanger&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The hot gases are cooled and then passed into the cooling chamber&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Step 4&colon; Cooling chamber<&sol;strong><&sol;p>&NewLine;<p><strong><em>&&num;8211&semi; <&sol;em><&sol;strong>Once cooled&comma; the NO is oxidized to NO<sub>2<&sol;sub> by reacting it with excess oxygen&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2NO<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                       2NO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Step 5&colon; Absorption towers&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The NO<sub>2<&sol;sub> in excess air is then passed through a series of absorption towers where they meet a stream of hot water and form nitric &lpar;V&rpar; acid and nitrous &lpar;III&rpar; acid&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                      HNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; HNO<sub>2&lpar;aq&rpar;<&sol;sub> &lpar;blue solution&rpar;<&sol;p>&NewLine;<p><strong><em>                                                                   Nitric                Nitrous<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The so produced nitrous &lpar;III&rpar; acid is oxidized by oxygen in excess air to nitric &lpar;V&rpar; acid so that the concentration of nitric acid in the solution &lpar;liquid&rpar; gradually increases&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2 HNO<sub>2&lpar;aq&rpar;<&sol;sub> &plus;  O<sub>2&lpar;g&rpar;<&sol;sub>                    2HNO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The resultant HNO<sub>3<&sol;sub> is only 55&percnt;-65&percnt; concentrated&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is made more concentrated by careful distillation of the solution&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>The process of distillation &lpar;increasing the concentration&rpar;&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated sulphuric &lpar;VI&rpar; acid is added to the dilute nitric &lpar;V&rpar; acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The heat produced &lpar;when dilute sulphuric acid reacts with water&rpar; vapourises the nitric &lpar;V&rpar; acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The resultant nitric &lpar;V&rpar; acid vapour is condensed&period;<&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Nitric &lpar;V&rpar; acid is stored in dark bottles&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To prevent its <strong>decomposition<&sol;strong> since it undergoes slow decomposition when exposed to light&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Dilute nitric &lpar;V&rpar; acid has higher ions concentration than concentrated nitric &lpar;V&rpar; acid&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Reason&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dilute nitric &lpar;V&rpar; acid is a stronger acid hence ionizes fully to yield more hydrogen ions than concentrated nitric &lpar;V&rpar; acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dilute nitric &lpar;V&rpar; acid is ionic whereas concentrated nitric &lpar;V&rpar; acid is molecular&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Dilute nitric &lpar;V&rpar; acid is more &lpar;highly&rpar; ionized than concentrated nitric &lpar;V&rpar; acid&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Flow diagram for the otswald’s process&period;<&sol;strong><&sol;p>&NewLine;<p><strong>                                       Ammonia<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"107"><&sol;td>&NewLine;<td width&equals;"126"><&sol;td>&NewLine;<td width&equals;"78"><&sol;td>&NewLine;<td width&equals;"162"><&sol;td>&NewLine;<td width&equals;"78"><&sol;td>&NewLine;<td width&equals;"114"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td rowspan&equals;"3"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<td rowspan&equals;"3" width&equals;"162">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td><strong>HEAT EXCHANGER<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<td><&sol;td>&NewLine;<td width&equals;"114">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td><strong>CATALYTIC CHAMBER<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Air<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"0"><&sol;td>&NewLine;<td width&equals;"2"><&sol;td>&NewLine;<td width&equals;"101"><&sol;td>&NewLine;<td width&equals;"55"><&sol;td>&NewLine;<td width&equals;"154"><&sol;td>&NewLine;<td width&equals;"86"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td colspan&equals;"4"><&sol;td>&NewLine;<td rowspan&equals;"2"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td colspan&equals;"2"><&sol;td>&NewLine;<td rowspan&equals;"4"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Water                     Unreacted                NO<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>                                                 <&sol;strong>NO &plus; air&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>            <&sol;strong><strong>Nitric &lpar;V&rpar; acid<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Pollution effects of nitrogen compounds<&sol;strong>&period;<&sol;p>&NewLine;<ol>&NewLine;<li><strong> Acid rain<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;II&rpar; oxide is produced in internal combustion engines on combination of nitrogen and oxygen&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;II&rpar; oxide oxidized to nitrogen &lpar;IV&rpar; oxide which dissolves in water to form nitric &lpar;III&rpar; and nitric &lpar;V&rpar; acids&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitric &lpar;v&rpar; acid eventually reaches ground as acid rain and causes&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Loss of chlorophyll &lpar;chlorosis&rpar; from leaves<&sol;li>&NewLine;<li>Corrosion of stone buildings and metallic structures&comma; weakening them and destroying beauty&period;<&sol;li>&NewLine;<li>Leaching of vital minerals from soils&period; These are converted into soluble nitrates and washed away from top soil&period; This leads to poor crop yields&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Smog formation&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Nitrogen &lpar;IV&rpar; oxide also undergoes series of chemical reactions in air to produce one of the major components of <strong>smog<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Smog reduces visibility for motorists&comma; irritates eyes and causes breathing problems&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Eutrophication&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Refers to enrichment of water with excess nutrients for algal growth&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Presence of nitrate ions from nitrogen fertilizers in a water mass encourages rapid growth of algae&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This eventually leads to reduction of dissolved oxygen in water&comma; killing aquatic animals like fish&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Presence of <strong>nitrate ions<&sol;strong> in <strong>drinking water<&sol;strong> may also cause <strong>ill health<&sol;strong> to humans&period; This is because they are converted into carcinogenic compounds&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Prevention&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Recycling unreacted gases in manufacture of nitric acid to prevent release into environment&period;<&sol;li>&NewLine;<li><strong>Treating sewage<&sol;strong> and <strong>industrial effluents<&sol;strong> to remove nitrogen compounds before releasing to rivers and lakes&period;<&sol;li>&NewLine;<li>Fitting exhausts systems of vehicles with <strong>catalytic converters<&sol;strong> which convert nitrogen oxides into harmless nitrogen gas&period;<&sol;li>&NewLine;<li>Adding lime to lakes and soils in surrounding regions to reduce acidity&period;<&sol;li>&NewLine;<li>Applying fertilizers at right and in the correct proportion to prevent them from being washed into water masses&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>UNIT 3&colon; SULPHUR AND ITS COMPOUNDS<&sol;strong><&sol;p>&NewLine;<p><strong>Checklist&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Occurrence of sulphur<&sol;li>&NewLine;<li>Extraction of sulphur<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>The Frasch pump<&sol;li>&NewLine;<li>Extraction process<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"3">&NewLine;<li>Properties of sulphur<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Physical properties<&sol;li>&NewLine;<li>Chemical properties<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"4">&NewLine;<li>Uses of sulphur<&sol;li>&NewLine;<li>Allotropes of sulphur<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Rhombic sulphur<&sol;li>&NewLine;<li>Monoclinic sulphur<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"6">&NewLine;<li>Compounds of sulphur<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Sulphur &lpar;IV&rpar; oxide<&sol;li>&NewLine;<li>Laboratory preparation<&sol;li>&NewLine;<li>Other preparation methods<&sol;li>&NewLine;<li>Properties of sulphur &lpar;IV&rpar; oxide&NewLine;<ul>&NewLine;<li>Physical properties<&sol;li>&NewLine;<li>Chemical properties<&sol;li>&NewLine;<li>Uses of sulphur &lpar;IV&rpar; oxide<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"7">&NewLine;<li>Sulphur &lpar;VI&rpar; oxide<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Laboratory preparation<&sol;li>&NewLine;<li>Properties of sulphur &lpar;VI&rpar; oxide<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"8">&NewLine;<li>Sulphuric &lpar;VI&rpar; acid<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Large scale manufacture&NewLine;<ul>&NewLine;<li>Raw materials<&sol;li>&NewLine;<li>The chemical process<&sol;li>&NewLine;<li>Pollution control<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<li>Properties of concentrated sulphuric &lpar;VI&rpar; acid&NewLine;<ul>&NewLine;<li>Physical properties<&sol;li>&NewLine;<li>Chemical properties<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<li>Properties of dilute sulphuric &lpar;VI&rpar; acid<&sol;li>&NewLine;<li>Uses of sulphuric &lpar;VI&rpar; acid<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"8">&NewLine;<li>Hydrogen sulphide gas<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Laboratory preparation<&sol;li>&NewLine;<li>Properties of hydrogen sulphide<&sol;li>&NewLine;<li>Physical properties of hydrogen sulphide<&sol;li>&NewLine;<li>Chemical properties of hydrogen sulphide<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"9">&NewLine;<li>Atmospheric pollution by sulphur compounds<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Occurrence<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Occurs naturally as s free element in the underground deposits in Texas and Louisiana &lpar;USA&rpar; and Sicily &lpar;ITALY&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It also occurs as a sulphate and sulphide ores&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Examples&semi;<&sol;strong><&sol;p>&NewLine;<p>Metallic sulphides&colon; iron pyrites &lpar;FeS<sub>2<&sol;sub>&rpar;&semi; Zinc blende &lpar;ZnS&rpar; Copper pyrites &lpar;CuFeS<sub>2<&sol;sub>&rpar;<&sol;p>&NewLine;<p>Metallic sulphates e&period;g&period; Gypsum&comma; CaSO<sub>4<&sol;sub><&sol;p>&NewLine;<p>Hydrogen sulphide e&period;g&period; H<sub>2<&sol;sub>S present in natural gas&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Extraction of sulphur&colon; The Frasch process<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is done using a set of 3 concentric pipes called <strong>Frasch pump<&sol;strong>&semi; hence the name <strong>Frasch process<&sol;strong>&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus<&sol;strong>&colon; Frasch pump<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"12"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td width&equals;"208">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Hot compressed air<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"208">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Superheated water at 170<sup>o<&sol;sup>C<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"208">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Froth of molten sulphur<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Cross section of the Frasch pump<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"167"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Outermost pipe&colon; brings superheated water at 170<sup>o<&sol;sup>C<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"184"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Innermost pipe&colon; brings in hot compressed air&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Middle pipe&colon; brings out a froth of molten sulphur<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Chemical process<&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon; <&sol;strong>Sulphur cannot be mined by conventional mining methods such as open cast&comma; alluvial mining etc<&sol;p>&NewLine;<p><strong>Reasons&colon; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Sulphur deposits lie <strong>very deep<&sol;strong> under several layers of quicksand hence cannot be accessed easily&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Sulphur deposits are associated with poisonous gases such as sulphur &lpar;IV&rpar; oxide gas which can cause massive pollution if exposed to open environment&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Three concentric pipes&comma; constituting the <strong>Frasch pump<&sol;strong> are drilled through the rock and soil down to the sulphur deposits&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; The outer tube &lpar;pipe&rpar;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is used to pump superheated water at 170<sup>o<&sol;sup> c and 10 atmospheres down the deposits&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The heat of the water melts the sulphur&period;<&sol;p>&NewLine;<p>&&num;8211&semi; By the time the water reaches the sulphur&comma; its temperature drops to 120<sup>o<&sol;sup>C&comma; but this is enough to melt sulphur whose M&period;P is 114<sup>o<&sol;sup>C&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; The innermost tube<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is the smallest pipe and is used to blow or force a jet of hot compressed air down the sulphur deposits&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This produces a light froth of molten sulphur &lpar;mixture of air&comma; water and sulphur&rpar; which is forced up the middle pipe&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; The middle pipe<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Allows the sulphur froth &lpar;mixture of molten sulphur&comma; water and air&rpar; into the surface&semi; where mixture is run into large tanks&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The forth usually settles in two layers&comma; the bottom layer is mainly water while the upper layer is mainly molten sulphur&semi; due to differences in density&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Once in the settling tanks&comma; sulphur solidifies and separates out&semi; giving 99&percnt; pure sulphur&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The sulphur is removed&comma; melted again and poured into moulds&comma; to form roll sulphur in which form it is sold&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties of sulphur<&sol;strong><&sol;p>&NewLine;<p><strong>Physical properties<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>&&num;8211&semi; It is a yellow solid which exists in one amorphous form and 2 crystalline forms&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; A molecule of sulphur consists of a pluckered ring of 8 sulphur atoms covalently bonded&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Diagram&colon; structure of a sulphur molecule&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Solubility<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It is insoluble in water but soluble in organic solvents like carbon disulphide&comma; xylene and toluene&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>It is a poor conductor of heat and electricity since it is a covalent element lacking free electrons or ions&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Effects of heat<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; When sulphur is heated out of contact with air&comma; it melts at low temperatures of about 113<sup>o<&sol;sup>C to form an <strong>amber &lpar;orange&rpar; coloured<&sol;strong> mobile liquid&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The S<sub>8<&sol;sub> rings open up to form chains of S<sub>8<&sol;sub>&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Diagrams&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>The pluckered S<sub>8<&sol;sub> ring of sulphur molecule                                           Chains of S<sub>8<&sol;sub> molecule<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; On further heating&comma; the liquid <strong>darkens in colour&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; At 160<sup>o<&sol;sup>C&comma; the liquid becomes <strong>much darker and very viscous<&sol;strong> &lpar;such that the test tube can be inverted without the sulphur pouring out&period;&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; The viscosity continues to increase until a temperature of about 195<sup>0<&sol;sup>C<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The S<sub>8<&sol;sub> rings of sulphur are <strong>broken<&sol;strong> and they then <strong>join<&sol;strong> to form <strong>very long chains<&sol;strong> of sulphur atoms&comma; with over <strong>100&comma;000 atoms<&sol;strong> &lpar;S<sub>100 000<&sol;sub>&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> As the <strong>chains entangle<&sol;strong> with one another the <strong>viscosity increases<&sol;strong> and <strong>colour darkens<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Near the <strong>boiling point<&sol;strong>&comma; the liquid becomes <strong>less dark<&sol;strong> i&period;e&period; red-brown and more mobile &lpar;runny&rpar;&period;<&sol;p>&NewLine;<p><strong>Reason<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The long chains are broken to shorter chains&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; At 444<sup>o<&sol;sup>C &lpar;boiling point&rpar;&comma; <strong>sulphur vapourises<&sol;strong> to form a <strong>red-brown vapour<&sol;strong> consisting of S<sub>8<&sol;sub>&comma; S<sub>6<&sol;sub>&comma; S<sub>4<&sol;sub> and S<sub>2<&sol;sub> molecules&period;<&sol;p>&NewLine;<p><strong>Reason<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The sulphur liquid changes state to form sulphur vapour&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The vapour is <strong>light brown<&sol;strong> in colour&comma; and consists of a mixture of molecules of formula S<sub>2<&sol;sub>-S<sub>10<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note<&sol;strong><&sol;p>&NewLine;<p><strong>&&num;8211&semi; <&sol;strong>If heated further the larger sulphur vapour molecules &lpar;S<sub>8<&sol;sub>&comma; S<sub>6<&sol;sub> etc&rpar; dissociate and at 750<sup>o<&sol;sup>C the vapour is mostly constituted of diatomic molecules &lpar;S<sub>2<&sol;sub>&rpar;<&sol;p>&NewLine;<p><strong>&&num;8211&semi; <&sol;strong>On exposure to <strong>cold surfaces<&sol;strong> the <strong>light brown vapour<&sol;strong> condenses to a <strong>yellow sublimate<&sol;strong>&period; The yellow sublimate is called flowers of sulphur&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Chemical properties<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Burning in air<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It burns in air with a <strong>bright blue flame<&sol;strong> forming a misty gas with a choking smell&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The gas is sulphur &lpar;IV&rpar; oxide&comma; with traces of sulphur &lpar;VI&rpar; oxide&comma; both of which are acidic&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                        SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>The SO<sub>3<&sol;sub> is formed due to further oxidation of some of the SO<sub>2<&sol;sub> gas<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2SO<sub>2&lpar;s&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                   2SO<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Reaction with acids&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Dilute acids have no effect on sulphur&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is however easily oxidized by concentrated &lpar;VI&rpar; sulphuric acid and Nitric &lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub><&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; When warmed with conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub>&comma; sulphur is oxidized to sulphur &lpar;IV&rpar; oxide while the acid is reduced to the same gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                        3SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With conc&period; HNO<sub>3<&sol;sub><&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Sulphur is oxidized to sulphuric &lpar;VI&rpar; acid while acid itself is reduced to red-brown Nitrogen &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; 6HNO<sub>3&lpar;l&rpar;<&sol;sub>                   H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 6NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The resultant solution gives a white precipitate with a solution of Barium chloride&period;<&sol;p>&NewLine;<p><strong>Reason<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Due to presence of sulphate ions which combine with Ba<sup>2&plus;<&sol;sup> to form insoluble BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                      BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Reaction with other elements&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It combines directly with many other elements to form sulphides&period;<&sol;p>&NewLine;<p>&&num;8211&semi; With metals&comma; sulphur forms metal sulphides&comma; most of which are black&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Examples&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; With metals<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Iron metal<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Fe<sub>&lpar;s&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar;<&sol;sub>                         FeS<sub>&lpar;s&rpar;<&sol;sub> &plus; Heat<&sol;p>&NewLine;<p><strong><em>&lpar;Grey&rpar;   &lpar;Yellow&rpar;                                  &lpar;Black&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; During the reaction&comma; the mixture glows spontaneously&semi; immediately the reaction has started&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Copper<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>2Cu<sub>&lpar;s&rpar;<&sol;sub> &plus;   S<sub>&lpar;s&rpar;<&sol;sub>                  Cu<sub>2<&sol;sub>S<&sol;p>&NewLine;<p><strong><em>&lpar;Red-brown&rpar;  &lpar;Yellow&rpar;                    &lpar;Black copper &lpar;I&rpar; sulphide&rpar;&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Non-metals<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Carbon<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>C<sub>&lpar;s&rpar;<&sol;sub>  &plus;  2S<sub>&lpar;s&rpar;<&sol;sub>                     CS<sub>2<&sol;sub>&lpar;s&rpar;<&sol;p>&NewLine;<p><strong><em>&lpar;Black&rpar; &lpar;Yellow&rpar;                                &lpar;Black Carbon disulphide&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Carbon &lpar;IV&rpar; sulphide has a distinct smell&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is an excellent solvent and is used as a <strong>pesticide<&sol;strong> due to its poisonous nature&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Hydrogen<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>H<sub>2&lpar;g&rpar;<&sol;sub> &plus;  S<sub>&lpar;s&rpar;<&sol;sub>                     H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Fluorine<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; F<sub>2&lpar;g&rpar;<&sol;sub>                 SF<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Chlorine<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub>                SCl<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Bromine<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>2S<sub>&lpar;s&rpar;<&sol;sub> &plus;Br<sub>2&lpar;g&rpar;<&sol;sub>               S<sub>2<&sol;sub>Br<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Phosphorous<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>10S<sub>&lpar;s&rpar;<&sol;sub> &plus; 4P<sub>&lpar;s&rpar;<&sol;sub>                P<sub>4<&sol;sub>S<sub>10&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Sulphur does not react with inert gases&comma; nitrogen and iodine&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Uses of sulphur<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Industrial manufacture of sulphuric &lpar;VI&rpar; acid in the contact process&period;<&sol;li>&NewLine;<li>It is used as a <strong>fungicide <&sol;strong>for treatment of fungal <strong>skin diseases<&sol;strong>&period;<&sol;li>&NewLine;<li>It is used for <strong>vulcanization<&sol;strong> &lpar;hardening&rpar; of rubber<&sol;li>&NewLine;<li>Manufacture of <strong>calcium hydrogen sulphite<&sol;strong> &lpar;Ca&lpar;HSO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub> used for bleaching in paper and textile industries&period;<&sol;li>&NewLine;<li>Manufacture of <strong>matches<&sol;strong> and <strong>fireworks&period;<&sol;strong><&sol;li>&NewLine;<li>Manufacture of <strong>dyes<&sol;strong> e&period;g&period; sulphur blacks that gives paint smooth texture&period;<&sol;li>&NewLine;<li>Manufacture of sulphur <strong>ointments<&sol;strong> and <strong>drugs<&sol;strong> e&period;g&period; sulphur-guanidine for dysentery&period;<&sol;li>&NewLine;<li>Manufacture of <strong>hair oil&period;<&sol;strong><&sol;li>&NewLine;<li>Small amounts of sulphur are added to <strong>concrete<&sol;strong> to prevent <strong>corrosion by acids&period;<&sol;strong><&sol;li>&NewLine;<li>Manufacture of fungicides for spraying crops against fungal infections e&period;g&period; ridomil&comma; dithane for potato and tomato blights<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Allotropes of sulphur<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Allotropy is the existence of an element in more than one form without change of