Category Archives: Latest Education News

A category dedicated to all education news in Kenya and other countries across the world. This is your one stop location for all news related to the education sector.

2019 KCPE Exams Top Candidates Per County; Migori County

In the just released 2019 Kenya Certificate of Primary Education, KCPE, exams Migori county had only one candidate in the top 100 list; nationally. The student; Mwita Fidel Castro from Kamagambo Adventist Primary School managed to score a total of 431 marks out of the possible 500. A total of 20 candidates managed to score over 418 marks.

Visit the KNEC News Portal for all the results and Analysis. Click on the Link Below;

Here are the top candidates from this county;

INDEXNO NAME GE ENG KIS KSL MAT SCI SSR TOT School_code School_Name
44717167010 MWITA FIDEL CASTRO M 85A 92A = = 85A 82A 87A 431 44717167 KAMAGAMBO ADVENTIST
44708135030 SUNDAY MIRUMBE KEBOYE M 84A 94A = = 85A 79A- 86A 428 44708135 MOMOKORO
44708115008 RHOBI NAOMI MURIMI F 91A 94A = = 83A 77A- 81A 426 44708115 TARANGANYA G. BOARDING
44717170004 DANIEL MAXWELL CEPHAS M 84A 94A = = 83A 80A 84A 425 44717170 RONGO SUCCESS ACADEMY
44708161001 BERNARD SALIM OOKO M 86A 95A = = 81A 80A 82A 424 44708161 KEHANCHA PROGRESSIVE
44744101002 OUMA BRIGHTON OTIENO M 88A 91A = = 83A 79A- 82A 423 44744101 MIGORI
44744107001 BONFINE ODHIAMBO M 87A 86A = = 83A 79A- 87A 422 44744107 PESODA COMPLEX ACADEMY
44748053003 BOKE FAITH CHACHA F 85A 93A = = 83A 79A- 81A 421 44748053 NYABIRONGO GIRLS BOARDING
44748022004 YVONNE ROBI MASIAGA F 87A 90A = = 83A 80A 81A 421 44748022 REV. DAVID DUVESKOG
44739114039 OTIENO AGNETA MAKUNGU F 80A 94A = = 85A 80A 82A 421 44739114 ANINDO NAZARENE
44707104001 OTIENO STEPHEN OMONDI M 91A 84A = = 83A 79A- 84A 421 44707104 KADIKA
44748001001 KIMANI PETER NJOROGE M 82A 92A = = 85A 77A- 84A 420 44748001 ST. ANNES ISIBANIA  PRIMARY SCHOOL
44729311001 JOSEPH SONIA DARIZU F 89A 91A = = 82A 76A- 82A 420 44729311 KIRANDA GIRLS
44717190001 MISATI RACHEL CHINTA F 84A 97A = = 79A- 74B+ 86A 420 44717190 MOAD ACADEMY
44744110001 BIKO CAROL AKOTH F 87A 91A = = 82A 77A- 82A 419 44744110 SUNA JUNIOR ACADEMY
44717170001 CECILY ACHIENG OLUOCH F 85A 91A = = 85A 76A- 82A 419 44717170 RONGO SUCCESS ACADEMY
44717170003 EASTER NALIAKA KISACHE F 84A 94A = = 85A 80A 76A- 419 44717170 RONGO SUCCESS ACADEMY
44748053002 WEGESA CELESTINE WANKURU F 83A 85A = = 85A 79A- 86A 418 44748053 NYABIRONGO GIRLS BOARDING
44748001005 MOIGE ANNET NYABOGA F 85A 95A = = 79A- 82A 77A- 418 44748001 ST. ANNES ISIBANIA  PRIMARY SCHOOL
44739133002 OKINDA NICHOLAS OMONDI M 81A 91A = = 85A 84A 77A- 418 44739133 SONY SUGAR

 

Also read:

Riokindo Boys Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Riokindo Boys Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

SCHOOL’S NAME RIKIONDO B0YS
Total Candidates/ Entry 756
A (Plain) 1
A- (Minus) 38
B+ (Plus) 146
B (Plain) 381
B- (Minus) 161
C+ (Plus) 24
C (Plain) 3
C- (Minus) 0
D+ (Plus) 0
D (Plain) 0
D- (Minus) 0
E 0
X (Absent) 2
Y (Cancelled) 0
U (Not Graded) 7
P (Pended) 0
W (withheld) 0
2024 MEAN SCORE 9.099
2023 MEAN SCORE 6.214
2022 MEAN SCORE 7.766
DEVIATION 2.885
2024 MEAN GRADE B (plain)
Position in Kisii County 3
University Direct Entry (C+ & above) 751
% Transition to university 99.33862
Physical Location: Sub County KENYENYA

Verified KCSE Results Analysis For All Schools.

Nyakoiba Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Riokindo Boys Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Riokindo Girls Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Mesabakwa Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Nyabioto Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Nyakongo Boys KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Kebirigo Boys KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Nyambaria High School KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Kiang’inda Secondary School KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

St Theresa’s Gekano Girls KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Menyenya SDA KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Riyabe Mixed KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

St Joseph’s Etono Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Marani PAG Girls KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

St Peter’s Nyakemincha KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Nyansabakwa Boys KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Nyaikuro SDA KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

St Cyprian Biticha KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Matongo Boys KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Previous page        Next page

Riokindo Boys Secondary KCSE 2024/2025 Full Results Analysis {Verified Knec Official Results}

Queen Of Peace Nembu Girls School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Queen Of Peace Nembu Girls School is a public Girls’ County Boarding School that is located at Gatundu Subcounty in Kiambu County of Central Region, Kenya. The School’s Official Phone Number Contact is: 0729908445.

Key Details about the school.

Country where found: Kenya.

Region: Central.

County: Kiambu.

Subcounty: Thika East.

School Type/ Ownership: A Public School.