state&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Sulphur has 2 allotropes<&sol;p>&NewLine;<ul>&NewLine;<li>Rhombic sulphur&sol; octahedral&sol; alpha-sulphur<&sol;li>&NewLine;<li>Monoclinic&sol; prismatic sulphur&sol; beta-sulphur&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>-Unlike carbon only the rhombic sulphur occurs naturally&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Comparison of rhombic and monoclinic sulphur&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"237"><strong>                     Allotrope  <&sol;strong><&sol;p>&NewLine;<p><strong>Characteristic<&sol;strong><&sol;td>&NewLine;<td width&equals;"294"><strong>Rhombic sulphur<&sol;strong><&sol;td>&NewLine;<td width&equals;"294"><strong>Monoclinic sulphur<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"237">Stability<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Stable below transitional temp&period; of 96<sup>o<&sol;sup>C<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Stable above 96<sup>o<&sol;sup>C<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"237">Colour<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Bright yellow crystalline solid<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Pale yellow crystalline solid<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"237">Melting point<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Melts at 113<sup>o<&sol;sup>C&semi;<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Melts at 119<sup>o<&sol;sup>C&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"237">Density<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; About 2&period;06gcm<sup>-3<&sol;sup>&lpar;heavier than monoclinic Sulphur&rpar;<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Lighter than 1&period;98gcm<sup>-3<&sol;sup> &lpar;lighter than rhombic sulphur&rpar;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"237">Shape<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Octahedral shape<&sol;p>&NewLine;<p><strong>Diagram&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"294">&&num;8211&semi; Needle-like&sol; prismatic<&sol;p>&NewLine;<p><strong>Diagram&colon;<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&period;<&sol;strong><&sol;p>&NewLine;<p>96<sup>o<&sol;sup>C is called transitional temperature&semi; because both allotropes are stable&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Compounds of sulphur<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Oxides of sulphur&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Sulphur &lpar;IV&rpar; oxide<&sol;strong><&sol;p>&NewLine;<p><strong>Laboratory preparation of sulphur &lpar;IV&rpar; oxide<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"172">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Dry sulphur &lpar;IV&rpar; oxide gas<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"112">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Sodium sulphite<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"100">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Dilute HCl<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"112">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Conc&period; H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dilute HCl or H<sub>2<&sol;sub>SO<sub>4<&sol;sub> is poured into sodium sulphite crystals in the flask&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The gas produced is passed through conc&period; Sulphuric acid to dry it&period;<&sol;p>&NewLine;<p>&&num;8211&semi; If the reaction is slow&comma; the round-bottomed flask is heated &lpar;warmed&rpar; gently&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dry gas is collected by <strong>downward delivery<&sol;strong> as it is denser than air&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Equation<&sol;strong>&period;<&sol;p>&NewLine;<p>Na<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                        H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2NaCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                         H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; Nitric &lpar;V&rpar; acid should not be used&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is a strong oxidizing agent and cannot therefore reduce the metal sulphites&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Instead it will oxidize the SO<sub>2<&sol;sub> produced to sulphuric &lpar;VI&rpar; acid<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2HNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub>                      2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus;  H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Other methods of preparing sulphur &lpar;IV&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Preparation from concentrated sulphuric &lpar;VI&rpar; acid<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; As in &lpar;a&rpar; above<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Copper turnings are covered with concentrated sulphuric &lpar;VI&rpar; acid and the mixture <strong>heated <&sol;strong>&lpar;a must in this case&rpar;&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dilute sulphuric &lpar;VI&rpar; acid does not react with copper hence the need for concentrated acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Cold concentrated sulphuric &lpar;VI&rpar; acid does not also react with copper hence warming&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observation<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; When the solution becomes hot&comma; there is evolution of sulphur &lpar;IV&rpar; oxide gas&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&period;<&sol;strong><&sol;p>&NewLine;<p>C<sub>u&lpar;s&rpar;<&sol;sub> &plus;2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                    CuSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This reaction is in two stages&period;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Oxidation of Cu to CuO<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Concentrated sulphuric &lpar;VI&rpar; acid oxidizes copper to Copper &lpar;II&rpar; oxide<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                     CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>CuO further reacts with the acid to form salt and water&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                  CuSO<sub>4&lpar;aq&rpar;<&sol;sub>  &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Overall equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      CuSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Roasting sulphur in air<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; When sulphur is burnt in air&comma; SO<sub>2<&sol;sub> is produced&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                     SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>This reaction is not suitable for preparing a pure sample of the gas in the lab&period;<&sol;p>&NewLine;<p><strong>Reason <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The gas is contaminated with traces of O<sub>2<&sol;sub>&semi; N<sub>2<&sol;sub>&semi; CO<sub>2<&sol;sub> and inert gases&period;<&sol;p>&NewLine;<p>&&num;8211&semi; There are higher chances of environmental pollution&comma; due to escape of some of the gas into the atmosphere&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;d&rpar;&period; Roasting metal sulphides in air<&sol;strong><&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>2FeS<sub>&lpar;g&rpar;<&sol;sub> &plus; 3O<sub>2&lpar;g&rpar;<&sol;sub>                    2FeO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>2ZnS<sub>&lpar;g&rpar;<&sol;sub> &plus; 3O<sub>2&lpar;g&rpar;<&sol;sub>                    2ZnO<sub>&lpar;s&rpar;<&sol;sub> &plus; 2SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Preparation of sulphur &lpar;IV&rpar; oxide solution&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus<&sol;strong><&sol;p>&NewLine;<p><strong>                        <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Gas is directly passed into water using an <strong>inverted funnel<&sol;strong>&semi; to prevent &OpenCurlyDoubleQuote;<strong>sucking back<&sol;strong>” by increasing surface area for dissolution&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties of sulphur &lpar;IV&rpar; oxide gas<&sol;strong><&sol;p>&NewLine;<p><strong>Physical properties<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is a colourless gas with an irritating &lpar;pungent&rpar; characteristic smell&period;<&sol;li>&NewLine;<li>It neither burns nor supports combustion i&period;e&period; when a lighted splint is introduced into a gas jar full of sulphur &lpar;IV&rpar; oxide&comma; the splint is extinguished&period;<&sol;li>&NewLine;<li>It has a low PH&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Chemical properties&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is a strong reducing agent&period;<&sol;p>&NewLine;<p>&&num;8211&semi; An aqueous solution of sulphur &lpar;IV&rpar; oxide&comma; sulphurous acid is strong reducing agent&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The sulphite radical&comma; SO<sub>3<&sol;sub><sup>2-<&sol;sup>&comma; acts as a supplier of electrons&semi; the overall reaction results into formation of sulphate ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub>                       2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> then&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2e-<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The resultant electrons supplied are accepted by an oxidizing agent&comma; which consequently gets reduced&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon; <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Reduction of acidified potassium manganate &lpar;VII&rpar;&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&period;<&sol;strong><&sol;p>&NewLine;<p>-To about 2 cm<sup>3<&sol;sup> of sulphur &lpar;IV&rpar; oxide solution&comma; 2 cm<sup>3<&sol;sup> of dilute H<sub>2<&sol;sub>SO<sub>4 <&sol;sub>was added followed by an equal volume of potassium manganate &lpar;VII&rpar; solution&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Purple solution changes to colourless&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanation<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Purple manganate &lpar;VII&rpar; ions are reduced to colourless manganate &lpar;II&rpar; ions&comma; while H<sub>2<&sol;sub>SO<sub>3<&sol;sub> &lpar;sulphurous &lpar;IV&rpar; acid&rpar; is reduced to sulphate ions and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>5SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2KMnO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O                       K<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2MnSO<sub>4&lpar;aq&rpar;<&sol;sub>&plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>2MnO<sup>&&num;8211&semi;<&sol;sup><sub>4&lpar;aq&rpar;<&sol;sub> &plus; 5SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 6H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                      2Mn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 5SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Reduction of potassium chromate &lpar;IV&rpar; solution <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h1>Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; To 2 cm<sup>3 <&sol;sup>of Sulphur &lpar;IV&rpar; oxide solution&comma; 2 cm<sup>3<&sol;sup> of dilute H<sub>2<&sol;sub>SO<sub>4<&sol;sub> was added followed by an equivalent volume of potassium chromate &lpar;VI&rpar; solution&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Observation<&sol;h1>&NewLine;<p>&&num;8211&semi; Acidified potassium chromate &lpar;VI&rpar; solution change from <strong>orange<&sol;strong> to <strong>green<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p>K<sub>2<&sol;sub>Cr<sub>2<&sol;sub>O<sub>7&lpar;aq&rpar;<&sol;sub> &plus; 3SO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                    K<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; Cr<sub>2<&sol;sub>&lpar;SO<sub>4<&sol;sub>&rpar;<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Orange&rpar;                                                                                                                                                                    &lpar;Green&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;                                <&sol;strong><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"95"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Cr<sub>2<&sol;sub>O<sub>7<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub>&plus; 3SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 8H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                      2Cr<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"35"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  this is the usual <strong>chemical test<&sol;strong> for sulphur &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Reduction of Iron &lpar;III&rpar; ions to Iron &lpar;II&rpar; ions &lpar;Fe<sup>3&plus;<&sol;sup> to Fe<sup>2&plus;<&sol;sup>&rpar;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; About 3 cm<sup>3<&sol;sup> of Iron &lpar;III&rpar; chloride solution are heated in a test tube and sulphur &lpar;IV&rpar; oxide gas bubbled into it&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Observations<&sol;h1>&NewLine;<p>&&num;8211&semi; The <strong>brown<&sol;strong> solution turns <strong>green<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Explanation<&sol;h1>&NewLine;<p>&&num;8211&semi; Aqueous sulphur &lpar;IV&rpar; oxide reduces to Fe<sup>3&plus;<&sol;sup> in FeCl<sub>3<&sol;sub> which are brown to green Fe<sup>2&plus;<&sol;sup> in FeCl<sub>2&lpar;aq&rpar;<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Ionically<&sol;h2>&NewLine;<p>2Fe<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;       <&sol;sub>                        Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Reduction of bromine water<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; Bromine water &lpar;red brown&rpar; is added to a solution of sulphur &lpar;IV&rpar; oxide followed by HCl and BaCl<sub>2 <&sol;sub>solution&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p>Br<sub>2&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                   2HBr<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><strong>                                         <em><sup>Oxidation<&sol;sup><&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"0"><&sol;td>&NewLine;<td width&equals;"2"><&sol;td>&NewLine;<td width&equals;"197"><&sol;td>&NewLine;<td width&equals;"12"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<td rowspan&equals;"2"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Br<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                    2HBr<sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red-brown&rpar;                                                                             &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"47"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><em>Reduction<&sol;em><&sol;h2>&NewLine;<h2><&sol;h2>&NewLine;<h2>On addition of barium chloride<&sol;h2>&NewLine;<p>&&num;8211&semi; A <strong>white precipitate<&sol;strong> is formed&comma; due to the formation of insoluble <strong>barium sulphate&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<h1><&sol;h1>&NewLine;<h1>Note<&sol;h1>&NewLine;<p>&&num;8211&semi; This test confirms presence of SO<sub>4<&sol;sub><sup>2-<&sol;sup> since a white precipitate insoluble in dilute hydrochloric acid is formed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; CO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> and SO<sub>3<&sol;sub><sup>2-<&sol;sup> also forms a white precipitate with BaCl<sub>2&lpar;aq&rpar;<&sol;sub> but the white precipitates dissolve in dilute HCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Reduction of hydrogen peroxide<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To 2 cm<sup>3<&sol;sup> of aqueous sulphur &lpar;IV&rpar; oxide&comma; an equal volume of hydrogen peroxide is added followed by 1 cm<sup>3 <&sol;sup>of HCl&comma; then a few drops BaCl<sub>2<&sol;sub> solution&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Observation and explanations&colon;<&sol;h2>&NewLine;<p>&&num;8211&semi; Bubbles of a colourless gas&semi; that relights a glowing splint&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Hydrogen peroxide is reduced to water&semi; while the sulphite ion in aqueous sulphur &lpar;IV&rpar; oxide &lpar;H<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub>&rpar; is oxidized to SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equation<&sol;h1>&NewLine;<p>H<sub>2<&sol;sub>O<sub>2&lpar;l&rpar;<&sol;sub> &plus;SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                         H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; On addition of BaCl<sub>2<&sol;sub>&comma; a white precipitate insoluble in dilute HCl&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This confirms presence of sulphate ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vi&rpar;&period; Reduction of concentrated nitric &lpar;V&rpar; acid<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; Sulphur &lpar;IV&rpar; oxide is bubbled through &lpar;into&rpar; a solution of concentrated nitric &lpar;v&rpar; acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observation <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Brown fumes &lpar;of NO<sub>2<&sol;sub>&rpar; are liberated&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanation<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Sulphur &lpar;IV&rpar; oxide reduces nitric &lpar;V&rpar; acid to nitrogen &lpar;IV&rpar; oxide &lpar;brown&rpar; while it is itself oxidized by HNO<sub>3<&sol;sub> to form H<sub>2<&sol;sub>SO<sub>4<&sol;sub>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus while SO<sub>2<&sol;sub> is the reducing agent&semi; HNO<sub>3<&sol;sub> is the oxidizing agent&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2HNO<sub>3&lpar;l&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub>                               2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                               &lpar;Brown fumes&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vii&rpar;&period; Reaction with atmospheric oxygen in light&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h1>Procedure&colon;<&sol;h1>&NewLine;<p>&&num;8211&semi; About 2 cm<sup>3<&sol;sup> of Sulphur &lpar;IV&rpar; oxide solution is left in a test tube in light for 24 hours&comma; dilute HCl is then added&comma; followed by barium chloride&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Observations and explanations&colon;<&sol;h1>&NewLine;<p>&&num;8211&semi; Atmospheric oxygen in light oxidizes sulphite ion &lpar;SO<sub>3<&sol;sub><sup>2-<&sol;sup>&rpar; into sulphate &lpar;SO<sub>4<&sol;sub><sup>2-<&sol;sup>&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equation&colon;<&sol;h1>&NewLine;<p>2SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                          2SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; On adding barium chloride&comma; a <strong>white precipitate<&sol;strong> insoluble in dilute HCl results&semi; confirming presence of sulphate ion&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   BaSO4<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>                                                <&sol;strong><strong><em>&lpar;White ppt&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Sulphur &lpar;IV&rpar; oxide as oxidizing agent<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It reacts as an oxidizing agent with reducing agents more powerful than itself&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Examples<&sol;h1>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Reaction with hydrogen sulphide<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; A test tube of dry hydrogen sulphide gas is inverted into a gas jar full of <strong>moist<&sol;strong> sulphur &lpar;IV&rpar; oxide&comma; and the gases allowed to mix&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Observation<&sol;h1>&NewLine;<p>&&num;8211&semi; <strong>Yellow<&sol;strong> deposits of sulphur is produced&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;      <&sol;strong><&sol;p>&NewLine;<p><strong>                         <&sol;strong><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"23"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub>                       2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 3S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"71"><&sol;td>&NewLine;<td width&equals;"2"><&sol;td>&NewLine;<td width&equals;"185"><&sol;td>&NewLine;<td width&equals;"12"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td colspan&equals;"2"><&sol;td>&NewLine;<td rowspan&equals;"2"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>                  Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; H<sub>2<&sol;sub>S is a <strong>stronger reducing<&sol;strong> agent than sulphur &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus sulphur &lpar;IV&rpar; oxide acts as an <strong>oxidizing agent<&sol;strong> supplying oxygen to the hydrogen sulphide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Note<&sol;h1>&NewLine;<p>&&num;8211&semi; Dry gases do not react and for this reaction to occur&comma; the gases must be <strong>moist<&sol;strong> or at least one of them&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Reaction with burning magnesium<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Burning magnesium is lowered into a gas jar full of sulphur &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observation<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>White fumes<&sol;strong> of magnesium oxide and <strong>yellow specks<&sol;strong> of sulphur&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>2Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub>                        2MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"7">&NewLine;<li><strong> Sulphur &lpar;IV&rpar; oxide as bleaching agent&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; Coloured flower petals are placed in a test-tube full of sulphur &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Observation<&sol;h1>&NewLine;<p>&&num;8211&semi; The coloured &lpar;blue or red&rpar; petals are bleached &lpar;turned colorless&rpar;&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Explanations&colon;<&sol;h1>&NewLine;<p>&&num;8211&semi; In presence of water&comma; sulphur &lpar;IV&rpar; oxide acts as a bleaching agent&period;  It bleaches by reduction &lpar;removal of oxygen form the dye&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; It first combines with water forming the sulphurous acid&semi; which then <strong>reduces<&sol;strong> the dye to form a colourless product&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                  H<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>H<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;               <&sol;sub>                2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>Then&semi;<&sol;p>&NewLine;<p>SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; &lbrack;O&rsqb;             SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>               <&sol;strong><strong><em>From dye<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>General equation<&sol;strong><&sol;p>&NewLine;<p>SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; &lbrack;Dye &plus; &lpar;O&rpar;&rsqb;                      Dye &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                    Coloured                                       Colourless<&sol;em><&sol;strong><&sol;p>&NewLine;<h1><&sol;h1>&NewLine;<h1>Note<&sol;h1>&NewLine;<p>&&num;8211&semi; The original colour may be restored by <strong>oxidation<&sol;strong> or prolonged exposure to air&period;  This explains why old newspapers which were originally bleached white by sulphur &lpar;IV&rpar; oxide turn brown with time&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine bleaches by oxidation hence its oxidation is <strong>permanent<&sol;strong>&semi; SO<sub>2<&sol;sub> is however preferred because it is milder in action&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"8">&NewLine;<li><strong> Reaction with sodium hydroxide &lpar;alkalis&rpar;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A gas jar full of sulphur &lpar;IV&rpar; oxide is inverted over sodium hydroxide solution in a trough and shaken&period;<&sol;p>&NewLine;<h3>Observations<&sol;h3>&NewLine;<p>&&num;8211&semi; Solution seen <strong>rises up<&sol;strong> in the jar&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h3>Explanation<&sol;h3>&NewLine;<p>&&num;8211&semi; Sulphur &lpar;IV&rpar; oxide is acidic&comma; hence easily absorbed by alkaline solutions such as sodium hydroxide solution&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Sodium sulphite and sodium hydrogen sulphites are formed depending on amount of sulphur oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Equations<&sol;h2>&NewLine;<ul>&NewLine;<li><strong>With limited sulphur &lpar;IV&rpar; oxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>2NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus;  SO<sub>2&lpar;g&rpar;<&sol;sub>                             Na<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With excess sulphur &lpar;IV&rpar; oxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub>                                NaHSO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Reaction with chlorine&colon;<&sol;h1>&NewLine;<h1>&&num;8211&semi; Sulphur &lpar;IV&rpar; oxide reacts with moist chlorine to form an acidic mixture of sulphuric &lpar;VI&rpar; acid and hydrochloric acid&period;<&sol;h1>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;     <&sol;sub>                        H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<h1><&sol;h1>&NewLine;<h1>Explanation&colon;<&sol;h1>&NewLine;<p>&&num;8211&semi; Sulphur &lpar;IV&rpar; oxide serves as the reducing agent reducing chlorine into hydrochloric acid&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine acts as the oxidizing agent&semi; oxidizing the sulphur &lpar;IV&rpar; oxide into sulphuric &lpar;VI&rpar; acid<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Tests for sulphur &lpar;iv&rpar; oxide<&sol;h1>&NewLine;<ol>&NewLine;<li>Characteristic pungent smell&period;<&sol;li>&NewLine;<li>Bleaches flower petals&period;<&sol;li>&NewLine;<li>Decolourises purple potassium manganate &lpar;VII&rpar;<&sol;li>&NewLine;<li>Turns filter paper soaked in acidified orange potassium dichromate &lpar;VI&rpar; solution to