Nature os School/ CBE Level: Senior School (SS).

Category: Regular School

School’s Official Name: Queen Of Peace Nembu Girls School 

Sex: Girls’ School.

School Cluster/ Level: County School whose Classification is C3.

Accomodation Type: Boarding School.

Knec Code: 11212118

School’s Official Phone Number: 0729908445 ;

Email Address. nembusecondary@gmail.com

Subject Combinations Offered at Queen Of Peace Nembu Girls School

View all available subject combinations at this school

STEM

11
APPLIED SCIENCESCode: ST2007
Business Studies,Computer Studies,Physics
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2067
Agriculture,Computer Studies,Physics
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2091
Advanced Mathematics,Agriculture,Home Science
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2075
Agriculture,Geography,Physics
3 SubjectsSTEM
PURE SCIENCESCode: ST1042
Agriculture,Biology,Chemistry
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2097
Biology,Business Studies,Computer Studies
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2077
Advanced Mathematics,Business Studies,Computer Studies
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2040
Advanced Mathematics,Biology,Geography
3 SubjectsSTEM
PURE SCIENCESCode: ST1016
Advanced Mathematics,Chemistry,Geography
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2047
Agriculture,Business Studies,Computer Studies
3 SubjectsSTEM
PURE SCIENCESCode: ST1007
Advanced Mathematics,Biology,Physics
3 SubjectsSTEM

SOCIAL SCIENCES

6
HUMANITIES & BUSINESS STUDIESCode: SS2019
Christian Religious Education,Geography,History & Citizenship
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2061
Business Studies,Geography,Literature in English
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2024
Computer Studies,Geography,History & Citizenship
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2056
Advanced Mathematics,Business Studies,Geography
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2100
Business Studies,History & Citizenship,Literature in English
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2035
Christian Religious Education,Fasihi ya Kiswahili,Geography
3 SubjectsSOCIAL SCIENCES

ARTS & SPORTS SCIENCE

1
ARTSCode: AS1021
Computer Studies,Fine Arts,Music & Dance
3 SubjectsARTS & SPORTS SCIENCE

📍 School Information

How to Select Grade 10 Subjects and schools

To select Grade 10 schools and subjects under the Competency-Based Curriculum (CBC) in Kenya, Grade 9 learners should first choose a career pathway (STEM, Social Sciences, or Arts & Sports Science). Then, they’ll select three subject combinations within that pathway and finally, choose four schools for each combination, totaling 12 schools. To select preferred Grade 10 Schools and Subject Combinations, use the Ministry of Education portal selection.education.go.ke.
  1. 1. How you can Choose a Career Pathway:

    • Identify your interests and potential career aspirations.
    • Select one of the three pathways: STEM, Social Sciences, or Arts & Sports Science.
    • Confirm your choice to proceed with the pathway.
  2. 2. Select Subject Combinations:

    • The portal will provide you with a list of subject combinations available within your chosen pathway.
    • Choose three subject combinations that align with your interests and strengths.
  3. 3. Select Preferred Senior Schools:

    • For each subject combination, select four schools from the available clusters.
    • This ensures a diverse range of options and equal representation from different categories of schools.
    • A total of 12 schools will be selected: 4 for the first subject combination, 4 for the second, and 4 for the third.

    LIST OF ALL SENIOR SCHOOLS PER COUNTY.

    West Pokot County Senior Schools.

    Wajir County Senior Schools

    Vihiga County Senior Schools

    Uasin Gishu County Senior Schools

    Turkana County Senior Schools

    Trans-Nzoia County Senior Schools

    Tharaka Nithi County Senior Schools

    Tana River County Senior Schools

    Taita Taveta County Senior Schools

    Siaya County Senior Schools

    Samburu County Senior Schools

    Nyeri County Senior Schools

    Nyandarua County Senior Schools

    Nyamira County Senior Schools

    Narok County Senior Schools

    Nandi County Senior Schools

    Nakuru County Senior Schools

    Nairobi County Senior Schools

    Murang’a County Senior Schools

    Mombasa County Senior Schools

    Migori County Senior Schools

    Meru County Senior Schools

    Marsabit County Senior Schools

    LMandera County Senior Schools

    Makueni County Senior Schools

    Machakos County Senior Schools

    Lamu County Senior Schools

    Laikipia County Senior Schools

    Kwale County Senior Schools

    Kitui County Senior Schools

    Kisumu County Senior Schools

    Kisii County Senior Schools

    Kirinyaga County Senior Schools

    Kilifi County Senior Schools

    Kiambu County Senior Schools

    Kericho County Senior Schools

    Kakamega County Senior Schools

    Kajiado County Senior Schools

    Isiolo County Senior Schools

    Homa Bay County Senior Schools

    Garissa County Senior Schools

    Embu County Senior Schools

    Elgeyo-Marakwet County Senior Schools

    Busia County Senior Schools

    Bungoma County  Senior Schools

    Baringo County Senior Schools

    List of all Senior Schools in Bomet County

    Nyamira County best, top secondary schools; Indepth analysis

Bachelor of Science in Computer Science course; Requirements, duration, job opportunities and universities offering the course

The bachelor of science degree in computer science is a four-year programme that aims at equipping students with sufficient theory to be able to adapt to new technologies and new ideas in the rapidly growing computer industry.  Students are prepared to work in the following areas: (i) designing and building software;(ii)developing effective ways to solve computing problems, such as storing information in databases, sending data over networks; and (iii)providing new approaches or devising new and better ways of using computers to address new challenges in areas such as robotics, computer vision and digital forensics.

The first two years are dedicated to computer science fundamentals including data structures, differential equations, algorithms, statistics, and database systems.  In the last years students take more advanced courses including electives.  The courses includes transaction processing systems, artificial intelligence, computer graphics, user interface, architecture, distributed computing systems, neural systems, parallel computing systems and digital image processing.

FOR A COMPLETE GUIDE TO ALL SCHOOLS IN KENYA CLICK ON THE LINK BELOW;

Here are links to the most important news portals:

Career Opportunities

Career opportunities occur in a wide variety of settings including large or small software companies, large or small computer services companies, and large organizations of all kinds (industry, government, banking, healthcare, etc.).  A career path in this area can also involve advanced graduate work, followed by a position in a university or industrial research and development laboratory; or entrepreneurial activity.

For a complete guide to all universities and Colleges in the country (including their courses, requirements, contacts, portals, fees, admission lists and letters) visit the following, sponsored link:

REQUIREMENTS FOR THE BACHELOR OF SCIENCE IN COMPUTER SCIENCE COURSE

On the KUCCPS site, this course is placed under cluster 9.
CLUSTER SUBJECT 1 MAT A
CLUSTER SUBJECT 2 PHY
CLUSTER SUBJECT 3 BIO / CHE / HAG / GEO / CRE / IRE / HRE
CLUSTER SUBJECT 4 BIO / CHE / HAG / GEO / CRE / IRE / HRE / HSC / ARD / AGR / WW / MW / BC / PM / ECT / DRD / AVT / CMP / FRE / GER / ARB / KSL / MUC / BST
NOTE: A subject may only be considered ONCE in this section

MINIMUM SUBJECT REQUIREMENTS

SUBJECT 1 MAT A C+
SUBJECT 2 PHY C+

For all information related to students placement in Universities and Colleges, click on the link below:

INSTITUTIONS WHERE THE PROGRAMME IS OFFERED

Some of the institutions offering this programme are:

ANU AFRICA NAZARENE UNIVERSITY
AUC ALUPE UNIVERSITY COLLEGE
COPUK CO-OPERATIVE UNIVERSITY OF KENYA
CU CHUKA UNIVERSITY
CU CHUKA UNIVERSITY
CUEA CATHOLIC UNIVERSITY OF EAST AFRICA
DAYSTAR DAYSTAR UNIVERSITY
DKUT DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY
EU EGERTON UNIVERSITY
GRETSA GRETSA UNIVERSITY
GU GARISSA UNIVERSITY
JKUAT JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

KABU KABARAK UNIVERSITY
KARU KARATINA UNIVERSITY
KBBU KIBABII UNIVERSITY
KCA KCA UNIVERSITY
KHEU KENYA HIGHLANDS EVANGELICAL UNIVERSITY
KSU KISII UNIVERSITY
KSU KISII UNIVERSITY
KU KENYATTA UNIVERSITY
KWUST KIRIRI WOMENS UNIVERSITY OF SCIENCE AND TECHNOLOGY
KYU KIRINYAGA UNIVERSITY
LU LAIKIPIA UNIVERSITY
MCKU MACHAKOS UNIVERSITY
MMARAU MAASAI MARA UNIVERSITY
MMU MULTIMEDIA UNIVERSITY OF KENYA
MMUST MASINDE MULIRO UNIVERSITY OF SCIENCE & TECHNOLOGY
MNUC KENYATTA UNIVERSITY – MAMA NGINA UNIVERSITY COLLEGE
MSU MASENO UNIVERSITY
MU MOI UNIVERSITY
MUST MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
MUT MURANGA UNIVERSITY OF TECHNOLOGY
PU PWANI UNIVERSITY
PUEA PRESBYTERIAN UNIVERSITY OF EAST AFRICA
RNU RONGO UNIVERSITY
RU RIARA UNIVERSITY
SEKU SOUTH EASTERN KENYA UNIVERSITY
SPU ST PAULS UNIVERSITY
TEAU THE EAST AFRICAN UNIVERSITY
THRKUC THARAKA UNIVERSITY COLLEGE
THRKUC THARAKA UNIVERSITY COLLEGE
UMMA UMMA UNIVERSITY
UOE UNIVERSITY OF ELDORET
UOEM UNIVERSITY OF EMBU
UOK UNIVERSITY OF KABIANGA
UON UNIVERSITY OF NAIROBI

RELATED SPONSORED LINKS:

KCSE 2019 results analysis and ranking of schools per county: Nyamira County- Masaba North

Nyakongo High school led in the KCSE 2019 examination in Masaba North Sub county; Nyamira County. The school which had a total of ninety two (92) recorded a mean score of 5.4 (C- minus) up from 5.27 in 2018; posting a deviation of +0.13. In terms of university qualification, a total of 33 students scored a mean grade of C+ (plus) and above; representing 36.7% of the total candidates’ population.

Nyanchonori and St. Cyprian Biticha scooped position 2 and 3 respectively.

FOR A COMPLETE GUIDE TO ALL SCHOOLS IN KENYA (KCSE, KCPE PERFORMANCE, LOCATION, CONTACTS, FEES, ADMISSIONS & MORE) CLICK ON THE LINK BELOW;

Here is a list of complete results and ranking for schools in Masaba North Sub County:

S/NO SCHOOL ENTRY A A- B+ B B- C+ C C- D+ D D- E X Y U P W MEAN
. . M F T M F M F M F M F M F M F M F M F M F M F M F M F M F M F M F M F M F 2019 2018 2017 DEV
1 NYAKONGO 92 0 92 0 0 0 0 0 0 2 14 17 11 11 14 17 4 0 2 0 0 0 0 0 0 0 0 5.4 5.27 4.06 0.13
2 NYANCHONORI 28 40 68 0 0 0 0 0 0 3 1 2 1 4 5 5 5 6 4 5 10 2 8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4.926 4.64 3.9 0.286
3 ST CYPRIAN BITICHA 24 31 55 0 0 0 0 0 0 2 0 1 4 0 6 6 4 5 4 14 5 4 14 5 4 0 0 0 0 0 0 0 0 0 0 0 4.909 3.878 3.857 1.031
4 RIYABE 95 73 168 0 0 0 0 1 0 5 2 4 6 9 9 8 6 16 20 20 13 25 10 7 7 0 0 0 0 0 0 0 0 0 0 0 0 4.81 4.598 4.482 0.212
5 NYANKOBA 26 8 34 0 0 0 0 0 1 1 0 2 0 1 1 1 1 7 2 3 1 10 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 4.647 3.228 3.081 1.419
6 ST. DON BOSCO 80 41 121 0 0 1 0 2 0 0 1 4 3 7 5 7 6 7 5 15 10 16 20 5 4 0 2 0 0 0 0 0 0 0 0 0 0 4.612 4.431 3.43 0.181
7 RIOOGA 154 192 346 0 0 0 0 0 0 1 1 9 9 20 7 25 26 30 23 35 25 61 39 14 20 0 0 1 0 0 0 0 0 0 0 0 4.421 4.373 5 0.048
8 KERONGETA 21 14 35 0 0 0 0 0 0 0 0 0 1 0 3 2 2 7 6 3 7 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 4.285 2.479 2.6 1.806
9 OMOYO GIRLS 0 51 51 0 0 0 0 0 0 0 1 1 2 12 3 8 19 5 0 0 0 0 0 0 0 0 0 0 4.255 3.521 3.318 0.734
10 RIGOMA GIRLS 0 46 46 0 0 0 0 0 0 0 0 0 3 1 5 10 8 14 5 0 0 0 0 0 0 0 0 0 0 0 0 4.24 3.45 3.133 0.79
11 ESANI 40 21 61 0 0 0 0 0 0 1 0 1 1 3 2 3 2 2 5 5 3 5 4 8 10 2 3 0 0 0 0 0 0 0 1 3.738 3.236 2.407 0.502
12 MONG’ONI 29 20 49 0 0 0 0 0 0 0 0 0 2 1 0 3 2 3 3 8 5 10 6 7 8 0 0 0 1 0 0 0 0 0 0 0 0 3.672 2.87 3.02 0.802
13 MOCHENWA 81 28 109 0 0 0 0 0 0 1 0 2 2 5 4 3 2 4 2 10 7 25 14 15 15 1 3 0 0 0 0 0 0 0 0 0 0 3.623 3.748 3.986 -0.12
14 MACHURURIATI 13 8 21 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 2 1 6 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 3.57 3.04 2.739 0.53
15 RIAKWORO 19 20 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 4 2 4 5 7 5 4 0 0 0 0 0 0 0 0 0 0 3.564 2.917 2.615 0.647
16 ST. LUKES NYASUMI 16 18 34 0 0 0 0 0 0 0 0 2 1 1 0 1 1 0 0 4 2 3 7 5 7 0 0 0 0 0 0 0 0 0 0 0 0 3.5 3.72 2.47 -0.22
17 ST DANES ERONGE 63 55 118 0 0 0 0 0 1 0 1 2 3 1 4 5 6 7 9 3 20 10 19 26 0 1 0 0 0 0 0 0 0 0 0 0 3.46 4.15 4.036 -0.69
18 RIAMONI 23 45 68 0 0 0 0 0 0 0 0 0 0 2 0 3 7 2 2 1 9 7 10 8 14 0 3 0 0 0 0 0 0 0 0 0 0 3.412 3.548 3.292 -0.14
19 NYARIACHO 25 16 41 0 0 0 0 0 0 0 2 1 2 0 0 0 0 3 2 3 2 6 6 10 1 3 0 0 0 0 0 0 0 0 0 0 3.24 2.85 2.21 0.39
20 METAMAYWA 35 53 88 0 0 0 0 0 0 0 0 1 0 1 0 4 2 6 5 8 10 19 10 8 13 0 2 0 1 0 0 0 0 0 0 0 0 3.239 2.846 3.479 0.393
21 ST FRANCIS NYATIEKO 20 18 38 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 8 5 8 2 11 0 0 0 0 0 0 0 0 0 0 0 0 3.17 2.857 3.708 0.313
22 SUNGUTUTA 8 7 15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 2 3 1 3 0 1 0 0 0 0 0 0 0 0 0 0 3.133 2.5 1.964 0.633
23 KEBIRICHI 20 28 48 0 0 0 0 0 0 0 0 0 1 2 1 3 1 0 0 1 2 6 5 13 11 1 1 0 0 0 0 0 0 0 0 0 0 3.083 2.981 2.912 0.102
24 KARANTINI 25 18 43 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3 3 3 1 4 3 8 12 2 1 0 0 0 0 0 0 0 0 0 0 3.047 2.758 2.652 0.289
25 ST ALBERT GIRANGO 18 15 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 4 8 5 7 5 0 1 0 0 0 0 0 0 0 0 0 0 2.818 2.069 2.143 0.749
26 MASABA HIGH 16 15 31 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 3 4 10 11 0 0 0 0 0 0 0 0 0 0 0 0 2.645 2.204 1.747 0.441
27 ST YUVINALIS NYAMAKOROTO 27 16 43 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 2 1 7 1 10 7 5 5 0 0 0 0 0 0 0 0 0 0 2.605 2.36 1.88 0.245
28 MATUTU PAG 49 30 79 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 4 2 6 10 30 16 2 4 0 0 0 0 0 0 0 0 0 0 2.557 2.54 3.23 0.017
29 KEGOGI PAG 20 32 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 3 5 18 20 1 0 0 0 0 0 0 0 0 0 0 0 2.346 2.33 1.761 0.016
30 RIOMANGA 33 16 49 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 5 3 20 11 5 1 0 0 0 0 0 0 0 0 0 0 2.327 2.132 1.846 0.195
31 RIOSIAGO 12 8 20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2 0 5 3 1 5 1 0 0 0 0 0 0 0 0 0 2.316 2.26 1.904 0.056
32 BOCHARIA 23 20 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 2 17 12 3 2 0 0 0 0 0 0 0 0 0 0 2.023 2.422 2.369 -0.4
33 NYAIBASA 3 22 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 14 1 7 0 0 0 0 0 0 0 0 0 0 1.84 1.79 2 0.05
M.S.S. 1138 1025 2163 0 0 1 0 3 2 15 8 46 36 89 41 95 94 117 121 176 157 300 239 275 296 34 45 5 2 0 0 0 0 0 1 0 0 3.498 3.151 0.347