green<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Sulphur &lpar;IV&rpar; oxide as a pollutant<&sol;h1>&NewLine;<p>&&num;8211&semi; It is industrial waste in some chemical processes&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The emission to the air it dissolves forming sulphurous acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;  <&sol;sub>                        H<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Sulphurous acid is readily oxidized to sulphuric &lpar;VI&rpar; acid&semi; which attacks stonework and metal structures causing them to corrode&period;<&sol;p>&NewLine;<p>&&num;8211&semi; If breathed in&comma; SO<sub>2<&sol;sub> causes lung damage&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Uses of sulphur &lpar;VI&rpar; oxide<&sol;h1>&NewLine;<p>&&num;8211&semi; Industrial manufacture of sulphuric &lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Fumigation in green houses for purposes of pest and disease control&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Preservative in jam and fruit juices&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Bleaching agent for wool&comma; straw&comma; paper pulp etc&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Sulphuric &lpar;VI&rpar; acid<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Industrial manufacture of sulphuric &lpar;VI&rpar; acid&colon; The contact process<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Raw materials<&sol;h2>&NewLine;<p>&&num;8211&semi; Sulphide ores or sulphur&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Water<&sol;p>&NewLine;<p>&&num;8211&semi; Oxygen &lpar;air&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated sulphuric &lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>The chemical process<&sol;h1>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Step 1&colon; Production of sulphur &lpar;VI&rpar; oxide<&sol;h1>&NewLine;<p>&&num;8211&semi; Sulphur &lpar;IV&rpar; oxide is obtained b burning the metal ores of sulphides or elemental sulphur in air&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>S<sub>&lpar;s&rpar; <&sol;sub>&plus; O<sub>2&lpar;g&rpar;<&sol;sub>                    SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Obtaining sulphur &lpar;IV&rpar; oxide form pyrites is <strong>cheaper<&sol;strong> than form sulphur&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Flowers of sulphur form pyrites is <strong>impure<&sol;strong> and contains dust&semi; which involves extra expenses and time in purification&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Step 2&colon;            Purification and drying<&sol;h1>&NewLine;<p>&&num;8211&semi; The Sulphur &lpar;IV&rpar; oxide and excess air are passed through a series of <strong>driers<&sol;strong> and <strong>purifiers<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Purifiers remove dust particles&comma; which would otherwise <strong>poison<&sol;strong> the catalyst used in this process by taking up the catalytic surface thus impairing the catalytic efficiency&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Purification &lpar;removal of dust&rpar; is by <strong>electrostatic precipitation<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Are dried through concentrated sulphuric acid then passed through heat exchanger&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Step 3&colon;  Heat exchanger reactions<&sol;h1>&NewLine;<p>&&num;8211&semi; The pure dry SO<sub>2<&sol;sub> and excess air mixture are passed into heat exchanger reactions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To <strong>lower <&sol;strong>their temperatures since reaction in the proceeding chamber &lpar;catalytic chamber&rpar; are <strong>exothermic<&sol;strong> hence requiring lower temperatures&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Step 4&colon;            Catalytic chamber<&sol;h2>&NewLine;<p>&&num;8211&semi; Dry dust-free SO<sub>2<&sol;sub> is mixed with clean excess air&comma; heated and passed into a catalytic chamber containing <strong>vanadium &lpar;V&rpar; oxide catalyst<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equation                 V<sub>2<&sol;sub>O<sub>5<&sol;sub><&sol;h1>&NewLine;<p>2SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                          2SO<sub>3&lpar;g&rpar;<&sol;sub> &plus; Heat<&sol;p>&NewLine;<p><strong>450<sup>o<&sol;sup>C<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The product is <strong>sulphur &lpar;VI&rpar; oxide<&sol;strong>&comma; SO<sub>3<&sol;sub>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Formation of sulphur &lpar;VI&rpar; oxide is accompanied by evolution of heat &lpar;<strong>exothermic reaction<&sol;strong>&rpar; and a reduction in volume&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A good yield of SO<sub>3<&sol;sub> is favoured by the following conditions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong> Temperature<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; The forward reaction is <strong>exothermic<&sol;strong> hence the yield can be favourable in <strong>low temperatures<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However&comma; at such low temperatures the equilibrium is attained very slowly&period;<&sol;p>&NewLine;<p>&&num;8211&semi; At high temperatures&comma; equilibrium is achieved very quickly but sulphur &lpar;VI&rpar; oxide decomposes considerably&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus a compromise optimum temperature of about 450<sup>o<&sol;sup>C is used in order to enable as much sulphur &lpar;VI&rpar; oxide as possible to be made in a reasonable time&period;<&sol;p>&NewLine;<p>&&num;8211&semi; From the graph&comma; high SO<sub>3<&sol;sub> yield is favoured by relatively low temperatures&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Graph&colon; &percnt;age yield of sulphur &lpar;VI&rpar; oxide against temperature&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Pressure<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; High pressures favour production of more sulphur &lpar;VI&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Reason<&sol;h1>&NewLine;<p>&&num;8211&semi; The volume of <strong>gaseous reactants<&sol;strong> is higher than volume of <strong>gaseous products<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Since reaction involves reduction in volume&comma; theoretically pressure used should be as high as is economically convenient&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; High pressures are however disadvantageous&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Reason<&sol;h1>&NewLine;<p>&&num;8211&semi; The equipment required to generate high pressure would be expensive to maintain&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The high pressure could also liquefy sulphur &lpar;VI&rpar; oxide&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A pressure slightly above atmospheric pressure is used providing 98&percnt; conversion at low maintenance costs&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Catalyst<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; A catalyst neither takes part in a reaction nor increases the yield&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It merely speeds up the reaction i&period;e&period; reduces the time taken to react at equilibrium of 450<sup>o<&sol;sup>C&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Main catalyst is <strong>vanadium &lpar;V&rpar; oxide<&sol;strong> &lpar;V<sub>2<&sol;sub>O<sub>5<&sol;sub>&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is spread out &lpar;in trays&rpar; on silica gel to increase the surface area for combination of reactants&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dust settled in the catalyst may reduce its effective area&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dust may also react with the catalyst&comma; “<strong>poison<&sol;strong>” it and further reduce its efficiency&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This explains need to purify gases thoroughly&period;<&sol;p>&NewLine;<p>&&num;8211&semi; An effective catalyst is <strong>platinised asbestos<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However&comma; <strong>vanadium &lpar;V&rpar; oxide<&sol;strong> is preferred&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Reasons&colon;<&sol;h1>&NewLine;<p>&&num;8211&semi; It is <strong>not easily poisoned <&sol;strong>by dust particles&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is cheaper and readily available&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; The highest yield of sulphur &lpar;VI&rpar; oxide is obtained at optimum conditions of 450<sup>0<&sol;sup>C and pressure 2-3 atmospheres in presence of vanadium &lpar;V&rpar; oxide or platinised asbestos&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Step 5&colon;            Heat exchanger reactions<&sol;h2>&NewLine;<p>&&num;8211&semi; Hot SO<sub>3 <&sol;sub>gas from catalytic chamber is again passed through heat exchanger for <strong>cooling <&sol;strong>after which the cooled gas is taken into an absorption chamber&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Step 6&colon; Absorption chamber<&sol;h2>&NewLine;<p>&&num;8211&semi; The SO<sub>3<&sol;sub> is not dissolved &lpar;passed&rpar; into water directly&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Reason<&sol;h2>&NewLine;<p>&&num;8211&semi; It dissolves in water <strong>exothermically<&sol;strong> with a loud&comma; hissing sound giving off corrosive vapour resulting into harmful sulphuric acid “sprays” or mist all around&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The SO<sub>3<&sol;sub> is dissolved in conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub> forming oleum &lpar;pyrosulphuric acid&sol; fuming sulphuric acid&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equation&colon;<&sol;h1>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>SO<sub>3&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      H<sub>2<&sol;sub>S<sub>2<&sol;sub>O<sub>7&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Resultant “<strong>Oleum<&sol;strong>” is then channeled into a dilution chamber&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Step 7&colon;  Dilution chamber&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Oleum is diluted with correct amounts of water to form concentrated sulphuric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>S<sub>2<&sol;sub>O<sub>7&lpar;l&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;              <&sol;sub>            2H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Summary&colon; flow diagram for the contact process&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Pollution control in contact process&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Main source of pollution is <strong>sulphur &lpar;IV&rpar; oxide<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; In catalyst chamber&comma; SO<sub>2<&sol;sub> reacts with oxygen forming SO<sub>3<&sol;sub>&period;<&sol;p>&NewLine;<h1><&sol;h1>&NewLine;<h1>Equation&colon;                V<sub>2<&sol;sub>O<sub>5<&sol;sub><&sol;h1>&NewLine;<p>2SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                          2SO<sub>3&lpar;g&rpar;<&sol;sub> &plus; Heat<&sol;p>&NewLine;<p><strong>450<sup>o<&sol;sup>C<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This is a reversible reaction and upto 98&percnt; conversion is possible and excess &lpar;unreacted&rpar; SO<sub>2<&sol;sub> warmed and released into atmosphere via long chimneys&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However&comma; SO<sub>2<&sol;sub> being a pollutant&comma; little or none should be released into atmosphere&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This is done by <strong>scrubbing the gas<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This involves neutralizing the chimney gas by a solution of Calcium hydroxide forming a salt &lpar;calcium sulphite&rpar; and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Ca&lpar;OH&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;       <&sol;sub>            CaSO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; In certain cases&comma; <strong>filters<&sol;strong> are also installed to remove any traces of acid spray or mist form the exhaust gases&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The unreacted gases &lpar;SO<sub>2<&sol;sub> and SO<sub>3<&sol;sub>&rpar; may also be recycled within the process&period;<&sol;p>&NewLine;<h1>Properties of concentrated sulphuric &lpar;VI&rpar; acid<&sol;h1>&NewLine;<h1>Physical properties<&sol;h1>&NewLine;<ol>&NewLine;<li>&&num;8211&semi; Colourless&comma; odourless&comma; oily liquid&period;<&sol;li>&NewLine;<li>&&num;8211&semi; Very dense&semi; with density 1&period;84 gcm<sup>-3<&sol;sup>&period;<&sol;li>&NewLine;<li>&&num;8211&semi; Soluble in water and gives out considerable heat when a solution is formed&period;<&sol;li>&NewLine;<li>&&num;8211&semi; It is hygroscopic – absorbs atmospheric moisture to become wet&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Experiment&colon; To show hygroscopic nature of conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub>&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A small beaker half full of conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub> is weighed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Level of acid in beaker is marked to the outside using gummed paper&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Acid is left exposed to air for a week or so then weighed again and level also noted&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; There is an increase in weight of acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Level of acid in beaker is now above the paper mark&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The increase in weight and size is due to water absorbed form the air by the conc&period; sulphuric &lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This explains why sulphuric &lpar;VI&rpar; acid is used as a <strong>drying agent<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Chemical properties<&sol;h1>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li>&&num;8211&semi; It is a <strong>dehydrating agent<&sol;strong>&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Action on blue hydrated copper &lpar;II&rpar; sulphate &lpar;CuSO<sub>4<&sol;sub>&period;5H<sub>2<&sol;sub>O&rpar; crystals&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A few crystals of hydrated CuSO<sub>4<&sol;sub>&period;5H<sub>2<&sol;sub>O were put in a test tube and enough concentrated sulphuric &lpar;VI&rpar; acid added&comma; to cover them completely&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Blue copper &lpar;II&rpar; sulphate pentahydrate crystals turn to white powder of anhydrous CuSO<sub>4<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"108"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td width&equals;"88">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td> Conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>CuSO<sub>4<&sol;sub>&period;5H<sub>2<&sol;sub>O<sub>&lpar;s&rpar;<&sol;sub>               CuSO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 5H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Blue crystals&rpar;                                                      &lpar;White crystals&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Conc&period;H<sub>2<&sol;sub>SO<sub>4<&sol;sub> has a very strong affinity for water and hence removes water of crystallization from crystals hence dehydrating them&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Action on white sugar &lpar;C<sub>12<&sol;sub>H<sub>22<&sol;sub>O<sub>11<&sol;sub>&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A tablespoonful of sugar is put in an evaporating dish form a beaker and adequate volume of conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub> is added&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Sugar turns form brown then <strong>yellow<&sol;strong> and finally to a <strong>charred black mass<&sol;strong> of <strong>carbon<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A spongy black mass of charcoal &lpar;carbon&rpar; rises almost filling the dish&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Steam is also give off and dish becomes very hot since reaction is exothermic&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"77"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td width&equals;"83">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td> Conc&period; H<sub>2<&sol;sub>SO<sub>4 <&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>C<sub>12<&sol;sub>H<sub>22<&sol;sub>O<sub>11&lpar;s&rpar;<&sol;sub>                       12C<sub>&lpar;s&rpar;<&sol;sub> &plus; 11H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White crystals&rpar;                                       &lpar;Black solid&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanation<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The acid removed from the sugar elements of water &lpar;hydrogen and oxygen&comma; ratio 2&colon;1&rpar; to form water&comma; leaving behind a black charred mass of carbon&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Action on oxalic acid &lpar;ethanedioic acid &lpar;H<sub>2<&sol;sub>C<sub>2<&sol;sub>O<sub>4<&sol;sub>&rpar;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Conc&period; H<sub>2<&sol;sub>SO dehydrates oxalic acid on heating to a mixture of carbon &lpar;II&rpar; oxide and carbon &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"88">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td> Conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<h1>Equation<&sol;h1>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>C<sub>2<&sol;sub>O<sub>4&lpar;s&rpar;<&sol;sub>                         CO<sub>&lpar;g&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;  <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub> acid gives severe skin burns because it removes water and elements of water from skin tissue&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Should the acid spill on skin&comma; it is washed immediately with plenty of <strong>water<&sol;strong> followed with a solution of <strong>sodium hydrogen carbonate<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Holes appear where the acid spills on clothes for same reason&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;d&rpar;&period; Action on alcohols &lpar;alkanols&rpar;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Conc&period; sulphuric &lpar;VI&rpar; acid dehydrates alcohols to corresponding alkenes&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon; dehydration of ethanol to ethene<&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"88">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td> Conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>OH<sub>&lpar;s&rpar;<&sol;sub>                        C<sub>2<&sol;sub>H<sub>4&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Ethanol&rpar;                                                        &lpar;Ethene&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;e&rpar;&period; Action on methanoic acid&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Conc&period; sulphuric &lpar;VI&rpar; acid dehydrates methanoic acid to form CO&period;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"88">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td> Conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>HCOOH<sub>&lpar;s&rpar;<&sol;sub>                       CO<sub>&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Further reactions of conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub> as an oxidizing agent&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Hot concentrated Sulphuric acts as an oxidizing agent in which cases it is reduced to sulphur &lpar;IV&rpar; oxide and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Examples&colon;<&sol;h2>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Reaction with metals&period;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Copper<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Cu<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      CuSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> the copper &lpar;II&rpar; sulphate formed is white since the conc&period; H<sub>2<&sol;sub>SO<sub>4<&sol;sub> further dehydrates the hydrated CuSO<sub>4<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Zinc<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Zn<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      ZnSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                    &lpar;Hot acid&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Zn<sub>&lpar;s&rpar;<&sol;sub> &plus;  H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                       ZnSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                    &lpar;Cold acid&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Lead<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Pb<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      PbSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                    &lpar;Hot&semi; conc&period;&rpar;                                      &lpar;Insoluble&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;  <&sol;strong><&sol;p>&NewLine;<p><strong>&&num;8211&semi; Dilute<&sol;strong> sulphuric &lpar;VI&rpar; acid doesn’t  have any action on copper&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Copper is below hydrogen in reactivity series hence cannot displace it from the acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; This acid &lpar;H<sub>2<&sol;sub>SO<sub>4<&sol;sub>&rpar; has very little effects on lead&comma; and usually the amount of SO<sub>2<&sol;sub> liberated is very little&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Formation of an <strong>insoluble lead sulphate<&sol;strong> layer that forms a protective coating on the metal stopping further reaction&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Reaction with non-metals&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated sulphuric acid <strong>oxidizes <&sol;strong>non-metals such as sulphur and carbon to their <strong>respective oxides<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Equations&colon;<&sol;h2>&NewLine;<h2>Ø  With carbon<&sol;h2>&NewLine;<p>C<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                        CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<h4>Ø  With sulphur<&sol;h4>&NewLine;<p>S<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub>                      3SO<sub>2&lpar;aq&rpar;<&sol;sub> &plus;  2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"8">&NewLine;<li>It is a <strong>less volatile acid<&sol;strong>&semi; and displaces more volatile acids &lpar;refer to lab preparation of HNO<sub>3<&sol;sub>&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Reactions of dilute sulphuric acid<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Reaction with metals<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It reacts with metals <strong>above hydrogen<&sol;strong> in the reactivity series to produce a <strong>salt<&sol;strong> and <strong>hydrogen<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; With potassium and sodium&comma; reaction is <strong>violent<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equations&colon;<&sol;h1>&NewLine;<ul>&NewLine;<li><strong>With magnesium&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                     MgSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With zinc&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Zn<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                      ZnSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Copper is below hydrogen in reactivity series hence can’t displace hydrogen form dilute sulphuric &lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Reaction with carbonates and hydrogen carbonates<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Dilute H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> reacts with carbonates and hydrogen carbonates to produce a salt&comma; carbon &lpar;IV&rpar; oxide and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equations<&sol;h1>&NewLine;<ul>&NewLine;<li><strong>With sodium carbonate&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Na<sub>2<&sol;sub>CO<sub>3&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                      Na<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With calcium hydrogen carbonate&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>CaHCO<sub>3&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                    CaSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Reaction with lead carbonate however stops soon after the reaction&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Reason&colon;<&sol;h2>&NewLine;<p>&&num;8211&semi; Formation of an insoluble coating of the lead &lpar;II&rpar; sulphate on the lead &lpar;II&rpar; carbonate which prevents further contact between acid and carbonate&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The same logic applies for calcium carbonate&period;<&sol;p>&NewLine;<p><u> <&sol;u><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Reaction with oxides and hydroxides<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Reacts to form salt and water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; However&comma; those metal oxides whose sulphates are insoluble react only for a while&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus reaction between dilute sulphuric &lpar;VI&rpar; acid and lead &lpar;II&rpar; oxide stops almost immediately&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This is due to formation of an insoluble layer of lead &lpar;II&rpar; sulphate which effectively prevents further contact between acid and oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equations&colon;<&sol;h1>&NewLine;<ul>&NewLine;<li><strong>With magnesium oxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>MgO<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                  MgSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White&rpar;                                                               &lpar;Colourless solution&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With copper &lpar;II&rpar; oxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                   CuSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Black&rpar;                                                               &lpar;Blue solution&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With sodium hydroxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>NaOH<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                Na<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White&rpar;                                                               &lpar;Colourless solution&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With lead &lpar;II&rpar; oxide&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>PbO<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub>                   PbSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red&rpar;                                                                   &lpar;White ppt&semi; reaction stops immediately&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Uses of sulphuric &lpar;VI&rpar; acid<&sol;h1>&NewLine;<ol>&NewLine;<li>Manufacture of fertilizers&period;<&sol;li>&NewLine;<li>Processing of metal ores&period;<&sol;li>&NewLine;<li>Manufacture of detergents&period;<&sol;li>&NewLine;<li>Manufacture of plastics&period;<&sol;li>&NewLine;<li>Manufacture of dyes and paints&period;<&sol;li>&NewLine;<li>Manufacture of lead and accumulators&period;<&sol;li>&NewLine;<li>Manufacture of polymers&period;<&sol;li>&NewLine;<li>Manufacture of petroleum &lpar;petroleum refinery&rpar;&period;<&sol;li>&NewLine;<li>Drying agent in industrial processes&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Hydrogen sulphide gas<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is a <strong>colourless gas<&sol;strong> with a characteristic “<strong>rotten egg<&sol;strong>” smell&semi; and is usually given out by rotting cabbage and eggs&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Laboratory preparation<&sol;h2>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"100">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>    Warm water<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"64">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"100">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Iron &lpar;II&rpar; sulphide<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"76">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>     Dil&period; HCl<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"304">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>                                           Anhydrous                       Dry H<sub>2<&sol;sub>S gas<&sol;p>&NewLine;<p>Calcium chloride<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"112">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>    Iron &lpar;II&rpar; sulphide<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"64">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Dil HCl<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"88">&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Or<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dilute hydrochloric acid is poured into Iron &lpar;II&rpar; sulphide in a round-bottomed flask&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Resultant gas is passed through U-tube with anhydrous calcium chloride to dry the gas&period;<&sol;p>&NewLine;<p>&&num;8211&semi; This can also be done with <strong>phosphorous &lpar;V&rpar; oxide<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Equation&colon;<&sol;h2>&NewLine;<p>FeS<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                      H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; FeCl<sub>2&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;    <&sol;sub>            H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Collection of gas<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; When dry&comma; the gas is collected by <strong>downward delivery<&sol;strong> because it is <strong>denser<&sol;strong> than air&period;<&sol;p>&NewLine;<p>&&num;8211&semi; When wet is collected over <strong>warm water<&sol;strong> because it is more soluble in cold water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Hydrogen sulphide test&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; When a strip of filter paper soaked in aqueous <strong>lead &lpar;II&rpar; ethanoate<&sol;strong> is put in hydrogen sulphide&comma; the paper turns <strong>black or dark brown<&sol;strong>&period;<&sol;p>&NewLine;<h2><&sol;h2>&NewLine;<h2>Reason&colon;<&sol;h2>&NewLine;<p>&&num;8211&semi; Due to the formation of lead &lpar;II&rpar; sulphide which is black&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Equation<&sol;h2>&NewLine;<p>H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; &lpar;CH<sub>2<&sol;sub>COOH&rpar;<sub>2<&sol;sub>Pb<sub>&lpar;aq&rpar;<&sol;sub>                     PbS<sub>&lpar;s&rpar;<&sol;sub> &plus; 2CH<sub>3<&sol;sub>COOH<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Properties of hydrogen sulphide gas<&sol;strong><&sol;p>&NewLine;<p><strong>Physical properties<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Colourless and very poisonous gas &lpar;similar to hydrogen cyanide&rpar;<&sol;li>&NewLine;<li>Has a <strong>repulsive<&sol;strong> smell &lpar;similar to that of rotten eggs or decaying cabbages&rpar;<&sol;li>&NewLine;<li><strong>Soluble<&sol;strong> in water giving a weak acid &lpar;only slightly ionized&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>H2<sub>S&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                          H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Then&colon;<&sol;h2>&NewLine;<p>H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;<&sol;sub>                                     H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; HS<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                         2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The acid is <strong>dibasic<&sol;strong> hence forms hydrogen sulphides&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub>                         NaHS<sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;  <&sol;strong><&sol;p>&NewLine;<p><strong>&&num;8211&semi; <&sol;strong>Potassium hydroxide reacts similarly like sodium hydroxide&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Chemical properties <&sol;strong><&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Combustion<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Burns in a <strong>blue flame<&sol;strong> in a limited supply of oxygen &lpar;air&rpar; forming a <strong>yellow deposit<&sol;strong> of sulphur and steam&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                      2SO<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; In plentiful supply &lpar;excess&rpar; of Oxygen &lpar;air&rpar; it burns with a blue flame forming SO<sub>2<&sol;sub> and steam&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus;3O<sub>2&lpar;g&rpar;<&sol;sub>       2S<sub>&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> It is a reducing agent<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It supplies electrons which are accepted by the oxidizing agent and forms sulphur&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;<&sol;sub> &plus; 2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>Then<&sol;h2>&NewLine;<p>S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   S<sub>&lpar;s&rpar;<&sol;sub> &plus; 2e<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lbrack;O&rsqb;                     S<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>&semi; in terms of addition of oxygen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Examples<&sol;h1>&NewLine;<p>&lpar;i&rpar;&period; With acidified K<sub>2<&sol;sub>Cr<sub>2<&sol;sub>O<sub>7<&sol;sub> solution &lpar;potassium dichromate VI&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"23"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Cr<sub>2<&sol;sub>O<sub>7<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; 8H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                          2Cr<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 7H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 3S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Orange&rpar;                                                                                                        &lpar;Green&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>                                                                                                         Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observation<&sol;strong>&colon; The orange solution turns green and H<sub>2<&sol;sub>S oxidized to <strong>yellow sulphur&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Potassium manganate &lpar;VII&rpar; &lpar;KMnO<sub>4<&sol;sub>&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"23"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2MnO<sub>4<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 5H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; 6H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                         2Mn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 8H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 5S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Purple&rpar;                                                                                                         &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>                                                                                                         Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observation<&sol;strong>&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; The Purple solution turns colourless<&sol;p>&NewLine;<p>&&num;8211&semi; Manganate &lpar;VII&rpar; ions are reduced to manganate &lpar;II&rpar; ions&semi; H<sub>2<&sol;sub>S oxidized to <strong>yellow sulphur&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Action on Iron &lpar;III&rpar; chloride ions<&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>FeCl<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;               <&sol;sub>                        2FeCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"23"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Fe<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;g&rpar;<&sol;sub>                                                     Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 3S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Brown&rpar;                                                                                                         &lpar;Pale green&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>                                                         Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observation<&sol;strong>&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; The brown solution turns pale green&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The Fe<sup>3&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> are reduced to Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>&semi; while the S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> are oxidized to yellow sulphur&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Action with Conc&period; HNO<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2HNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;           <&sol;sub>                        2H<sub>2<&sol;sub>O<sub>&lpar;aq&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar; <&sol;sub>&plus; Heat<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"0"><&sol;td>&NewLine;<td width&equals;"2"><&sol;td>&NewLine;<td width&equals;"58"><&sol;td>&NewLine;<td width&equals;"295"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td colspan&equals;"2"><&sol;td>&NewLine;<td rowspan&equals;"3"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2NO<sub>3<&sol;sub><sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                   2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2NO<sub>2&lpar;g&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar; <&sol;sub>&plus; Heat<&sol;p>&NewLine;<p><strong><em>&lpar;Colourless solution&rpar;                                                                                                              &lpar;Brown&rpar;          &lpar;Yellow&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>                                                                                                         Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Observation<&sol;strong>&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; Evolution of brown fumes&semi; and deposits of a yellow solid&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; HNO<sub>3&lpar;aq&rpar;<&sol;sub> is reduced to <strong>brown NO<sub>2&lpar;g&rpar;<&sol;sub><&sol;strong>&semi; while S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> are oxidized to <strong>yellow sulphur<&sol;strong>&semi;<&sol;p>&NewLine;<p><strong>Note&colon; <&sol;strong>The solution also contains H<sub>2<&sol;sub>SO<sub>4<&sol;sub> produced by the reaction&colon;<&sol;p>&NewLine;<p><strong><em>Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2HNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;           <&sol;sub>                      H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 8NO<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 4H<sub>2<&sol;sub>O<sub>&lpar;l&rpar; <&sol;sub>&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"95"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Action of air on H<sub>2<&sol;sub>S<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The gas is dissolved in distilled water in a beaker and exposed to air&semi; after a few days&comma; <strong>a<&sol;strong> <strong>white disposal<&sol;strong> is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub>                2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vi&rpar;&period; Action with concentrated sulphuric &lpar;VI&rpar; acid&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 3H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;         <&sol;sub>                      4S<sub>&lpar;s&rpar;<&sol;sub> &plus; 4H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"95"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vii&rpar;&period; Action with halogen elements<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Red-brown bromine water<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Red-brown bromine water is <strong>reduced<&sol;strong> forming colourless hydrogen bromide &lpar;Hydrobromic acid&rpar; and <strong>yellow <&sol;strong>deposits &lpar;suspension&rpar; of sulphur&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Br<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar; <&sol;sub>                        2HBr<sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red-brown&rpar;                                                       &lpar;Colourless&rpar;    &lpar;Yellow suspension&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;viii&rpar;&period; Action with hydrogen peroxide&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Reduction<&sol;em><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>H<sub>2<&sol;sub>O<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar; <&sol;sub>                     2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Red-brown&rpar;                                                       &lpar;Colourless&rpar;    &lpar;Yellow suspension&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Oxidation<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h1>Preparation of metallic sulphides<&sol;h1>&NewLine;<p>&&num;8211&semi; Hydrogen sulphide reacts with metal ions in solution to form precipitates of metal sulphides&semi; majority of which are black in colour&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The gas is bubbled through solutions of the following salts&colon; Pb &lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub>&comma; CuSO<sub>4<&sol;sub>&comma; FeSO<sub>4<&sol;sub> etc&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations and equations<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Lead ions&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar; <&sol;sub>                        PbS<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HNO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Colourless&rpar;                                                                              &lpar;Black&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Pb<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                        PbS<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Copper &lpar;II&rpar; ions&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>CuSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;         <&sol;sub>                CuS<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Blue&rpar;                                                                          &lpar;Black&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Cu<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                       CuS<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Iron &lpar;II&rpar; ions&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>FeSO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;          <&sol;sub>                        FeS<sub>&lpar;s&rpar;<&sol;sub> &plus; H2SO<sub>4&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Pal green&rpar;                                                                                &lpar;Black&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Fe<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                      FeS<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Zinc ions&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Zn&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar; <&sol;sub>                        ZnS<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HNO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Colourless&rpar;                                                                              &lpar;Black&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                     ZnS<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Most metal sulphides are <strong>insoluble<&sol;strong> in water except those of sodium&comma; potassium and ammonium&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Sulphites<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Are compounds of the sulphite radical &lpar;SO<sub>3<&sol;sub><sup>2-<&sol;sup>&rpar; and a metallic or ammonium cation<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Effects of heat<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; They decompose on heating&comma; forming SO<sub>2<&sol;sub>&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong><&sol;p>&NewLine;<p>CuSO<sub>3&lpar;s&rpar;<&sol;sub>       <sup>Heat<&sol;sup>         CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Test for sulphites<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>&lpar;i&rpar;&period; Procedure<&sol;h1>&NewLine;<p>&&num;8211&semi; To 2cm<sup>3<&sol;sup> of the test solution&comma; ad 2 cm<sup>3<&sol;sup> of BaCl<sub>2<&sol;sub> or Ba &lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub>&semi; i&period;e&period; addition of barium ions&period;<&sol;p>&NewLine;<p>&&num;8211&semi; To the mixture add 2 cm<sup>3<&sol;sup> of dilute HCl or HNO<sub>3<&sol;sub>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2>&lpar;ii&rpar;&period; Observation<&sol;h2>&NewLine;<p>&&num;8211&semi; A <strong>white precipitate<&sol;strong> &lpar;BaSO<sub>3<&sol;sub>&rpar; is formed which <strong>dissolves on addition of acid<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Production of a colourless gas that turns filter paper soaked in acidified <strong>orange<&sol;strong> potassium dichromate &lpar;VI&rpar; to <strong>green&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>&lpar;iii&rpar;&period; Explanations<&sol;h1>&NewLine;<p>&&num;8211&semi; Only BaSO<sub>3<&sol;sub>&semi; BaCO<sub>3<&sol;sub> and BaSO<sub>4<&sol;sub> form white precipitates&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The precipitates of BaSO<sub>3<&sol;sub> and BaCO<sub>3<&sol;sub> dissolve on addition of dilute acids&semi; unlike BaSO<sub>4<&sol;sub>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; BaSO<sub>3<&sol;sub> produces SO<sub>2&lpar;g&rpar;<&sol;sub> as it dissolves on addition of a dilute acid&semi; SO<sub>2<&sol;sub> turns orange acidified potassium dichromate &lpar;VI&rpar; to green&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; BaCO<sub>3<&sol;sub> of the other hand dissolves in dilute acids producing CO<sub>2<&sol;sub>&semi; which has no effect on K<sub>2<&sol;sub>Cr<sub>2<&sol;sub>O<sub>7<&sol;sub>&semi; but forms a white precipitate in lime water&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equations&colon;<&sol;h1>&NewLine;<ul>&NewLine;<li><strong>On addition of Ba<sup>2&plus;<&sol;sup>&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;            <&sol;sub>            BaSO<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White precipitate&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>On addition of dilute HCl&lpar;aq&rpar;&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>BaSO<sub>3&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                     BaCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;White precipitate&rpar;                                                                              &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>BaSO<sub>3&lpar;s&rpar;<&sol;sub> &plus; 2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                        Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h1>Sulphates<&sol;h1>&NewLine;<p>&&num;8211&semi; Are compounds of the sulphate radical &lpar;SO<sub>4<&sol;sub><sup>2-<&sol;sup>&rpar; and a metallic or ammonium cation&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Effects of heat&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Decompose on heating and liberate SO<sub>2<&sol;sub> and SO<sub>3 <&sol;sub>or SO<sub>3 <&sol;sub>alone&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; However quite a number of sulphates do not decompose on heating&semi; and thus require <strong>very strong heating<&sol;strong> in order to decompose&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>2FeSO<sub>4&lpar;s&rpar;<&sol;sub>         <sup>Heat<&sol;sup>       Fe<sub>2<&sol;sub>O<sub>3&lpar;s&rpar;<&sol;sub> &plus; SO<sub>2&lpar;g&rpar;<&sol;sub> &plus; SO<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Pale green&rpar;                                      &lpar;Brown&rpar;            &lpar;Colourless gases&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>CuSO<sub>4&lpar;s&rpar;<&sol;sub>          <sup>Heat<&sol;sup>       CuO<sub>&lpar;s&rpar;<&sol;sub> &plus; SO<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>&lpar;Blue&rpar;                                                 &lpar;Black&rpar;         &lpar;Colourless&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<h1>Action of acids<&sol;h1>&NewLine;<h1>Test for sulphates<&sol;h1>&NewLine;<p>&&num;8211&semi; To about 2 cm<sup>3<&sol;sup> of the test solution&comma; 2 cm<sup>3<&sol;sup> of BaCl<sub>2<&sol;sub> or Ba &lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub> solution is added&period;<&sol;p>&NewLine;<p>&&num;8211&semi; To the mixture&comma; 2 cm<sub>3<&sol;sub> of dilute HCl or HNO<sub>3<&sol;sub> is added&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Observation<&sol;h1>&NewLine;<p>&&num;8211&semi; A white precipitate is formed when Ba &lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub> is added&semi; which is insoluble in excess acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanations&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Only BaSO<sub>3<&sol;sub>&semi; BaCO<sub>3<&sol;sub> and BaSO<sub>4<&sol;sub> form white precipitates&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The precipitates of BaSO<sub>3<&sol;sub> and BaCO<sub>3<&sol;sub> dissolve on addition of dilute acids&semi; unlike BaSO<sub>4<&sol;sub>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus the white precipitate insoluble in dilute HCl or HNO<sub>3<&sol;sub> could only be a <strong>sulphate<&sol;strong>&semi; in this case barium sulphate&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Equations&colon;<&sol;h1>&NewLine;<ul>&NewLine;<li><strong>On addition of Ba<sup>2&plus;<&sol;sup>&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;            <&sol;sub>            BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>                                                                                &lpar;white precipitate&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>On addition of dilute acid&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>BaSO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                     BaSO<sub>4&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>&semi; i&period;e&period; no effect&semi;<&sol;p>&NewLine;<p><strong><em>&lpar;White precipitate&rpar;                                                                    &lpar;White precipitate&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Pollution by sulphur compounds&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Main pollutants are <strong>sulphur &lpar;IV&rpar; Oxide<&sol;strong> and <strong>hydrogen sulphide&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Sulphur &lpar;IV&rpar; oxide&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; SO<sub>2<&sol;sub> is emitted when sulphur-containing fuels are burnt&semi; during extraction of metals like copper and in manufacture of sulphuric &lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; SO<sub>2<&sol;sub> is oxidized to SO<sub>3<&sol;sub>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; SO<sub>3<&sol;sub> reacts with water in atmosphere to form sulphuric &lpar;VI&rpar; acid which comes down as acid rain or acid fog&period;<&sol;p>&NewLine;<p>Acid rain &lpar;fog&rpar; has environmental effects&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Leaching of minerals in soil&semi;<&sol;li>&NewLine;<li>Erosion of stone work on buildings&semi;<&sol;li>&NewLine;<li>Corrosion of metallic structures&semi;<&sol;li>&NewLine;<li>Irritation of respiratory systems thus worsening respiratory illnesses&semi;<&sol;li>&NewLine;<li>Death of plants as a result of defoliation &lpar;falling of leaves&rpar;&semi;<&sol;li>&NewLine;<li>Destruction of aquatic life in acidified lakes&semi;<&sol;li>&NewLine;<li>Stunted plant growth due to chlorosis&semi;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;b&rpar;&period; H<sub>2<&sol;sub>S is very poisonous&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>UNIT 5&colon; CHLORINE AND ITS COMPOUNDS&period;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Unit Checklist&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>About chlorine&period;<&sol;li>&NewLine;<li>Preparation of chlorine&period;<&sol;li>&NewLine;<li>Properties of chlorine&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Colour and smell<&sol;li>&NewLine;<li>Solubility in water<&sol;li>&NewLine;<li>Action on litmus paper<&sol;li>&NewLine;<li>Bleaching action<&sol;li>&NewLine;<li>Action on hot metals<&sol;li>&NewLine;<li>Reaction with non-metals<&sol;li>&NewLine;<li>Oxidation reactions<&sol;li>&NewLine;<li>Reaction with alkalis<&sol;li>&NewLine;<li>Effect of sunlight on chlorine water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"4">&NewLine;<li>Industrial manufacture of chlorine &lpar;The mercury cathode cell&rpar;<&sol;li>&NewLine;<li>Uses of chlorine and its compounds<&sol;li>&NewLine;<li>Hydrogen chloride gas<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Preparation<&sol;li>&NewLine;<li>Properties<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"7">&NewLine;<li>Test for chlorides&period;<&sol;li>&NewLine;<li>Hydrochloric acid<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Large scale manufacture<&sol;li>&NewLine;<li>Uses of hydrochloric acid<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"9">&NewLine;<li>Environmental pollution of chlorine and its compounds<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Introduction&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine is a molecular non-metallic element made up of diatomic molecules&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Its electron arrangement is 2&period;8&period;7 and it belongs to the halogen family&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Preparation of chlorine&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> It is usually prepared by oxidation of concentrated hydrochloric acid by removal of hydrogen&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lbrack;O&rsqb;                Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&&num;8211&semi; The &lbrack;O&rsqb; is from a substance containing oxygen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Preparation of chlorine from MnO<sub>2<&sol;sub> and HCl&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Conditions&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Heating&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Presence of an oxidizing agent&semi; in this case it is manganese &lpar;IV&rpar; oxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Hydrochloric acid is reacted with manganese &lpar;IV&rpar; oxide &lpar;dropwise&rpar;&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>MnO<sub>2&lpar;s&rpar;<&sol;sub> &plus; 4HCl<sub>&lpar;aq&rpar;<&sol;sub>     <sup>Heat<&sol;sup>        MnCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Manganese &lpar;IV&rpar; oxide oxidizes hydrochloric acid by removing hydrogen resulting into chlorine&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The manganese &lpar;IV&rpar; oxide is reduced to water and manganese chloride&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The resultant chlorine gas is passed through a bottle containing water&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To remove hydrogen chloride fumes &lpar;gas&rpar; which is very soluble in water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Next it is passed through concentrated sulphuric acid or anhydrous calcium chloride&semi; to dry the gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Collection&colon;<&sol;strong><&sol;p>&NewLine;<p>&lpar;a&rpar;&period; Wet chlorine is collected over brine &lpar;saturated sodium chloride solution&rpar; or hot water&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It does not dissolve in brine and is less soluble in water<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;b&rpar;&period; Dry chlorine is collected by downward delivery &lpar;upward displacement of air&rpar;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It is denser than air &lpar;2&period;5 times&rpar;&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine may also be dried by adding calcium chloride to the jar of chlorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;c&rpar;&period; The first bottle must contain water and the second concentrated sulphuric acid&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; If the gas is first passed through concentrated sulphuric acid in the first bottle then to the water&semi; it will be made wet again&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties of chlorine gas&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Colour and smell&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Caution&colon;<&sol;strong> Chlorine is <strong>very poisonous<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is a green-yellow gas with an irritating pungent smell that attacks the nose and the lungs&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is 2&period;5 times denser than air&comma; hence can be collected by downward delivery&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Solubility in water&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It is fairly soluble in water forming green-yellow chlorine water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                           HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; HOCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine water is composed of two acids&semi; chloric &lpar;I&rpar; acid &lpar;hypochlorous acid&rpar; and hydrochloric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Action on litmus paper&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Moist chlorine turns litmus paper red then bleaches it&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dry chlorine turns damp blue litmus paper red then bleaches it&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Moist chlorine bleaches red litmus paper&semi; dry chlorine bleaches damp red litmus paper&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dry chlorine has no effect on dry litmus paper&period;<&sol;p>&NewLine;<p><strong>Reasons&colon;<&sol;strong><&sol;p>&NewLine;<p>&lpar;i&rpar;&period; In presence of moisture chlorine forms chlorine water which is acidic and hence turns blue litmus paper red&period;<&sol;p>&NewLine;<p>&lpar;ii&rpar;&period; Hypochlorous acid in the chlorine water is an oxidizing agent&semi; thus adds oxygen &lpar;oxidizes&rpar; to the colour of most dyes&semi; hence bleaching it&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                           HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; HOCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"191"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Acidic solution<&sol;p>&NewLine;<p>Then&colon;<&sol;p>&NewLine;<p>Dye &plus; HOCl<sub>&lpar;aq&rpar;<&sol;sub>                      HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lbrace;Dye &plus; &lbrack;O&rsqb;&rcub;<&sol;p>&NewLine;<p>Coloured                                                                                              Colourless<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Bleaching action&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Moist chlorine bleaches dyes but not printers ink which is made of <strong>carbon<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The colour change is due to oxidation by hypochlorous acid&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                           HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; HOCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Acidic solution<&sol;p>&NewLine;<p>Then&colon;<&sol;p>&NewLine;<p>Dye &plus; HOCl<sub>&lpar;aq&rpar;<&sol;sub>                      HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lbrace;Dye &plus; &lbrack;O&rsqb;&rcub;<&sol;p>&NewLine;<p>Coloured                                                                                            Colourless<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong> Action on a burning splint&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; The gas <strong>put out<&sol;strong> a glowing splint&period; It does not burn&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Action on hot metals&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;a&rpar;&period; Preparation of iron &lpar;III&rpar; chloride&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Precaution&period; <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Experiment should be done in a fume cupboard or in the open&period;<&sol;p>&NewLine;<p>Reason&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine gas is poisonous and will thus be harmful to the human body&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Dry chlorine gas is passed over iron wool as per the diagram&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Conditions&period;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Chlorine gas has to be dry &lpar;done by the anhydrous calcium chloride in the U-tube&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>To prevent <strong>hydration<&sol;strong> hence <strong>oxidation<&sol;strong> of iron &lpar;which will then form Fe<sub>2<&sol;sub>O<sub>3<&sol;sub>&period;5H<sub>2<&sol;sub>O&rpar; hence preventing reaction between iron and chlorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Iron metal must be <strong>hot<&sol;strong>&semi; and this is done by heating&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Reason&colon; <&sol;strong><&sol;p>&NewLine;<p>To provide <strong>activation energy<&sol;strong> i&period;e&period; the minimum kinetic energy which the reactants must have to form products&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Anhydrous calcium chloride&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; In the U-tube&semi; to <strong>dry<&sol;strong> the chlorine gas&period;<&sol;p>&NewLine;<p>&&num;8211&semi; In the thistle funnel&semi; to prevent <strong>atmospheric water vapour<&sol;strong> &lpar;moisture&rpar; from getting into the apparatus and hence reacting with iron &lpar;III&rpar; chloride&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Iron metal glows red-hot&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Red brown fumes &lpar;FeCl<sub>3&lpar;g&rpar;<&sol;sub>&rpar; are formed in the combustion tube&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A black solid &lpar;FeCl<sub>3&lpar;s&rpar;<&sol;sub>&rpar; is collected in the flask&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Iron &lpar;III&rpar; chloride cannot be easily collected in the combustion tube&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It sublimes when heated and hence the hotter combustion tube causes it to sublime and its vapour is collected on the cooler parts of the flask&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vi&rpar;&period; Reaction equation&period;<&sol;strong><&sol;p>&NewLine;<p>2Fe<sub>&lpar;s&rpar;<&sol;sub> &plus; 3Cl<sub>2&lpar;g&rpar;<&sol;sub>                  2FeCl<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vii&rpar;&period; Conclusion&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Iron &lpar;III&rpar; chloride sublimes on heating&semi; the black solid changes to red-brown fumes on heating&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>FeCl<sub>3&lpar;s&rpar;<&sol;sub>                                  FeCl<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&lpar;black&rpar;                                        &lpar;Red-brown&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Aluminium chloride&period;<&sol;strong><&sol;p>&NewLine;<p>2Al<sub>&lpar;s&rpar;<&sol;sub> &plus; 3Cl<sub>2&lpar;g&rpar;<&sol;sub>             2FeCl<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>2Al<sub>&lpar;s&rpar;<&sol;sub> &plus; 3Cl<sub>2&lpar;g&rpar;<&sol;sub>             Al<sub>2<&sol;sub>Cl<sub>6&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Aluminium chloride also <strong>sublimes<&sol;strong> on heating&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>AlCl<sub>3&lpar;s&rpar;<&sol;sub>                                  AlCl<sub>3&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&lpar;White&rpar;                                        &lpar;White&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Reaction with burning magnesium&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Burning magnesium is lowered into a gar jar of chlorine gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The magnesium continues to <strong>burn<&sol;strong> with a <strong>bright blinding flame<&sol;strong>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Formation of <strong>white fumes<&sol;strong> &lpar;MgCl<sub>2<&sol;sub>&rpar;&semi; which cools into a white powder&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;      <&sol;sub>            MgCl<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Generally chlorine reacts with most metals when hot top form corresponding chlorides&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Where a metal forms two chlorides when it reacts with chlorine&comma; the higher chloride is usually formed&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>The higher chloride is <strong>stable&period;<&sol;strong> This explains why reactions of chlorine with iron results into iron &lpar;III&rpar; chloride and not iron &lpar;II&rpar; chloride&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"7">&NewLine;<li><strong> Reaction with non-metals&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It reacts with hot metals&semi; forming covalent molecular compounds&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Reaction with phosphorus&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A piece of warm phosphorus is lowered into a gas jar of chlorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Phosphorus begins to <strong>smoulder<&sol;strong> and then ignites spontaneously&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Evolution of <strong>white fumes<&sol;strong> &lpar;PbCl<sub>3<&sol;sub> and PCl<sub>5<&sol;sub>&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanation&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine reacts with warm dry phosphorus to form white fumes of phosphorus &lpar;III&rpar; and &lpar;V&rpar; chlorides&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>P<sub>4&lpar;s&rpar;<&sol;sub> &plus; 6Cl<sub>2&lpar;g&rpar;      <&sol;sub>            4PCl<sub>3&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&lpar;With limited chlorine&rpar;<&sol;p>&NewLine;<p>P<sub>4&lpar;s&rpar;<&sol;sub> &plus; 10Cl<sub>2&lpar;g&rpar;<&sol;sub>              4PCl<sub>5&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&lpar;With excess chlorine&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Reaction with hydrogen&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Conditions&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Heating or <strong>presence of light<&sol;strong>&semi; since chlorine and hydrogen do not react with each other at room temperature&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Precaution&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The experiment is performed in a <strong>fume chamber<&sol;strong> &lpar;cupboard&rpar;&semi; since the reaction is <strong>explosive<&sol;strong>&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine gas is mixed with hydrogen gas and the mixture heated or exposed to direct light&semi; then aqueous ammonia brought near the mouth of the jar&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>White fumes<&sol;strong> at the mouth of the jar&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine reacts explosively with hydrogen to form hydrogen chloride gas&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;    <&sol;sub><sup>Heat&sol; Light<&sol;sup>     2HCl<sub>&lpar;g&rpar;&period;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The hydrogen chloride gas diffuses upwards and reacts with ammonia at the mouth of the test tube to form white fumes of ammonium chloride&semi; NH<sub>4<&sol;sub>Cl&period;<&sol;p>&NewLine;<p>Equation&colon;<&sol;p>&NewLine;<p>HCl<sub>&lpar;g&rpar;<&sol;sub> &plus; NH<sub>3&lpar;g&rpar;<&sol;sub>       NH<sub>4<&sol;sub>Cl<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>White fumes&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"8">&NewLine;<li><strong> Chlorine as an oxidizing agent&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Chlorine is a strong <strong>oxidizing agent<&sol;strong> and oxidizes many ions&comma; by readily accepting electrons&period;<&sol;p>&NewLine;<p>&&num;8211&semi; During the process&comma; chlorine itself undergoes reduction&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Reaction with hydrogen sulphide gas&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A gas jar full of chlorine gas is inverted into another containing hydrogen sulphide gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Yellow<&sol;strong> deposits &lpar;of sulphur&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Misty<&sol;strong> fumes &lpar;hydrogen chloride gas&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine oxidizes hydrogen sulphide gas to sulphur solid&comma; while itself is reduced to hydrogen chloride gas&period;<&sol;p>&NewLine;<p><strong>Equation&colon; <&sol;strong>             <strong><sub>Oxidation<&sol;sub><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"59"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;g&rpar;<&sol;sub>               2HCl<sub>&lpar;g&rpar; <&sol;sub>&plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><sup>Reduction<&sol;sup><&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Conditions&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; At least one of the gases must be <strong>moist<&sol;strong>&semi; they do not react with each other in absence of moisture&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; In absence of moisture both gases are still in molecular form and hence cannot react&semi; water facilitates their ionization hence ability to react&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; If aqueous hydrogen sulphide is used&comma; then sulphur forms as a <strong>yellow suspension<&sol;strong> on the acidic solution&period;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p><strong><em>Stoichiometric&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>S<sub>&lpar;aq&rpar;<&sol;sub>             2HCl<sub>&lpar;aq&rpar; <&sol;sub>&plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Ionic&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; S<sup>2-<&sol;sup><sub>&lpar;g&rpar;<&sol;sub>                 2Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;g&rpar; <&sol;sub>&plus; S<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Reaction with sodium sulphite&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine gas is bubbled through sodium sulphate in a beaker&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Resulting solution is then divided into two portions&period;<&sol;p>&NewLine;<p>&&num;8211&semi; To the first portion&comma; drops of dilute nitric acid are added followed by few drops of barium nitrate solution&period;<&sol;p>&NewLine;<p>&&num;8211&semi; To the second portion&comma; few drops of lead &lpar;II&rpar; nitrate are added and the mixture warmed then cooled&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>1<sup>st<&sol;sup> portion<&sol;strong>&colon; <strong>White precipitate<&sol;strong> formed indicating presence of SO<sub>4<&sol;sub><sup>2-<&sol;sup>&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The white precipitate indicate presence of SO<sub>4<&sol;sub><sup>2-<&sol;sup>&semi; the precipitate is barium sulphate Ba&lpar;SO<sub>4<&sol;sub>&rpar;<sub>2<&sol;sub>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine oxidizes SO<sub>3<&sol;sub><sup>2-<&sol;sup> in Na<sub>2<&sol;sub>SO<sub>3<&sol;sub> to SO<sub>4<&sol;sub><sup>2-<&sol;sup> while itself is reduced to chloride ions&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; Na<sub>2<&sol;sub>SO<sub>3&lpar;aq&rpar;<&sol;sub>                  Na<sub>2<&sol;sub>SO<sub>4&lpar;aq&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;    <&sol;sub>                    SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus;<sup>  <&sol;sup>2H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; On adding barium nitrate &lpar;<strong>Ba&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub><&sol;strong>&rpar;&semi; the <strong>Ba<sup>2&plus;<&sol;sup><&sol;strong> ions react with the <strong>SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;strong><sup>  <&sol;sup>to form insoluble <strong>BaSO<sub>4<&sol;sub><&sol;strong>&semi; the white precipitate&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Ba<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub><sup>  <&sol;sup>&plus;  SO<sub>4<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;                              <&sol;sub>BaSO<sub>4&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&lpar;White precipitate&rpar;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The solution is first acidified &lpar;with HNO<sub>3<&sol;sub>&rpar; before addition of <strong>Ba&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2<&sol;sub> <&sol;strong>to prevent <strong>precipitation<&sol;strong> of<strong> BaSO<sub>3&lpar;s&rpar; <&sol;sub>and BaCO<sub>3&lpar;s&rpar;&period;<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>2<sup>nd<&sol;sup> portion&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Formation of a white precipitate on addition of <strong>Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2 <&sol;sub><&sol;strong>solution&period;<&sol;p>&NewLine;<p>&&num;8211&semi; On warming the white precipitate dissolves then recrystalizes back on cooling&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The white precipitate shows presence of either Cl<sup>&&num;8211&semi;<&sol;sup>&semi; SO<sub>3<&sol;sub><sup>2- <&sol;sup>or<sup>  <&sol;sup>SO<sub>4<&sol;sub><sup>2-<&sol;sup><&sol;p>&NewLine;<p>&&num;8211&semi; However the fact that it dissolves on warming confirms the presence of Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> and not SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> and SO<sub>3<&sol;sub><sup>2-<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Pb<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar; <&sol;sub><sup>  <&sol;sup>&plus;  Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;                                     <&sol;sub>PbCl<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&lpar;White precipitate soluble on warming&rpar;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Reaction with ammonia&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>Chlorine gas is bubbled through aqueous ammonia&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Evolution of <strong>white fumes<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanation&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine gas oxidizes ammonia to nitrogen&comma; while is itself reduced to white fumes of ammonium chloride&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon; <&sol;strong>             <strong><sub>Reduction<&sol;sub><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"83"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>8NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; 3Cl<sub>2&lpar;g&rpar;<&sol;sub>                      6NH<sub>4<&sol;sub>Cl<sub>&lpar;g&rpar; <&sol;sub>&plus; N<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><sup>Oxidation<&sol;sup><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;d&rpar;&period; Displacement reactions with other halogens&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine is bubbled through aqueous solutions of fluoride&comma; bromide and iodide ions contained in separate test tubes&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations and explanations&colon;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>With fluoride ions&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; No observable change or no reaction&semi; because chlorine is a <strong>weaker oxidizing agent<&sol;strong> than fluorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>With bromide ions&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; If potassium bromide was used&comma; the colourless solution turns red-brown&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine has a higher tendency to <strong>gain electrons<&sol;strong> than bromine&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It readily oxidizes bromide ions &lpar;in KBr&rpar; to form potassium chloride and bromine which immediately dissolves to make the solution <strong>red-brown<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon; <&sol;strong>             <strong><sub>Reduction<&sol;sub><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"78"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2KBr<sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub>                       2KCl<sub>&lpar;aq&rpar; <&sol;sub>&plus; Br<sub>2&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"11"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><sup>Oxidation                                         <&sol;sup><&sol;strong><strong><sup>Red brown<&sol;sup><&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>2Br<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub>                              2Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Br<sub>2&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>With iodide ions&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Using potassium iodide the colourless solution would turn black&period;<&sol;p>&NewLine;<p>Reason&colon;<&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine has a higher tendency to gain electrons that iodine&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It readily oxidizes the I<sup>&&num;8211&semi;<&sol;sup> &lpar;in KI&rpar; to form iodine and potassium chloride&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Iodine solid in the resulting solution makes it black&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon; <&sol;strong>         <strong><sub>Reduction<&sol;sub><&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"74"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>2KI<sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub>             2KCl<sub>&lpar;aq&rpar; <&sol;sub>&plus; I<sub>2&lpar;l&rpar; &lpar;black&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"16"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><sup>Oxidation                                                 <&sol;sup><&sol;strong><&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>2I<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub>                    2l<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Br<sub>2&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"9">&NewLine;<li><strong> Reaction