 

FOR A COMPLETE GUIDE TO ALL SCHOOLS IN KENYA (KCSE, KCPE PERFORMANCE, LOCATION, CONTACTS, FEES, ADMISSIONS & MORE) CLICK ON THE LINK BELOW;

Here are links to the most important news portals:

Maranda High, Sironga present highest number of 2019 KCSE candidates for Boys and Girls’ National Schools respectively; Details

National Schools are the most prestigious and top most secondary schools in Kenya. These schools admit top students from all parts of the Country. These schools, just like other schools are either mixed or single sex schools. These are the most sought after schools. The schools provide magnificent learning and boarding facilities.

For complete information on all schools in Kenya, including best private and public schools, please visit this link: Schools Portal; Complete guide to all schools in Kenya

Read also;

2019 KCSE CANDIDATURE

Sironga Girls’ High School from Nyamira County leads in the 2019 KCSE candidature. The school has a total of 580 candidates and is followed by Nyabururu Girls, Kirima and Butere Girls who have registered 501, 460, and 441 candidates; respectively. In Boys, Maranda leads with a candidature of 705. The table below summarizes the 2019 KCSE candidature for all the National Schools in Kenya;
School  Code School  Name Category Type Cluster KCSE 2019 CANDIDATURE
42700005 MARANDA HIGH National Boys C1 705
23500014 ST. JOSEPH’S BOYS HIGH SCHOOL – KITALE National Boys C4 590
43700012 SIRONGA GIRLS HIGH SCHOOL National Girls C2 580
40700003 NYABURURU GIRLS National Girls C1 501
39700001 MASENO SCHOOL National Boys C3 477
43700008 NYAMBARIA  HIGH SCHOOL National Boys C4 477
38600006 CHAVAKALI HIGH SCHOOL National Boys C4 471
24500022 CHEWOYET HIGH SCHOOL National Boys C2 465
07200009 KARIMA GIRLS National Girls C4 460
40700002 KISII HIGH National Boys C1 445
37600005 BUTERE GIRLS HIGH SCHOOL National Girls C4 441
11200001 ALLIANCE HIGH SCHOOL National Boys C3 423
24500004 ST.THERESA’S TARTAR GIRLS SECONDARY SCHOOL National Girls C1 416
10200013 MUGOIRI GIRLS HIGH SCHOOL National Girls C4 416
20400008 MOI FORCES ACADEMY – NAIROBI National Boys C3 410
41700004 ASUMBI GIRLS National Girls C1 405
37600001 KAKAMEGA SCHOOL National Boys C1 398
11200002 ALLIANCE GIRLS’ HIGH SCHOOL National Girls C3 396
42700007 NGIYA GIRLS HIGH SCHOOL National Girls C4 392
29500006 KAPSABET BOYS National Boys C1 379
09200012 BARICHO HIGH SCHOOL National Boys C4 375
41700010 MBITA HIGH SCHOOL National Boys C4 369
38600003 BUNYORE GIRLS National Girls C1 363
20400002 NAIROBI SCHOOL National Boys C3 353
26500001 MOI GIRLS’ HIGH SCHOOL- ELDORET National Girls C3 351
28500006 KABIANGA HIGH SCHOOL National Boys C2 348
35600008 S.A. KOLANYA GIRLS SECONDARY SCHOOL National Girls C2 348
11200003 MANGU HIGH SCHOOL National Boys C3 343
39700009 KISUMU GIRLS HIGH SCHOOL National Girls C4 342
11200006 MARYHILL GIRLS HIGH SCHOOL National Girls C3 337
36600002 LUGULU GIRLS National Girls C1 327
20400001 LENANA SCHOOL National Boys C3 317
44700006 KANGA HIGH National Boys C1 316
20400003 THE KENYA HIGH SCHOOL National Girls C3 315
10200008 MURANGA HIGH National Boys C1 311
25500023 TENWEK HIGH SCHOOL National Boys C2 309
08200007 KAGUMO HIGH National Boys C1 308
27500008 UTUMISHI BOYS ACADEMY National Boys C3 308
27500007 MOI FORCES ACADEMY LANET National Girls C3 306
11200004 LIMURU GIRLS’ SCHOOL National Girls C3 303
19300004 CHOGORIA GIRLS National Girls C1 299
15300002 MERU SCHOOL National Boys C1 294
12300001 MACHAKOS BOYS National Boys C1 290
03100007 SHIMO-LA-TEWA SCHOOL National Boys C4 289
36600004 FRIENDS KAMUSINGA National Boys C1 287
20400006 PANGANI GIRLS National Girls C1 271
02100005 KWALE HIGH SCHOOL National Boys C4 270
23500003 ST BRIGIDS KIMININI National Girls C1 268
34500010 ST PATRICK ITEN National Boys C1 267
20400004 STAREHE BOYS’ CENTRE & SCHOOL National Boys C3 267
11200005 LORETO HIGH SCHOOL LIMURU National Girls C3 266
08200010 BISHOP GATIMU NGANDU GIRLS HIGH SCHOOL National Girls C4 263
34500017 MOI KAPSOWAR GIRLS National Girls C4 263
09200011 KABARE GIRLS’ HIGH SCHOOL National Girls C4 261
18300003 MAKUENI BOYS National Boys C1 259
32500015 OLE TIPIS GIRLS SECONDARY SCHOOL National Girls C4 258
27500002 NAKURU HIGH SCHOOL National Boys C3 255
28500005 KIPSIGIS GIRLS’ HIGH SCHOOL National Girls C1 250
15300012 ST. MARY’S GIRLS HIGH SCHOOL IGOJI National Girls C4 247
47800005 MANDERA SECONDARY SCHOOL National Boys C2 241
14300006 MOI HIGH MBIRURI National Boys C1 239
35600007 BUTULA BOYS HIGH SCHOOL National Boys C4 239