with alkalis&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;a&rpar;&period; Reaction with sodium hydroxide solution&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Bubble chlorine slowly through cold dilute sodium hydroxide solution&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Dip litmus paper&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Litmus paper is bleached&semi; the product has the colour and smell of chlorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine dissolves in sodium hydroxide to form a pale yellow solution of sodium chlorate &lpar;I&rpar; or sodium hypochlorite &lpar;NaClO&rpar;&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The sodium chlorate &lpar;I&rpar; bleaches dyes by oxidation&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub>&plus; 2NaOH<sub>&lpar;l&rpar;<&sol;sub>                      NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; NaClO<sub>&lpar;aq&rpar; <&sol;sub>&plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"191"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Pale yellow solution<&sol;p>&NewLine;<p><strong>Bleaching action of NaClO&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The NaClO donates <strong>oxygen<&sol;strong> to the dye making it <strong>colourless<&sol;strong>&semi; and thus it bleaches by <strong>oxidation&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Dye &plus; NaClO<sub>&lpar;aq&rpar;<&sol;sub>                     NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; &lbrace;Dye &plus; &lbrack;O&rsqb;&rcub;<&sol;p>&NewLine;<p>Coloured                                                                                                Colourless<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>With hot concentrated sodium hydroxide&comma; the chlorine forms <strong>sodium chlorate &lpar;III&rpar;&semi; NaClO<sub>3<&sol;sub><&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>3Cl<sub>2&lpar;g&rpar;<&sol;sub>&plus; 6NaOH<sub>&lpar;l&rpar;<&sol;sub>                          5NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; NaClO<sub>3&lpar;aq&rpar; <&sol;sub>&plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Reaction with potassium hydroxide<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Follows the trend of sodium&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Reaction with slaked lime &lbrace;Ca&lpar;OH&rpar;<sub>2&lpar;s&rpar;<&sol;sub>&rcub;<&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub>&plus; Ca&lpar;OH&rpar;<sub>2&lpar;l&rpar;<&sol;sub>                        CaOCl<sub>2&lpar;aq&rpar; <&sol;sub>&plus; 3H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>Calcium chlorate I<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Bleaching powder&comma; CaOCl<sub>2<&sol;sub> always smells of strongly of chlorine because it reacts with carbon &lpar;IV&rpar; oxide present in the atmosphere to form chlorine&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>CaOCl<sub>2&lpar;s&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub>                          CaCO<sub>3&lpar;s&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"10">&NewLine;<li><strong> Effects of chlorine gas on&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;a&rpar;&period; A burning candle&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A burning candle is lowered into a gas jar of chlorine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; It burns with a small&comma; <strong>red<&sol;strong> and <strong>sooty flame<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Wax &lpar;in candles&rpar; consists of mainly hydrocarbons&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The hydrogen of the hydrocarbon reacts with chlorine forming hydrogen chloride while leaving behind carbon&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; warm turpentine&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A little turpentine is warmed in a dish and a filter paper soaked &lpar;dipped&rpar; in it&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The filter paper is then dropped into a gas jar of chlorine&period;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; There is a <strong>red flash<&sol;strong> accompanied by a <strong>violent action<&sol;strong> whilst a <strong>black cloud<&sol;strong> of solid particles form&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Conclusion&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Black cloud of slid is carbon&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Turpentine &lpar;a hydrocarbon&rpar; consists of hydrogen and carbon combined together&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The chlorine combines with hydrogen and leaves the black carbon behind&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>C<sub>10<&sol;sub>H<sub>16&lpar;l&rpar;<&sol;sub> &plus; 8Cl<sub>2&lpar;g&rpar;<&sol;sub>                     16HCl<sub>&lpar;g&rpar;<&sol;sub> &plus; 10C<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"11">&NewLine;<li><strong> Effects of sunlight on chlorine water&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>&lpar;i&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine water is made by dissolving the gas in water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A long tube filled with chlorine water is inverted over a beaker containing water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is then exposed to sunlight &lpar;bright light&rpar; as shown below&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; After sometime a gas collects in the tube and on applying a glowing splint&comma; the splint is rekindles showing that the gas collected is oxygen&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Explanation&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Chlorine water has two components&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                           HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; HOCl<sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The HOCl being unstable will dissolve on exposure to sunlight&comma; giving out oxygen&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2HOCl<sub>&lpar;aq&rpar;<&sol;sub>                       2HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub> &lpar;slow reaction&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Overall reaction&colon;<&sol;strong><&sol;p>&NewLine;<p>2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; 2Cl<sub>2&lpar;g&rpar;<&sol;sub>                       4HCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; O<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Industrial manufacture of chlorine &lpar;the mercury cathode cell&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong>The electrolysis of brine<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Electrolyte&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&&num;8211&semi; Brine&comma; <&sol;strong>concentrated sodium chloride solution&comma; NaCl<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Electrodes&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Anode&colon;<&sol;strong> carbon &lpar;graphite&rpar;<&sol;p>&NewLine;<p><strong>Cathode&colon;<&sol;strong> Flowing mercury&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iv&rpar;&period; Ions present&colon;<&sol;strong><&sol;p>&NewLine;<p>NaCl<sub>&lpar;aq&rpar;<&sol;sub>                       Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;     <&sol;sub>             H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; OH<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;v&rpar;&period; Reactions&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>Anode&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Cl<sup>&&num;8211&semi;<&sol;sup> and OH<sup>&&num;8211&semi;<&sol;sup> migrate to the anode&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Because of <strong>high concentration<&sol;strong> of Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>&comma; they are discharged in preference to OH<sup>&&num;8211&semi;<&sol;sup> ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                                     Cl<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2e<sup>&&num;8211&semi;<&sol;sup><&sol;p>&NewLine;<p>&lpar;Green-yellow&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Cathode&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> and Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> migrate to the cathode&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Because the cathode is made of mercury&comma; Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> is discharged in preference to H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> ions&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Na<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; 2e<sup>&&num;8211&semi;<&sol;sup>                         2Na<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Sodium formed at the cathode dissolves in the flowing mercury cathode to form <strong>sodium amalgam<&sol;strong> &lpar;Na&sol;Hg&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Sodium amalgam is reacted with water to form sodium hydroxide and hydrogen&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Mercury &lpar;in the sodium amalgam&rpar; remains unreacted&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>2Na&sol;Hg<sub>&lpar;l&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub>                              2NaOH<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2Hg<sub>&lpar;l&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The unreacted mercury is recycled&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;vi&rpar;&period; Products&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Chlorine <&sol;strong>gas at the anode&period;<&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Hydrogen <&sol;strong>and <strong>sodium hydroxide<&sol;strong> at the cathode&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of chlorine gas and its compounds&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Manufacture of <strong>hydrochloric acid&period;<&sol;strong><&sol;li>&NewLine;<li>Used in form of <strong>bleaching powder<&sol;strong> in textile and paper industries&period;<&sol;li>&NewLine;<li>For <strong>sterilization<&sol;strong> of water for both domestic and industrial use and in swimming pools&period;<&sol;li>&NewLine;<li>Used in <strong>sewage treatment<&sol;strong> e&period;g&period; NaOClO<sub>3<&sol;sub> solution used in latrines&period;<&sol;li>&NewLine;<li>Manufacture of <strong>plastics<&sol;strong> &lpar;polyvinyl chloride&semi; PVC&rpar;<&sol;li>&NewLine;<li>Manufacture of <strong>germicides<&sol;strong>&comma; pesticides and fungicides e&period;g&period; DDT and some CFCs&period;<&sol;li>&NewLine;<li>CFCs are used to manufacture <strong>aerosol propellants<&sol;strong>&period;<&sol;li>&NewLine;<li>Manufacture of <strong>solvents <&sol;strong>such as trichloromethane and some chlorofluorocarbons &lpar;CFCs&rpar;&period;<&sol;li>&NewLine;<li>CFCs are commonly <strong>freons<&sol;strong> are used as <strong>refrigerants<&sol;strong> in fridges and air condition units due to their low boiling points&period;<&sol;li>&NewLine;<li>Manufacture of <strong>chloroform<&sol;strong>&comma; an aesthetic&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hydrogen chloride gas&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Laboratory preparation of hydrogen chloride gas&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Concentrated sulphuric acid is reacted with sodium chloride&comma; and the mixture heated gently&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Resultant gas is passed through conc&period; Sulphuric &lpar;VI&rpar; acid&semi; to dry the gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>H<sub>2<&sol;sub>SO<sub>4&lpar;l&rpar;<&sol;sub> &plus; NaCl<sub>&lpar;aq&rpar;<&sol;sub>                              NaHSO<sub>4&lpar;s&rpar;<&sol;sub> &plus; HCl<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;    <&sol;sub>                      HCl<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The reaction can proceed in the cold&comma; but on large scale HCl&lpar;g&rpar; is produced by the same reaction but the heating is continued to re hot&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Properties of hydrogen chloride gas&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Colourless gas with a strong irritating pungent smell&period;<&sol;li>&NewLine;<li>Slightly denser than air &lpar;1¼ times&rpar;&period; This makes it possible to collect the gas by downward delivery&period;<&sol;li>&NewLine;<li>Very soluble in water&semi; and fumes strongly in moist air forming hydrochloric acid deposits&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Diagram&colon; <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The aqueous solution is known as hydrochloric acid&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It is almost completely ionized &lpar;a strong acid&rpar; in aqueous solution&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>HCl<sub>&lpar;aq&rpar;<&sol;sub>                    H<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; This solution has the usual acidic properties&colon;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>&lpar;i&rpar;&period; turns blue litmus red&period;<&sol;p>&NewLine;<p>&lpar;ii&rpar;&period; Liberates hydrogen gas with certain metals e&period;g&period; zinc&comma; Magnesium&comma; iron etc&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Hydrochloric acid does not react with metals below hydrogen in the reactivity series&period;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>Zn<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                        ZnCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>Mg<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                       MgCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>Fe<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                        FeCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;iii&rpar;&period; Neutralizes bases to form salt and water&period;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>HCl&lpar;aq&rpar; &plus; NaOH&lpar;aq&rpar;                          NaCl&lpar;aq&rpar; &plus;H<sub>2<&sol;sub>O&lpar;l&rpar;<&sol;p>&NewLine;<p>2HCl&lpar;aq&rpar; &plus; CuO&lpar;s&rpar;                             CuCl<sub>2<&sol;sub>&lpar;aq&rpar; &plus; H<sub>2<&sol;sub>O&lpar;l&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;iv&rpar;&period; Liberates carbon &lpar;IV&rpar; oxide from carbonates and hydrogen carbonates&period;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>CaCO<sub>3&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;        <&sol;sub>            CaCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>ZnCO<sub>3&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;        <&sol;sub>            ZnCl<sub>2&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>NaHCO<sub>3&lpar;s&rpar;<&sol;sub> &plus; HCl<sub>&lpar;aq&rpar;       <&sol;sub>            NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; CO<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>As the hydrogen chloride gas very soluble in water&comma; the solution must be prepared using a funnel arrangement&semi; to prevent sucking back and increase the surface area for the dissolution of the gas&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Diagram&colon; dissolution of hydrogen chloride gas<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li>Dry hydrogen chloride is NOT particularly reactive at ordinary temperatures&comma; although very reactive metals burn in it to form the chloride and hydrogen gas&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Equation&colon;<&sol;p>&NewLine;<p>2Na<sub>&lpar;s&rpar;<&sol;sub> &plus; 2HCl<sub>&lpar;aq&rpar;<&sol;sub>                      2NaCl<sub>&lpar;s&rpar;<&sol;sub> &plus; H<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Metals above hydrogen in the reactivity series react with hydrogen chloride gas when heated&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>If reacted with some metals it forms 2 chlorides e&period;g&period; iron where iron &lpar;II&rpar; and iron &lpar;III&rpar; chlorides exist&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li>Hydrogen chloride gas forms white fumes of ammonium chloride when reacted with ammonia gas&semi;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Equation&colon;<&sol;p>&NewLine;<p>NH<sub>3&lpar;g&rpar;<&sol;sub> &plus; HCl<sub>&lpar;g&rpar;<&sol;sub>                         NH<sub>4<&sol;sub>Cl<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon; This is the <strong>chemical test<&sol;strong> for hydrogen chloride gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li>Hydrogen chloride is decomposed by oxidizing agents&comma; giving off chlorine&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Examples&colon;<&sol;p>&NewLine;<p>PbO<sub>2&lpar;s&rpar;<&sol;sub> &plus; 4HCl<sub>&lpar;g&rpar;<&sol;sub>                      PbCl<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>MnO<sub>2&lpar;s&rpar;<&sol;sub> &plus; 4HCl<sub>&lpar;g&rpar;<&sol;sub>                    MnCl<sub>2&lpar;s&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;l&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Diagram&colon; reacting hydrogen chloride with an oxidizing agent&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Test for chlorides&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Test 1&colon; Using silver ions&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To the test solution&comma; add silver ions from silver nitrate&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Acidify with dilute nitric acid&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations and inference&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Formation of a white precipitate shows presence of Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Only silver carbonate and silver chloride can be formed as white precipitates&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Silver carbonate is soluble in dilute nitric acid but silver chloride is not&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Using Cl<sup>&&num;8211&semi;<&sol;sup> from NaCl as the test solution&semi;<&sol;p>&NewLine;<p>NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; AgNO<sub>3&lpar;aq&rpar;<&sol;sub>               NaNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; AgCl<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>White ppt&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Ag<sup>&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                          Ag<sub>&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>White ppt&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This precipitate dissolves in <strong>excess ammonia<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The white precipitate of silver chloride turns <strong>violet <&sol;strong>when exposed to light&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Test 2&colon; Using lead ions <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; To the test solution&comma; add lead ions from lead &lpar;II&rpar; nitrate&comma; then warm<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Observations and inference&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Formation of a white precipitate that dissolves on warming shows presence of Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Explanations&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Only lead carbonate&comma; lead sulphate&comma; lead sulphite and lead chloride can be formed as white precipitates&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Only lead chloride dissolves on warming&semi; unlike the rest which are insoluble even on warming&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>Using Cl<sup>&&num;8211&semi;<&sol;sup> from NaCl as the test solution&semi;<&sol;p>&NewLine;<p>2NaCl<sub>&lpar;aq&rpar;<&sol;sub> &plus; Pb&lpar;NO<sub>3<&sol;sub>&rpar;<sub>2&lpar;aq&rpar;<&sol;sub>                     2NaNO<sub>3&lpar;aq&rpar;<&sol;sub> &plus; PbCl<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>White ppt&period;<&sol;p>&NewLine;<p><strong>Ionically&semi;<&sol;strong><&sol;p>&NewLine;<p>Pb<sup>2&plus;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub> &plus; Cl<sup>&&num;8211&semi;<&sol;sup><sub>&lpar;aq&rpar;<&sol;sub>                       PbCl<sub>2&lpar;s&rpar;<&sol;sub><&sol;p>&NewLine;<p>White ppt&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hydrochloric acid&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Large scale manufacture of hydrochloric acid&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Diagram&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Raw materials&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Hydrogen <&sol;strong>obtained as a byproduct of petroleum industry&semi; electrolysis of brine or from water by <strong>Bosch process<&sol;strong>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Chlorine <&sol;strong>obtained from the electrolysis of brine or as fused calcium chloride&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A small sample of hydrogen gas is allowed through a jet and burnt in excess chlorine gas&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>H<sub>2&lpar;g&rpar;<&sol;sub> &plus; Cl<sub>2&lpar;g&rpar;<&sol;sub>                 2HCl<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Precaution&colon; <&sol;strong>A mixture of equal volumes of hydrogen and chlorine explodes when put in sunlight&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The hydrogen chloride gas formed is dissolved in water over glass beads&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The <strong>glass beads<&sol;strong> <strong>increase the surface area<&sol;strong> over which absorption takes place&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Commercial hydrochloric acid is about 35&percnt; pure&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Hydrochloric acid is transported in steel tanks lined inside with <strong>rubber&period;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; If the acid comes into contact with exposed parts of metal or with rust&comma; it forms <strong>iron &lpar;III&rpar; chloride<&sol;strong> that makes the acid appear <strong>yellow<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Pollution in an industry manufacturing hydrochloric acid&period;<&sol;strong><&sol;p>&NewLine;<p>&lpar;i&rpar;&period; Chlorine is <strong>poisonous&period;<&sol;strong><&sol;p>&NewLine;<p>&lpar;ii&rpar;&period; Mixture of hydrogen and oxygen in air is <strong>explosive<&sol;strong> when ignited&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of hydrochloric acid&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Sewage treatment&period;<&sol;li>&NewLine;<li>Treatment of water &lpar;<strong>chlorination<&sol;strong>&rpar; at the waterworks&period;<&sol;li>&NewLine;<li>Removing rust from metal e&period;g&period; descaling iron before it is galvanized or and other metals before they are electroplated&period;<&sol;li>&NewLine;<li>Making dyes&comma; drugs and photographic materials like <strong>silver chloride<&sol;strong> on photographic films&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Environmental pollution by chlorine and its compounds&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Chlorine may dissolve in rain and fall as <strong>acid rain<&sol;strong>&comma; which has adverse effects on plants and animals&comma; buildings and soil nutrients&period;<&sol;li>&NewLine;<li>CFCs are <strong>non-biodegradable<&sol;strong>&period; Over time&comma; they diffuse into the atmosphere breaking down to free chlorine and fluorine atoms&period; These atoms deplete the <strong>ozone layer<&sol;strong>&period; Chlorine is thus one of the <strong>greenhouse gases&period;<&sol;strong><&sol;li>&NewLine;<li>PVCs are <strong>non-biodegradable<&sol;strong>&period;<&sol;li>&NewLine;<li>DDT is a pesticide containing chlorine and has a long life span&comma; affecting plants and animal life&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Note&colon; DDT is banned in Kenya&semi; NEMA advises increased use of <strong>pyrethroids<&sol;strong> in mosquito control&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>ORGANIC CHEMISTRY I<&sol;strong><&sol;p>&NewLine;<p><strong>Contents checklist&period;<&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<h2>ORGANIC CHEMISTRY<&sol;h2>&NewLine;<h2>Definition<&sol;h2>&NewLine;<p>&&num;8211&semi; The chemistry of hydrogen carbon chain compounds&period;<&sol;p>&NewLine;<p>&&num;8211&semi; It the study of carbon compounds except the oxides of carbon i&period;e&period;  CO&comma; CO<sub>2<&sol;sub> and             Carbons&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>ORGANIC CHEMISTRY I&colon; THE HYDROCARBONS<&sol;h1>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Hydrocarbons<&sol;strong><&sol;p>&NewLine;<p>Are compounds of hydrogen and carbon only&semi; and are the simplest organic compounds&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1>Main groups of hydrocarbons<&sol;h1>&NewLine;<p>Are classified on the basis of the type of bonds found within the carbon atoms&period;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Alkanes&colon;<&sol;strong> Are hydrocarbons in which carbon atoms are linked by single covalent bonds&period;<&sol;li>&NewLine;<li><strong>Alkenes&colon;<&sol;strong> Carbon atoms are held by at least one double bond&period;<&sol;li>&NewLine;<li><strong>Alkynes&colon;<&sol;strong> Have at least one triple bond between any tow carbon atoms&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Saturated and unsaturated hydrocarbons<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Saturated hydrocarbons<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Are hydrocarbons which the carbon atoms are bonded to the maximum number of other             atoms possible&period;<&sol;p>&NewLine;<p>&&num;8211&semi; hydrocarbons which don’ react and hence cannot decolourise both Bromine water and acidified potassium manganate &lpar;VII&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; They are compounds in which each carbon atom has only single covalent bonds&comma; throughout the structure&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Unsaturated hydrocarbons<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Are hydrocarbons which contain at least one double or bond&comma; between any two adjacent carbon atoms&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The carbon atoms do not have maximum covalency&period;<&sol;p>&NewLine;<p>&&num;8211&semi; They can decolourise