13300005 MUTHALE GIRLS National Girls C1 235
27500009 NAKURU GIRLS’ HIGH SCHOOL National Girls C3 234
33500018 BARINGO BOYS HIGH SCHOOL National Boys C4 225
30500020 NJONJO GIRLS HIGH SCHOOL National Girls C4 222
45800002 NEP GIRLS HIGH National Girls C4 222
45800001 GARISSA HIGH National Boys C1 220
18300016 MBOONI GIRLS National Girls C2 218
47800006 MOI GIRLS SECONDARY SCHOOL – MANDERA National Girls C2 216
04100008 BAHARI GIRLS SECONDARY SCHOOL National Girls C2 213
29500025 ST. JOSEPH’S GIRLS – CHEPTERIT National Girls C2 208
14300011 SIAKAGO GIRLS HIGH SCHOOL National Girls C4 205
25500019 KAPLONG GIRLS SECONDARY SCHOOL National Girls C4 204
04100002 RIBE BOYS National Boys C1 203
01100003 KENYATTA HIGH MWATATE National Boys C1 200
03100001 MAMA NGINA GIRLS National Girls C1 200
01100004 BURA GIRLS National Girls C1 197
02100006 MATUGA GIRLS HIGH SCHOOL National Girls C4 195
31500011 MOI GIRLS ISINYA National Girls C1 194
21500012 LODWAR BOYS HIGH SCHOOL National Boys C4 193
19300010 IKUU BOYS HIGH SCHOOL National Boys C4 188
30500021 NANYUKI HIGH SCHOOL National Boys C2 187
31500026 OLOOLAISER HIGH SCHOOL National Boys C2 187
12300013 KATHIANI GIRLS SCHOOL National Girls C2 178
22500013 MARALAL HIGH SCHOOL National Boys C4 176
07200014 NYANDARUA HIGH SCHOOL National Mixed C2 175
46800003 WAJIR HIGH SCHOOL National Boys C2 166
46800004 WAJIR GIRLS SECONDARY SCHOOL National Girls C2 163
06100012 MPEKETONI SECONDARY SCHOOL National Boys C2 159
16300008 MOI GIRLS SECONDARY SCHOOL-MARSABIT National Girls C4 158
13300007 KITUI HIGH National Boys C4 148
44700011 MOI NYABOHANSE GIRLS HIGH SCHOOL National Girls C2 147
06100011 LAMU GIRLS SECONDARY SCHOOL National Girls C2 124
20400009 STAREHE GIRLS’ CENTRE National Girls C3 119
21500021 TURKANA GIRLS’ SECONDARY SCHOOL National Girls C2 118
32500016 KILGORIS BOYS SECONDARY SCHOOL National Boys C4 114
22500024 KISIMA GIRLS HIGH SCHOOL National Girls C2 111
05100009 HOLA BOYS SECONDARY SCHOOL National Boys C2 82
04125131 SAHAJANAND SPECIAL SCHOOL-CENTRE OF EXCELLENCE National Mixed CS 71
08219116 REV. MUHORO SCHOOL FOR THE DEAF National Mixed CS 70
11207106  S.A. HIGH SCHOOL FOR THE BLIND National Mixed CS 67
36612116 NALONDO CBM SECONDARY FOR PHYSICALLY HANDCAPPED National Mixed CS 66
39741015 JOYLAND SPECIAL SECONDARY SCHOOL National Mixed CS 65
17300009 ISIOLO GIRLS HIGH SCHOOL National Girls C4 63
11207105    S.A. JOYTOWN SECONDARY SCHOOL FOR PH National Mixed CS 62
28522542 ST.PAUL’S CHARERA SPECIAL HIGH SCHOOL National Mixed CS 56
05100010 NGAO GIRLS SECONDARY SCHOOL National Girls C2 52
16300014 MOYALE SECONDARY SCHOOL National Boys C2 50
37617206 ST. ANGELA MUMIAS VOCATIONAL SCHOOL FOR DEAF National Girls CS 50
44717106 KUJA SPECIAL SCHOOL FOR THE DEAF National Mixed CS 49
03126103 M.S.S FOR THE PHYSICALLY HANDICAPPED National Boys CS 48
39734313 KIBOS VISUALLY IMPARED SECONDARY National Mixed CS 43
42712208 FR. OUDERAA SEC. SCHOOL FOR THE HEARING IMPAIRED National Mixed CS 42
35620109 ST. BRIDGIT AKOREET SECONDARY AND VOCATIONAL TRAIN National Mixed CS 41
29513104 KAPSABET SECONDARY SCHOOL FOR THE DEAF National Mixed CS 38
15319324 ST. LUCY’S HIGH SCHOOL FOR THE VISUALLY IMPAIRED National Mixed CS 34
04102116 PWANI SECONDARY/VOCATIONAL SCHOOL FOR THE DEAF National Mixed CS 32
12301796 MACHAKOS SECONDARY SCHOOL FOR THE DEAF National Mixed CS 32
25533120 ST. KIZITO SECONDARY SCHOOL FOR THE HEARING IMPAIR National Girls CS 29
10204114 MURANGA SCHOOL FOR HEARING IMPAIRED National Mixed CS 27
11232113 PCEA KAMBUI SCHOOL FOR HEARING IMPAIRED National Mixed CS 27
28571104 KEDOWA SPECIAL SECONDARY SCHOOL National Mixed CS 27
24505117 ST. FRANCIS SECONDARY SCHOOL FOR THE VISUALLY IMPA National Mixed CS 24
39733224 ST. GEORGE SPECIAL SECONDARY SCHOOL National Mixed CS 21
17300015 GARBATULA HIGH SCHOOL National Boys C2 20
27511533 NGALA SECONDARY SCHOOL FOR THE DEAF National Mixed CS 18
42712113 NICO HAUSER SPECIAL SCHOOL FOR THE VISUALLY IMPAIR National Mixed CS 18
40703418 GIANCHERE FRIENDS SEC/VOC FOR THE HEARING IMPAIRED National Mixed CS 17
36628147 JOYVALLEY S.A SPECIAL SECONDARY SCHOOLFOR P.H National Mixed CS 16
14312122 ACK MARY MAGDALENE HIGH SCHOOL FOR THE DEAF National Mixed CS 14
46802016 WAJIR SPECIAL SECONDARY FOR THE DEAF National Mixed CS 13
38633221 ST. CLARE EBUKUYA SECONDARY SCHOOL FOR HEARING IMP National Mixed CS 12
02105120 KWALE HIGH SCHOOL FOR THE DEAF National Mixed CS 8
20407056 KASARANI TREESIDE SECONDARY SCHOOL FOR THE DEAF National Mixed CS 6
37625123 ACK EMATUNDU BOYS SECONDARY/VOCATIONAL SCHOOL National Boys CS 5
 