both bromine water and acidified potassium manganate &lpar;VII&rpar;&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong> All alkenes and Alkynes&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Experiment&colon;   To verify saturated and unsaturated hydrocarbons&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<br &sol;>&NewLine;<&sol;strong>&&num;8211&semi; 3 to 4 drops of bromine wate are added to about 1 cm3 of the liquid under investigation&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture is then shaken thoroughly and the observations recorded&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; For gases the gas under investigation is bubbled ito 1 cm3 of bromine water&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The procedures are then repeated with acidified potassium manganate &lpar;VII&rpar;&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observations&colon;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td rowspan&equals;"2" width&equals;"135">&nbsp&semi;<&sol;p>&NewLine;<h1>COMPOUND<&sol;h1>&NewLine;<&sol;td>&NewLine;<td colspan&equals;"2" width&equals;"647">&NewLine;<h5>OBSERVATIONS<&sol;h5>&NewLine;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"323"><strong>With potassium permanganate<&sol;strong><&sol;td>&NewLine;<td width&equals;"323"><strong>With Bromine water<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"135">Kerosene<&sol;td>&NewLine;<td width&equals;"323">No observable colour change<&sol;td>&NewLine;<td width&equals;"323">No colour change<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"135">Laboratory gas<&sol;td>&NewLine;<td width&equals;"323">No observable colour change<&sol;td>&NewLine;<td width&equals;"323">No observable colour change<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"135">Turpentine<&sol;td>&NewLine;<td width&equals;"323">Purple colour turns colourless<&sol;td>&NewLine;<td width&equals;"323">Solution is decolourised<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"135">Hexane<&sol;td>&NewLine;<td width&equals;"323">No observable  colour change<&sol;td>&NewLine;<td width&equals;"323">No observable colour change<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"135">Pentene<&sol;td>&NewLine;<td width&equals;"323">Potassium permanganate is decolourised<&sol;td>&NewLine;<td width&equals;"323">Solution is decolourised<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Conclusion<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Kerosene&comma; laboratory gas and hexane are saturate hydrocarbons<&sol;p>&NewLine;<p>&&num;8211&semi; Turpentine and pentane are unsaturated hydrocarbons&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Homologous series<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Refers to a group of organic compounds that have the same general formula&comma; whose consecutive members differ by a similar unit&comma; and usually have similar chemical properties&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Characteristics of a Homologous series&period;<&sol;strong><&sol;p>&NewLine;<p>&lpar;i&rpar;&period; Can be represented by a general formula&semi;<&sol;p>&NewLine;<p>&lpar;ii&rpar;&period; Have similar chemical properties<&sol;p>&NewLine;<p>&lpar;iii&rpar;&period; Have similar structures and names<&sol;p>&NewLine;<p>&lpar;iv&rpar;&period; They show a steady gradation of physical properties<&sol;p>&NewLine;<p>&lpar;v&rpar;&period; Can usually be prepared by similar methods&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Structural and molecular formula<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li><strong>Molecular formulae<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&&num;8211&semi; Simply shows the number and type of elements &lpar;atoms&rpar; in the compound&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Structural formula<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Shows how the different atoms in the molecules &lpar;of a compound&rpar; are bonded or joined together&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong><&sol;p>&NewLine;<p><strong>Methane<&sol;strong><&sol;p>&NewLine;<p>Molecular formula CH<sub>4<&sol;sub>&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Structural formula<&sol;p>&NewLine;<p>H<&sol;p>&NewLine;<p>&boxv;<&sol;p>&NewLine;<p>H – C – H<&sol;p>&NewLine;<p>&boxv;<&sol;p>&NewLine;<p>H<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Alkanes<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Are the simplest hydrocarbons with the general formula&semi; C<sub>n<&sol;sub>H<sub>2n &plus; 2<&sol;sub> where n &equals; number of carbon atoms in the molecule&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; For compound with only 1 carbon atom&comma; formula &equals; CH<sub>4<&sol;sub><&sol;p>&NewLine;<p>&&num;8211&semi; 2 carbon atoms&semi; the formula &equals; C<sub>2<&sol;sub>H<sub>6<&sol;sub><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Names and formulas of the first 10 Alkanes<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>Consecutive members of the alkane series differ by a CH<sub>2<&sol;sub>-unit&comma; hence a <strong>homologous series<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; General  formula<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The Alkanes have a general formula C<sub>n<&sol;sub>H<sub>2n&plus;2<&sol;sub> where n is the number of carbon atoms in the molecule&period;<&sol;p>&NewLine;<p><strong>Example&colon;        <&sol;strong><&sol;p>&NewLine;<p>When n &equals; 3&comma; &lpar;2n &plus; 2&rpar; &equals; 8&comma; and the alkane has the formula C<sub>3<&sol;sub>H<sub>8<&sol;sub> &lpar;Propane&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Structure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; In all Alkanes the distribution of bonds around each carbon atom is tetrahedral&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Example&colon;<&sol;strong> Methane<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Homologous series<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The Alkanes differ from each other by a –CH<sub>2<&sol;sub>-&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus methane&comma; CH<sub>4 <&sol;sub>differs from ethane&comma; C<sub>2<&sol;sub>H<sub>6<&sol;sub> by –CH<sub>2<&sol;sub>-&comma; and ethane in turn differs from             propane C<sub>3<&sol;sub>H<sub>8<&sol;sub> by – C <sub>2 <&sol;sub>-&period;<&sol;p>&NewLine;<p>&&num;8211&semi; They therefore form a homologous series&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;d&rpar;&period; Functional groups<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A functional group is a part of a compound which has a characteristic set of properties&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus when a bromine atom replaces a hydrogen atom in an alkane&comma; it imparts to the compound new chemical and physical properties&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong> six important functional groups&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;e&rpar;&period; Isomerism<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is a situation whereby two or more compounds have similar molecular formulae but different structural formula&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Such compounds are called <strong>isomers<&sol;strong>&comma; i&period;e compounds with the same molecular formula but different structural formula&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong> For Butane&comma; &lpar;C<sub>4<&sol;sub>H<sub>10<&sol;sub>&rpar; there are <strong>two<&sol;strong> possible structures&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>Isomers have different physical and chemical properties&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Example<&sol;strong>&colon; Ethanol and dimethyl ether&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Molecular formula&colon; both have C<sub>2<&sol;sub>H<sub>6<&sol;sub>O<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Structural formula&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;&period; Ethanol                                                                 &lpar;ii&rpar;&period; Dimethyl ether<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Differences<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"420"><strong>Ethanol<&sol;strong><&sol;td>&NewLine;<td width&equals;"390"><strong>Dimethyl ether<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"420">&&num;8211&semi; A liquid of boiling point 78&period;4<sup>o<&sol;sup>C<&sol;p>&NewLine;<p>&&num;8211&semi; Completely soluble in water<&sol;p>&NewLine;<p>&&num;8211&semi; Reacts with sodium  ethoxide and  liberates hydrogen gas<&sol;td>&NewLine;<td width&equals;"390">&&num;8211&semi; A gas at room temperature &lpar;B&period;P – 24<sup>0<&sol;sup>C&rpar;&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Slightly soluble in water&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Does not react with sodium metal&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;f&rpar;&period; Alkyl groups<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is a group formed by the removal of a hydrogen atom form a hydrocarbon&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Alkyl groups don’t exist on their own but are always attached to another atom or group&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>Naming of alkyl groups<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Is done by removing the ending -ane from the parent alkane and replacing it with –yl&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Examples<&sol;strong><&sol;p>&NewLine;<p>Methane &lpar;CH<sub>4<&sol;sub>&rpar; gives rise to Methyl -CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>Ethane &lpar;C<sub>2<&sol;sub>H<sub>6<&sol;sub>&rpar; gives rise to ethyl&comma; &&num;8211&semi; C<sub>2<&sol;sub>H<sub>5 <&sol;sub>i&period;e&period; -CH<sub>2<&sol;sub>CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>Propane &lpar;C<sub>3<&sol;sub>H<sub>8<&sol;sub>&rpar; gives rise to Propyl&comma; &&num;8211&semi; C<sub>3<&sol;sub>H<sub>7<&sol;sub> &sol;&sol; -CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>3<&sol;sub>&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;g&rpar;&period; Nomenclature of Alkanes<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Generally all Alkanes end with the suffix -ane&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Alkanes can either be <strong>straight chain<&sol;strong> or <strong>branched<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Straight chain Alkanes<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The names of all Alkanes end with the suffix -ane&semi;<&sol;p>&NewLine;<p><strong>Examples&colon; <&sol;strong><&sol;p>&NewLine;<p>Methane&comma; ethane&comma; propane&comma; butane&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; With the exception of the first 4 members of the series &lpar;i&period;e&period; the 4 listed above&rpar; the names of Alkanes begin with a Greek prefix indicating the number of carbon atoms in the main chain&period;<&sol;p>&NewLine;<p>Examples&colon; &&num;8211&semi; Pentane – 5 carbon atoms<&sol;p>&NewLine;<p>Hexane – 6 carbon atoms&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Branched Alkanes<&sol;strong><&sol;p>&NewLine;<p>The naming of branched chain Alkanes is based on the following rules&colon;-<&sol;p>&NewLine;<ol>&NewLine;<li>The largest continuous chain of carbon atoms in the molecule is used to deduce the parent name of the compound&period;<&sol;li>&NewLine;<li>The carbon atoms of this chain are numbered such that the branching &sol;&sol; substituents are attached to the carbon atom bearing the lowest number&period;<&sol;li>&NewLine;<li>The substituent &sol;&sol; branch is named e&period;g&period; methyl&comma; ethyl etc and the name of the compound written as <strong>one word&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples<&sol;strong><&sol;p>&NewLine;<p>Further examples<&sol;p>&NewLine;<p>H   H    H                                         CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CHCH<sub>2<&sol;sub>CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>&boxv;   &boxv;    &boxv;                                         &boxv;           &boxv;<&sol;p>&NewLine;<p>H – C – C – C – H                                   CH<sub>3<&sol;sub>       CH<sub>2<&sol;sub><&sol;p>&NewLine;<p>&boxv;                                                       &boxv;<&sol;p>&NewLine;<p>H – C – H                                                 CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>&boxv;                                                     3-ethylhexane&semi;<&sol;p>&NewLine;<p>H<&sol;p>&NewLine;<p>2-methylpropane&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Further examples&period;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>3<&sol;sub><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&boxv;<&sol;p>&NewLine;<p>CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>3-methylpentane&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>CH<sub>3<&sol;sub><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&boxv;<&sol;p>&NewLine;<p>H<sub>3<&sol;sub>C – C – CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>&boxv;<&sol;p>&NewLine;<p>CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>2&comma; 2-dimethylpropane&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> refer to course books and draw as many examples as possible&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Draw the structural isomers of&colon;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong> Butane&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Pentane&semi;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong> Hexane&semi;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;f&rpar;&period; Occurrence of Alkanes<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; There are 3 known natural sources&colon;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Natural gas&colon;<&sol;strong> this consists of mainly of methane&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Crude oil&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Consists of a mixture of many Alkanes<&sol;p>&NewLine;<p>&&num;8211&semi; It can be separated into its components by fractional distillation&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The different components have different boiling points&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Biogas&colon;<&sol;strong> This contains about 60-75&percnt; of methane gas&sol;marshy gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Separation of the components of crude oil&period;<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The apparatus is arranged as shown above&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The first distillate appears at about 120<sup>o<&sol;sup>C and is collected&comma; the of 40<sup>o<&sol;sup>C intervals thereafter until the temperatures reach 350<sup>o<&sol;sup>C&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observations and explanations<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This method of separation is called fractional distillation&comma; and depends on the fact that the various components of the mixture have <strong>different boiling points<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The various fractions vary in properties as explained below&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;a&rpar;&period; Appearance<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Intensity of the colour increases with increase in boiling point&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Boiling point increases with increasing number of carbon atoms&period;<&sol;p>&NewLine;<p><strong>Reason&colon;          <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The higher the number of carbon atoms&comma; the higher the number of <strong>covalent bonds<&sol;strong>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus the first fraction to be distilled &lpar;lab gas&rpar; is colourless while the last           distillates &lpar;between&rpar; is dark black in colour&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;b&rpar;&period; Viscosity<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; <strong>Increases<&sol;strong> with increasing <strong>boiling point<&sol;strong>&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; The fractions with low boiling points are less viscous while the fraction with the highest boiling point is semi-solid&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;c&rpar;&period; Inflammability&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Decreases with increasing boiling points&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The gaseous fractions&comma; with least boiling points readily catches fire &sol;&sol; burn&comma; while the semi-solid fractions with very high boiling points are almost non-combustible&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  Some Hydrocarbons are found in more than one fraction of crude oil and more advanced chemical methods are necessary for complete separation&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of the various fractions of crude oil&period;<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"255"><strong>No&period; f carbon atom per molecule<&sol;strong><&sol;td>&NewLine;<td width&equals;"165"><strong>Fractions<&sol;strong><&sol;td>&NewLine;<td width&equals;"375"><strong>Uses<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">1-4<&sol;td>&NewLine;<td width&equals;"165">Gases<&sol;td>&NewLine;<td width&equals;"375">Laboratory gases and gas cookers<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">5-12<&sol;td>&NewLine;<td width&equals;"165">Petrol<&sol;td>&NewLine;<td width&equals;"375">Fuel in petrol engines<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">9-16<&sol;td>&NewLine;<td width&equals;"165">Kerosene &lpar;paraffin&rpar;<&sol;td>&NewLine;<td width&equals;"375">Fuel for jet engines &lpar;aeroplanes&rpar; and domestic uses<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">15-18<&sol;td>&NewLine;<td width&equals;"165">Light diesel oils<&sol;td>&NewLine;<td width&equals;"375">Fuel for heavy diesel engines e&period;g&period; for ships<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">18-25<&sol;td>&NewLine;<td width&equals;"165">Diesel oils<&sol;td>&NewLine;<td width&equals;"375">Fuel for diesel engines<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">20-70<&sol;td>&NewLine;<td width&equals;"165">Lubricating oils<&sol;td>&NewLine;<td width&equals;"375">Used for smooth running of engine parts<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"255">&gt&semi;70<&sol;td>&NewLine;<td width&equals;"165">Bitumen<&sol;td>&NewLine;<td width&equals;"375">Road tarmacking<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Changes &sol;&sol; gradation of physical properties across the alkane homologous series<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"120"><strong>Name of alkane<&sol;strong><&sol;td>&NewLine;<td width&equals;"90"><strong>Formula<&sol;strong><&sol;td>&NewLine;<td width&equals;"202"><strong>State of room temperature &lpar;208K&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"53"><strong>M&period;P &lpar;K&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"60"><strong>B&period;P &lpar;K&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"82"><strong>Density<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;g cm<sup>-3<&sol;sup>&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"94"><strong>Solubility<&sol;strong><&sol;td>&NewLine;<td width&equals;"94"><strong>Solubility<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"120">Methane<&sol;p>&NewLine;<p>Ethane<&sol;p>&NewLine;<p>Propane<&sol;p>&NewLine;<p>Butane<&sol;p>&NewLine;<p>Pentane<&sol;p>&NewLine;<p>Hexane<&sol;p>&NewLine;<p>Heptane<&sol;p>&NewLine;<p>Octane&semi;<&sol;p>&NewLine;<p>Nonane<&sol;p>&NewLine;<p>Decane<&sol;td>&NewLine;<td width&equals;"90">CH<sub>4<&sol;sub><&sol;p>&NewLine;<p>C<sub>2<&sol;sub>H<sub>6<&sol;sub><&sol;p>&NewLine;<p>C<sub>3<&sol;sub>H<sub>8<&sol;sub><&sol;p>&NewLine;<p>C<sub>4<&sol;sub>H<sub>10<&sol;sub><&sol;p>&NewLine;<p>C<sub>5<&sol;sub>H<sub>12<&sol;sub><&sol;p>&NewLine;<p>C<sub>6<&sol;sub>H<sub>14<&sol;sub><&sol;p>&NewLine;<p>C<sub>7<&sol;sub>H<sub>16<&sol;sub><&sol;p>&NewLine;<p>C<sub>8<&sol;sub>H<sub>10<&sol;sub><&sol;p>&NewLine;<p>C<sub>9<&sol;sub>H<sub>20<&sol;sub><&sol;p>&NewLine;<p>C<sub>10<&sol;sub>H<sub>22<&sol;sub><&sol;td>&NewLine;<td width&equals;"202">↑<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Gaseous<&sol;p>&NewLine;<p>↓<&sol;p>&NewLine;<p>↑<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Liquid<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>↓<&sol;td>&NewLine;<td width&equals;"53">90<&sol;p>&NewLine;<p>91<&sol;p>&NewLine;<p>85<&sol;p>&NewLine;<p>138<&sol;p>&NewLine;<p>143<&sol;p>&NewLine;<p>178<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>243<&sol;td>&NewLine;<td width&equals;"60">112<&sol;p>&NewLine;<p>184<&sol;p>&NewLine;<p>231<&sol;p>&NewLine;<p>273<&sol;p>&NewLine;<p>309<&sol;p>&NewLine;<p>342<&sol;p>&NewLine;<p>447<&sol;td>&NewLine;<td width&equals;"82">0&period;424<&sol;p>&NewLine;<p>0&period;546<&sol;p>&NewLine;<p>0&period;582<&sol;p>&NewLine;<p>0&period;579<&sol;p>&NewLine;<p>0&period;626<&sol;p>&NewLine;<p>0&period;659<&sol;p>&NewLine;<p>0&period;730<&sol;td>&NewLine;<td width&equals;"94">&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"94">&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Preparation and chemical properties of Alkanes<&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Alkanes&comma; like any other Homologous series have similar chemical properties&period;<&sol;p>&NewLine;<p>&&num;8211&semi; Generally any alkane can be represented form the reaction represented by the following equation&colon;<&sol;p>&NewLine;<p><strong>C<sub>n<&sol;sub>H<sub>2n &plus; 1<&sol;sub>COONa &plus; NaOH<sub>&lpar;aq&rpar;<&sol;sub> &srarr; C<sub>n<&sol;sub>H<sub>2n &plus;2<&sol;sub> &plus; Na<sub>2<&sol;sub>CO<sub>3&lpar;aq&rpar;<&sol;sub>&semi;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Thus&semi;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Methane can be prepared form sodium ethanoate &lpar;CH<sub>3<&sol;sub>COONa&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; Ethane can be prepared form sodium propanoate &lpar;CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>COONa&rpar;<&sol;p>&NewLine;<p>&&num;8211&semi; Propane can be prepared form sodium Butanoate &lpar;CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>COONa&rpar;<&sol;p>&NewLine;<p><strong>Laboratory Preparation of methane<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;i&rpar;&period; Apparatus<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar;&period; Procedure<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; About 5g of odium ethanoate and an equal mass of soda lime is put in a hard glass test tube&comma; upon mixing them thoroughly in a mortar&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The mixture is heated thoroughly in the test-tube&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;iii&rpar;&period; Observation<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A colourless gas collects over water<&sol;p>&NewLine;<p><strong>Reasons&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; Methane does not react with and is insoluble in water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p>CH<sub>3<&sol;sub>COONa &plus; NaOH<sub>&lpar;s&rpar;<&sol;sub> &srarr; CH<sub>4&lpar;g&rpar;<&sol;sub> &plus; Na<sub>2<&sol;sub>CO<sub>3&lpar;aq&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong><em>Sodium ethanoate         sodalime            Methane       Sodium carbonate<&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Physical properties of methane<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>It is a non-poisonous&comma; colourless gas&period;<&sol;li>&NewLine;<li>It is slightly soluble in water&comma; but quite soluble in organic solvents such as ethanol and ether&period;<&sol;li>&NewLine;<li>II is less denser than air and when cooled under pressure&comma; it liquefies&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Chemical properties<&sol;strong><&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li><strong> Burning <&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; It is flammable and burns in excess air &sol;&sol; oxygen with a pale blue non-luminous flame to give carbon &lpar;IV&rpar; oxide ad water vapour&period;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>CH<sub>4&lpar;g&rpar;<&sol;sub> &plus; 2O<sub>2&lpar;g&rpar;<&sol;sub> &srarr; CO<sub>2&lpar;g&rpar;<&sol;sub> &plus; 2H<sub>2<&sol;sub>O<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  In a limited supply of air&comma; the flame is <strong>luminous<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; This is due to incomplete combustion of the methane&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A mixture of methane and air <strong>explodes<&sol;strong> violently when ignited if the volume ratio is approximately 1&colon;10 and this is often the cause of fatal explosions in coal mines&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li><strong>Reaction with Bromine water and acidified potassium permanganate<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; When methane is bubbled through bromine water the red brown colour of bromine persists&semi; and when bubbled through acidified potassium manganate &lpar;VII&rpar; solution&semi; the purple colour of the solution remains&semi;<&sol;p>&NewLine;<p>&&num;8211&semi; Thus it has no effect on either bromine water or acidified potassium permanganate&period;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong> It is a saturated hydrocarbon&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong> Substitution reactions<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; A substitution reaction is one in which one atom replaces another atom in a molecule&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Example&colon; The substitution of Bromine in methane&period;<&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; A sample of Methane &lpar;CH<sub>4<&sol;sub>&rpar; is placed in a boiling tube and to it is added some bromine gas&period;<&sol;p>&NewLine;<p>&&num;8211&semi; The tube is stoppered&comma; and the mixture shaken&comma; then allowed to stand and exposed to <strong>ultra-violet lamp&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Observations <&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi; The red colour of Bromine begins to fade&comma; and the pungent smell of hydrogen bromide &lpar;HBr&rpar; gas is detectable when the stopper is removed&period;<&sol;p>&NewLine;<p>&&num;8211&semi; A moist blue litmus paper also turns <strong>red<&sol;strong> on dipping into the resultant mixture&period;<&sol;p>&NewLine;<p><strong>Equation                                                                                                                                                                <&sol;strong>CH<sub>4&lpar;g&rpar;<&sol;sub> &plus; Br<sub>2&lpar;g&rpar;<&sol;sub> &srarr; CH<sub>3<&sol;sub>Br<sub>&lpar;g&rpar;<&sol;sub> &plus; HBr<sub>&lpar;g&rpar;<&sol;sub><&sol;p>&NewLine;<p><strong>Explanation                                                                                                                                                                      &&num;8211&semi; <&sol;strong>For a chemical reaction to occur&comma; bonds must be broken&period;<strong>                                                                                       &&num;8211&semi; <&sol;strong>The light energy &lpar;V&period;V&period; light&rpar; splits the Bromine molecule into free atoms&comma; which are very reactive species&period;<strong>                                                                                                                                                                               &&num;8211&semi; <&sol;strong>Similarly the energy breaks the weaker carbon – hydrogen bonds&comma; and not the stronger carbon – carbon bonds&period;<strong>                                                                                                                                                                                  &&num;8211&semi; <&sol;strong>The free bromine atoms can then substitute &lpar;replace one of the hydrogen atoms of methane&comma; resulting unto bromomethane and hydrogen bromide gas&period;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  This process can be repeated until all hydrogen atoms in CH<sub>4<&sol;sub> are replaced&period;<&sol;p>&NewLine;<p><em>Write all the equations to show the stepwise substitution of all hydrogen atoms in methane&period;<&sol;em><&sol;p>&NewLine;<p>&&num;8211&semi; The substitution reactions can also occur with chlorine&comma; forming chloremethane dichloromethane&comma; trichloromethane &lpar;chloroform&rpar; and tetrachloromethane &lpar;carbon tetrachloride&rpar; respectively&period;<&sol;p>&NewLine;<p><strong>Equations&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of methane                                                                                                                                                    &&num;8211&semi; <&sol;strong>It is used as a fuel                                                                                                                                                     &&num;8211&semi; Used in the manufacture of carbon black which is used in printers ink and paints&period;<strong>                                                         &&num;8211&semi; <&sol;strong>Used in the manufacture of methanol&comma; methanal&comma; chloromethane and ammonia&period;<&sol;p>&NewLine;<p><strong>Cracking of Alkanes                                                                                                                                                 &&num;8211&semi; <&sol;strong>Is the breaking of large alkane molecules into smaller Alkanes&comma; alkenes and often hydrogen&period;                                  It occurs under elevated temperatures of about 400-700<sup>o<&sol;sup>C<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p><strong>Example&colon; Cracking of propane<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong> Alkenes<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&&num;8211&semi; Are hydrocarbons with at least one carbon-carbon double bond&comma; and have the general formula C<sub>n<&sol;sub>H<sub>2n<&sol;sub>&period;<&sol;p>&NewLine;<p>&&num;8211&semi; They thus form a homologous series – with the simplest member behind ethane&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Names and formulae of the first six alkenes&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"212">Name of alkene<&sol;td>&NewLine;<td width&equals;"165">Formula<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"212">Ethene<&sol;p>&NewLine;<p>Propane<&sol;p>&NewLine;<p>Pbut-l-ene<&sol;p>&NewLine;<p>Pent-lene<&sol;p>&NewLine;<p>Hex-tene<&sol;td>&NewLine;<td width&equals;"165">&nbsp&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>NOMENCLATURE OF ALKENES<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Rules <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>The parent molecule is the longest carbon chain&semi; and its prefix is followed by the suffix –ene&period;<&sol;li>&NewLine;<li>The carbon atoms in the chain are numbered such that the carbon atoms joined by the double bonds get the lowest possible numbers&period;<&sol;li>&NewLine;<li>The position of the substituent groups is indicated by showing the position of the carbon atom to which they are attached&period;<&sol;li>&NewLine;<li>In case of 2 double bonds in an alkene  molecule&comma; the carbon atom to which each double bond is attached must be identified&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong><em>Questions&colon;<&sol;em><&sol;strong>      For each of the following alkenes&comma; draw the structural formula<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Hex- l – ene<&sol;li>&NewLine;<li>Prop-l-ene<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Hex-2-ene<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Give the IUPAC names for&colon;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;  Branched alkenes&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Event for branched alkenes&comma; the numbering of the longest carbon chain is done such that the carbon atoms joined by the double bonds gets the smallest numbers possible&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Isomerism in alkenes<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Alkenes show two types of isomerism&colon;-<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>Branching isomerism<&sol;li>&NewLine;<li>Positional isomerism<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>i&rpar; Branching isomerism<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Occurs when a substitutent groups is attached to one of the carbon atoms in the largest             chain containing the double bond&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Positional isomerism&semi; in alkenes<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Is a situation whereby two or more unsaturated alkenes have same molecular formular but different structural formula&semi; due to alteration of the position of the double bond&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Question&colon;<&sol;strong>       Draw all the possible  isomers of Hexene &comma; resulting from positional and                           branching isomerism&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Gradation of physical properties of Alkenes<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"152">Name of alkene<&sol;td>&NewLine;<td width&equals;"112">Formula<&sol;td>&NewLine;<td width&equals;"132">&lpar;MP<sup>0<&sol;sup>C&rpar;<&sol;td>&NewLine;<td width&equals;"101">B&period;P &lpar;0&rpar;<&sol;td>&NewLine;<td width&equals;"162">Density g&sol;cm<sup>3<&sol;sup><&sol;td>&NewLine;<td width&equals;"132">solubility<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"152">Ethene<&sol;p>&NewLine;<p>Propene<&sol;p>&NewLine;<p>But-l-ene<&sol;p>&NewLine;<p>Pent-l-ene<&sol;p>&NewLine;<p>Hex-l-ene<&sol;td>&NewLine;<td width&equals;"112">&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"132">-169<&sol;p>&NewLine;<p>-189<&sol;p>&NewLine;<p>-185<&sol;p>&NewLine;<p>-138<&sol;p>&NewLine;<p>-98<&sol;td>&NewLine;<td width&equals;"101">-104<&sol;p>&NewLine;<p>&&num;8211&semi;47&period;7<&sol;p>&NewLine;<p>-6&period;2<&sol;p>&NewLine;<p>-3&period;0<&sol;p>&NewLine;<p>-98<&sol;td>&NewLine;<td width&equals;"162">&&num;8211&semi;<&sol;p>&NewLine;<p>&&num;8211&semi;<&sol;p>&NewLine;<p>&&num;8211&semi;<&sol;p>&NewLine;<p>0&period;640<&sol;p>&NewLine;<p>0&period;674<&sol;td>&NewLine;<td width&equals;"132">&nbsp&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Note&colon;   the double bond is the reactive site in alkenes<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Preparation and chemical properties of Ethene<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>i&rpar; <strong><em>Apparatus<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong><em>Procedure<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>A mixture of ethanol and concentrated sulfuric acid in the ratio 1&colon;2 respectively  are heated in a flask to a temp&period; of 160<sup>0<&sol;sup>C – 180<sup>0<&sol;sup>C&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong><em>Observation<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>A colourless gas results&semi; and is collected over water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Reasons&colon;         Its insoluble&comma; unreactive and lighter than water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><em>Equation<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><em>Explanation<&sol;em><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>At 160<sup>0<&sol;sup>C – 180<sup>0<&sol;sup>C the conc&period; H2SO4 dehydrates the ethanol&comma; removing a water molecule form it and the remaining C and H atoms  rearrange and combine to form Ethene which is collected as  colourless gas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  At temperature  below 140<sup>0<&sol;sup>C&comma; a different  compound called ether is predominantly              formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Ethene  can also be prepared by passing hot aluminum  oxide over ethanol&period;  The later of which acts as a catalyst i&period;e&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Reactions of ethene&sol;chemical properties<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Burning&sol;combustion<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Just like an alkenes and alkanes&comma; ethene  burn in air&comma; producing carbon dioxide and large quantities of heat&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Caution&colon;<&sol;strong>         Mixtures of air and ethene  can be explosive and must be handled                         very carefully&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Additional reactions&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Is a reaction in which are molecule adds to another to form  a single product occur              in alkenes due to presence of a double bond&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>With oxidizing agents <&sol;strong><&sol;li>&NewLine;<li>i&rpar; Reaction with acidified potassium permanganate&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong><em>Procedure<&sol;em><&sol;strong>&colon;      Ethene is bubbled into a test tube containing acidified potassium               <strong><em>                        permanganate&period;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>Observation<&sol;em><&sol;strong>&colon;   The purple   colour  of the solution disappears&period;<&sol;p>&NewLine;<p><strong><em>Explanation&colon;<&sol;em><&sol;strong>  Ethene reduces the potassium permanganate&period;<&sol;p>&NewLine;<p>The  permanganate ion is reduced to Manganese &lpar;II&rpar; ion and water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Equation<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note<&sol;strong>&colon;   The net effect of the above reaction is the addition of two –OH groups to                                     the double bond forming ethan-1&comma; 2-dio&lpar;ethylene glycol&rpar;&period;<&sol;p>&NewLine;<p>In cold countries ethylene glycol is used as an antifreeze in car radiators&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Reaction with acidified potassium chromate &lpar;VI&rpar; &lpar;K2Cr2O7&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Halogenations is the addition of halogen atoms across a double bond&period;<&sol;li>&NewLine;<li>i&rpar; Reaction with Bromine Br2&lpar;g&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Procedure&colon;<&sol;strong>     Ethene is mixed with Bromine liquid&sol;gas<&sol;p>&NewLine;<p><strong>Observation&colon;<&sol;strong>  The reddish  brown bromine gas is decoloursed&sol;becomes  colourless&period;<&sol;p>&NewLine;<p><strong>Explanation&colon;<&sol;strong>   Bromine is decoloursed due to the addition of Bromine  atoms to the twocarbon atoms f the double bond forming 1&period;2 dibromethane&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>ii&rpar; Reaction with chlorine<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The Chlorine  &lpar;greenish yellow&rpar; also gets decoloursied due the addition of its             atoms on the double bond&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong> Alkenes react with and decolourise halogens and potassium permanganate  by             additional  reaction at room temperature and pressure&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The reaction site is the double bond  and hence&sol;all alkenes will react in a similar             manner&period;<&sol;p>&NewLine;<p><strong>Example&semi;<&sol;strong> Butene and Bromine<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>iii&rpar;       Reaction with Bromine water<&sol;p>&NewLine;<p>Bromine  is dissolved in water and reacted with ethene&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Further examples of additional reactions<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>Addition of hydrogen halides<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>With hydrobromic acid&semi; HBr &lpar;aq&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em><u>With  sulphuric acid<&sol;u><&sol;em><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li>Addition of Ethene  with sulphuric acid<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  When ethylhydrogen sulphate is hydrolysed&comma; ethanol is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>In this reaction&comma; water is added to ehylhydrogen sulphate and the mixture warmed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li>Ethene with Hydrogen i&period;e&period; Hydrogenation&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Is commonly termed hydrogenation though just a typical addition reaction&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Ethene  is reacted with hydrogen&comma; under special conditions&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Conditions&semi;<&sol;strong>     moderate temperature and pressure&period;<&sol;p>&NewLine;<p>Nickel catalyst&sol;palladure catalyst&period;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Equation&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Application<&sol;strong>&colon;    it is used industrially in the conversion f various oils into fats e&period;g&period; in the preparation of Margarine&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li><strong>Polymerization reactions&period;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Also called self-addition reactions<&sol;p>&NewLine;<p>Alkanes have the ability to link together &lpar;polymerise&rpar; to though the double bond to give a molecule of larger molecular mass &lpar;polymers&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Polymers&colon;<&sol;strong>       Are  very large molecules formed when 2 or more &lpar;smaller&rpar; molecules link                         together  to form a larger unit&period;<&sol;p>&NewLine;<p>Polymers have properties different form those of the original constituent manners&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples&colon;<&sol;strong>      Polymerisation of ethene<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>i&rpar; Conditions<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>High temperatures of about 200<sup>0<&sol;sup>C<&sol;li>&NewLine;<li>High&sol;elevated pressures of approximately 1000 atmospheres<&sol;li>&NewLine;<li>A trace of oxygen catalyst&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>ii&rpar; Procedure&colon;<&sol;strong> Ethene is heated at 200<sup>0<&sol;sup>C and 1000 atm&period; Pressure over  a catalyst&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>iii&rpar;        Observation&colon;<&sol;strong>  Sticky white substance  which hardens  on cooling  is formed&period;                                            This solid is called  polythene&comma; commonly reffered to as polythene&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Equation&colon;<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Generally<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Uses of polythene<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Used for the manufacture of many domestic articles &lpar;bowls&comma; buckets&comma; water cans&comma; and cold water pipes&rpar; e&period;t&period;c&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  Polythene pipes have a great advantage over metal pipes as they can be             welded quickly and do not burst in frosty weather&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Manufacture of reagent bottles&comma; droppers&comma; stoppers etc&period; since polythene is unaffected by alkalis and acids&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Test for Alkenes<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p>&&num;8211&semi;           They decolourise bromine water&comma; acidified potassium manganate VII&period;<&sol;p>&NewLine;<p>i&period;e&period; These addition reactions show the presence of a double bond&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Uses of Alkenes<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Manufacture of plastics&comma; through polymerization&period;<&sol;li>&NewLine;<li>Manufacture of ethanol&semi; through hydrolysis reactions<&sol;li>&NewLine;<li>Ripening of fruits&period;<&sol;li>&NewLine;<li>Manufacture of ethan – 1&comma; 2-diol&lpar;glyco&rpar; which is used as a coolant&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>            <&sol;strong><&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li><strong>ALYKYNES<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p>Are unsaturated hydrocarbons which form a homologous series of a general formula CnH2n-2&comma; where n &equals; 2 or more&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The functional groups of the alkyne series is the carbon – carbon tripple bond&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>They also undergo addition reactions because of High unsaturation and may be polymerised like the alkenes&period;<&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u>Examples<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"177"><strong>Name<&sol;strong><&sol;td>&NewLine;<td width&equals;"198"><strong>Molecular formula<&sol;strong><&sol;td>&NewLine;<td width&equals;"210"><strong>Structural formular<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"177">Ethyne<&sol;p>&NewLine;<p>Propyne<&sol;p>&NewLine;<p>But-l-yne<&sol;p>&NewLine;<p>Pent-l-yne<&sol;td>&NewLine;<td width&equals;"198">C2H2<&sol;p>&NewLine;<p>C3H4<&sol;p>&NewLine;<p>C4H6<&sol;p>&NewLine;<p>C5H8<&sol;td>&NewLine;<td width&equals;"210">CH     CH<&sol;p>&NewLine;<p>CH3C     CH<&sol;p>&NewLine;<p>CH3CH2C       CH<&sol;p>&NewLine;<p>CH3&lpar;CH2&rpar;2C     CH<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Nomenclature of alkynes<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>The largest chain with the tripple carbon – carbon bond forms  the parent molecule&period;<&sol;li>&NewLine;<li>Numbering of the carbon atoms is done such that the carbon atom with the tripple bond acquires the lowest possible number&period;<&sol;li>&NewLine;<li>The substituent branch if any is named&comma; and the compound written as a single word&period;<&sol;li>&NewLine;<li><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Examples<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Draw the structures of the following hydrocarbons<&sol;li>&NewLine;<li>2&comma;2 dimethyl-but-2-yne<&sol;li>&NewLine;<li>propyne<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>4&comma;4 diethyl-hex-2-yne&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Isomerism in alkynes<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong>Positional isomerism<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Isomerism commonly occurs in alkynes due to the fact that the  position of the tripple bond can be altered&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Such isomers&comma; as usual have same molecular but different structural  formulas&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Examples <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>i&rpar; Isomers of Butyne<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Branching isomerism – occurs when alkyl group is present in the molecule&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Others<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>Gradation in physical properties of Alkynes<&sol;u><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"182">Name of Alkyne<&sol;td>&NewLine;<td width&equals;"210">Formula<&sol;td>&NewLine;<td width&equals;"128">M&period;P&sol;<sup>0<&sol;sup>C<&sol;td>&NewLine;<td width&equals;"105">B&period;P&sol;<sup>0<&sol;sup>C<&sol;td>&NewLine;<td width&equals;"143">Density&sol;gcm-3<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"182">Ethyne<&sol;p>&NewLine;<p>Propyne<&sol;p>&NewLine;<p>Butyne<&sol;p>&NewLine;<p>Pent-l-yne<&sol;p>&NewLine;<p>Hex-l-yne<&sol;td>&NewLine;<td width&equals;"210">HC    CH<&sol;p>&NewLine;<p>CH3    CH<&sol;p>&NewLine;<p>CH3CH2CC    CH<&sol;p>&NewLine;<p>CH3CH2CH2C   CH<&sol;p>&NewLine;<p>CH3&lpar;CH2&rpar;3C  CH<&sol;td>&NewLine;<td width&equals;"128">-8108<&sol;p>&NewLine;<p>-103<&sol;p>&NewLine;<p>-122<&sol;p>&NewLine;<p>-90<&sol;p>&NewLine;<p>-132<&sol;td>&NewLine;<td width&equals;"105">-83&period;6<&sol;p>&NewLine;<p>-23&period;2<&sol;p>&NewLine;<p>8&period;1<&sol;p>&NewLine;<p>39&period;3<&sol;p>&NewLine;<p>71<&sol;td>&NewLine;<td width&equals;"143">&&num;8211&semi;<&sol;p>&NewLine;<p>&&num;8211&semi;<&sol;p>&NewLine;<p>&&num;8211&semi;<&sol;p>&NewLine;<p>0&period;695<&sol;p>&NewLine;<p>0&period;716<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Preparation and chemical properties of Ethyne&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Preparation<&sol;li>&NewLine;<li>i&rpar; Apparatus<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>ii&rpar; Procedure&colon; <&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Water is dripped over calcium carbide and is collected over water&period;<&sol;p>&NewLine;<p>Reasons for over-water collection&colon;-<&sol;p>&NewLine;<ul>&NewLine;<li>It’s insoluble in water<&sol;li>&NewLine;<li>Unreactive and lighter than water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Conditions<&sol;strong><&sol;li>&NewLine;<li>Room temperature<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Equation<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Properties of Ethyne<&sol;strong><&sol;li>&NewLine;<li><strong><em>i&rpar; Physical<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Colourless gas&comma; with a sweet smell when pure&period;<&sol;li>&NewLine;<li>Insoluble in water and can thus be collected over water&period;<&sol;li>&NewLine;<li>Solubility is higher in non- solvents    &ast;  Draw table on physical properties&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li><strong><em>Chemical properties<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Combustion<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Ethyne burns with a luminous and very sooty  flame&semi; due to the high percentage of carbon content&comma; some of which remains unburnt&period;<&sol;p>&NewLine;<ul>&NewLine;<li>In excess air&comma; the products are carbon dioxide and water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>In limited air&comma; they undergoes incomplete combustion&comma; forming a mixture of carbon and carbon dioxide&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  A sooty flame observed when a hydrocarbon burns in air is an indication of             unsaturation in the hydrocarbon&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Addition reactions<&sol;strong><&sol;p>&NewLine;<p>During  addition reactions of alkynes &lpar;Ethyne&rpar; the tripple bond breaks in stages&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Reaction with hydrogen &lpar;Hydrogenation&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;  <&sol;strong>This reaction occurs under special conditions i&period;e&period; &&num;8211&semi;  Presence of a Nickel catalyst<&sol;p>&NewLine;<p>Temperatures about 200<sup>0<&sol;sup>C<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Reaction with halogens<&sol;li>&NewLine;<li>i&rpar; Reaction with chlorine<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>With Bromine gas <&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>The red-brown bromine vapour is decoloursed&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equations<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Note&colon;   In this reaction Cl2 should be diluted with an inert&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Reason&colon;           Pure Cl2 reacts explosively with Ethyne&comma; forming carbon and HCl&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Reaction with Bromine liquid<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>When  Ethyne reacts with Bromine water&comma; the reddish – brown  colour of bromine water disappears&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Reason&colon;<&sol;strong>          The Bromine adds to the carbon  tripple bond leading to the      …… of                              1&semi;1&comma;2&comma;2 tetrabromoethane&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Equation<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>E&semi; Ethyne  also decolorizes acidified potassium permanganate&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Note&colon;<&sol;strong>  Decolourization of acidified potassium  permanganate  and bromine water are             tests for unsaturated hydrocarbons &lpar;alkanes and alkynes&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Reaction with hydrogen halides<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Uses of Ethyne<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Industrial manufacture of compounds like adhesives and plastics<&sol;li>&NewLine;<li>It’s used in the oxy-acetylene flame which is used for welding and cutting metals&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;

Leave a Reply

Your email address will not be published. Required fields are marked *