Also read:

KCSE 2022/2023 Machakos County Best Performing Schools

Machakos County Best Performing Schools at 2022/2023 Exams

Position Nationally Name of School Region County Mean Score Mean Grade
66 KATHIANI GIRLS HIGH Eastern Machakos 9.1235 B{plain}
167 MACHAKOS BOYS Eastern Machakos 8.0081 B-{minus)
198 CARING HEARTS HIGH SCHOOL Eastern Machakos 7.76 B-{minus)
223 MISYANI GIRLS HIGH Eastern Machakos 7.4823 C+{plus}
261 Machakos Girls Eastern Machakos 7.1406 C+{plus}
290 Kabaa High Eastern Machakos 6.98 C+{plus}
315 MASINGA BOYS HIGH Eastern Machakos 6.455 C (plain)

Meru University Latest Kuccps Degree Course List, Requirements, Fees & Duration

Meru University Latest Kuccps Degree Course List, Requirements, Fees & Duration

# PROGRAMME CODE PROGRAMME NAME INSTITUTION TYPE YEAR 1 – PROGRAMME COST 2023 CUTOFF 2022 CUTOFF 2021 CUTOFF
1 1240107 BACHELOR OF SCIENCE (ACTUARIAL SCIENCE) KSH 244,800 19.914 20.100
2 1240109 BACHELOR OF SCIENCE IN MATHEMATICS KSH 244,800 19.914 20.100
3 1240112 BACHELOR OF SCIENCE IN BIOCHEMISTRY KSH 244,800 16.974 17.459
4 1240115 BACHELOR OF SCIENCE IN COMPUTER SCIENCE KSH 244,800 33.475 28.437
5 1240120 BSC (SCIENCE) KSH 244,800 16.974 17.459
6 1240122 BACHELOR OF SCIENCE (AGRICULTURE) KSH 275,400 17.043 17.459
7 1240124 BACHELOR OF SCIENCE (FOOD SCIENCE AND TECHNOLOGY) KSH 275,400 17.043 17.459
8 1240132 BACHELOR OF SCIENCE (NURSING) KSH 275,400 40.451 39.676
9 1240133 BACHELOR OF COMMERCE (B.COM) KSH 183,600 21.444 22.544
10 1240135 BACHELOR OF EDUCATION ARTS KSH 183,600 27.652 26.687
11 1240137 BACHELOR OF EDUCATION (SCIENCE) KSH 244,800 30.648 29.519
12 1240146 BACHELOR OF SCIENCE IN ECONOMICS KSH 183,600 19.914 20.100
13 1240150 BACHELOR OF SCIENCE IN INFORMATION SCIENCE KSH 244,800 21.444 22.544
14 1240153 BACHELOR OF BUSINESS ADMINISTRATION KSH 183,600 21.444 22.544
15 1240163 BACHELOR OF SCIENCE STATISTICS KSH 244,800 19.914 20.100
16 1240170 BACHELOR OF SCIENCE IN PHYSICS KSH 244,800 16.974 17.459
17 1240182 BACHELOR OF COMMUNICATION & JOURNALISM KSH 204,000 30.372 29.808
18 1240185 BACHELOR OF SCIENCE HORTICULTURE KSH 275,400 17.043 17.459
19 1240187 BACHELOR OF SCIENCE AGRIBUSINESS MANAGEMENT KSH 204,000 16.974 17.459
20 1240189 BACHELOR OF SCIENCE IN HUMAN RESOURCE MANAGEMENT KSH 183,600 26.819 26.405
21 1240191 BACHELOR OF SCIENCE (FOOD SCIENCE AND NUTRITION) KSH 275,400 17.459
22 1240194 BACHELOR OF SCIENCE IN MEDICAL LABORATORY SCIENCES KSH 275,400 38.188 37.411
23 1240208 BACHELOR OF SCIENCE IN COMPUTER TECHNOLOGY KSH 244,800 18.638 19.223
24 1240224 BACHELOR OF SCIENCE IN HOSPITALITY AND TOURISM MANAGEMENT KSH 204,000 25.043 23.257
25 1240226 BACHELOR OF SCIENCE (BIOTECHNOLOGY) KSH 244,800 16.974 17.459
26 1240232 BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY KSH 244,800 29.029 27.427
27 1240244 BACHELOR OF BUSINESS INFORMATION TECHNOLOGY KSH 204,000 21.444 22.544
28 1240250 BACHELOR OF PROCUREMENT AND LOGISTICS MANAGEMENT KSH 183,600 21.444 22.544
29 1240281 BACHELOR OF SCIENCE IN MEDICAL MICROBIOLOGY KSH 244,800 16.974 17.459
30 1240294 BACHELOR OF SCIENCE (ANIMAL HEALTH AND PRODUCTION) KSH 275,400 25.625 17.459
31 1240309 BACHELOR OF SCIENCE (MATHEMATICS & COMPUTER SCIENCE) KSH 244,800 18.638 19.223
32 1240318 BACHELOR OF EDUCATION TECHNOLOGY (MECHANICAL ENGINEERING) KSH 336,600 24.377 16.787
33 1240319 BACHELOR OF EDUCATION TECHNOLOGY (ELECTRICAL & ELECTRONICS ENGINEERING) KSH 336,600 27.595 16.787
34 1240320 BACHELOR OF EDUCATION TECHNOLOGY (CIVIL ENGINEERING) KSH 336,600 24.909 16.787
35 1240336 DIPLOMA IN CIVIL ENGINEERING KSH 115,500
36 1240405 BACHELOR OF SCIENCE (HUMAN NUTRITION AND DIETETICS) KSH 275,400 17.459
37 1240409 BACHELOR OF SCIENCE DATA SCIENCE KSH 183,600 19.914 25.611
38 1240415 BACHELOR OF SCIENCE AGRICULTURAL EXTENSION AND EDUCATION KSH 183,600 26.202 24.811
39 1240421 BACHELOR OF SCIENCE (CROP PROTECTION) KSH 275,400 17.043
40 1240423 BACHELOR OF SCIENCE (COMMUNITY HEALTH & DEVELOPMENT) KSH 275,400 24.213 17.459
41 1240462 BACHELOR OF SCIENCE (BOTANY) KSH 244,800 17.459
42 1240464 BACHELOR OF SCIENCE (ZOOLOGY) KSH 244,800 17.459
43 1240466 BACHELOR OF SCIENCE IN APPLIED ACCOUNTING KSH 183,600 19.914 20.100
44 1240511 BACHELOR OF SCIENCE IN COMPUTER SECURITY AND FORENSICS KSH 244,800 18.638 19.223
45 1240527 BACHELOR OF TECHNOLOGY IN ELECTRICAL AND ELECTRONIC ENGINEERING KSH 336,600 29.277 31.055
46 1240532 BACHELOR OF TECHNOLOGY IN CIVIL ENGINEERING KSH 336,600 25.865 30.112
47 1240535 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING KSH 336,600 26.532 16.787
48 1240541 BACHELOR OF SCIENCE IN FINANCE KSH 183,600 19.914 20.100
49 1240543 BACHELOR OF SCIENCE (HEALTH RECORDS & INFORMATION MGT.) KSH 204,000 25.452 17.459
50 1240555 DIPLOMA IN MARKETING KSH 115,500
51 1240556 DIPLOMA IN FOOD AND BEVERAGE SALES MANAGEMENT KSH 115,500
52 1240560 BACHELOR OF SCIENCE IN CLINICAL MEDICINE AND COMMUNITY HEALTH KSH 275,400 40.824 40.682
53 1240603 BACHELOR OF SCIENCE (FOOD SCIENCE AND MANAGEMENT) KSH 275,400 17.459
54 1240607 DIPLOMA IN ELECTRICAL ENGINEERING KSH 115,500
55 1240657 BACHELOR OF SCIENCE IN HEALTH SYSTEMS MANAGEMENT KSH 275,400 17.043 17.459
56 1240687 DIPLOMA IN CATERING AND ACCOMMODATION KSH 115,500
57 1240701 DIPLOMA IN AUTOMOTIVE ENGINEERING KSH 115,500
58 1240706 DIPLOMA IN BUILDING TECHNICIAN (CDACC) KSH 115,500
59 1240708 DIPLOMA IN MECHANICAL ENGINEERING (PLANT OPTION) KSH 115,500
60 1240709 BACHELOR OF SCIENCE IN MATHEMATICS & PHYSICS KSH 244,800 19.914 20.100
61 1240711 DIPLOMA IN APPLIED BIOLOGY KSH 115,500
62 1240712 DIPLOMA IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY KSH 115,500
63 1240714 DIPLOMA IN ANALYTICAL CHEMISTRY KSH 115,500
64 1240722 DIPLOMA IN AGRICULTURE KSH 115,500
65 1240727 DIPLOMA IN PROJECT MANAGEMENT KSH 115,500
66 1240732 BACHELOR OF SCIENCE (PUBLIC HEALTH) KSH 275,400 30.579 27.910
67 1240737 DIPLOMA IN BAKING TECHNOLOGY KSH 115,500
68 1240750 DIPLOMA IN INFORMATION SCIENCE KSH 115,500
69 1240751 DIPLOMA IN BUSINESS MANAGEMENT KSH 115,500
70 1240755 DIPLOMA IN HUMAN RESOURCE MANAGEMENT KSH 115,500
71 1240758 DIPLOMA IN INFORMATION COMMUNICATION TECHNICIAN KSH 115,500
72 1240786 BACHELOR OF SCIENCE ( ENVIRONMENTAL SCIENCE AND RESOURCE MANAGEMENT ) KSH 275,400 17.043 17.459
73 1240796 DIPLOMA IN NUTRITION AND DIETETICS KSH 115,500
74 1240804 DIPLOMA IN MECHANICAL PRODUCTION TECHNICIAN KSH 115,500
75 1240812 DIPLOMA IN HORTICULTURAL PRODUCTION KSH 115,500
76 1240875 DIPLOMA IN SALES AND MARKETING KSH 115,500
77 1240876 DIPLOMA IN CONSTRUCTION MANAGEMENT KSH 115,500
78 1240908 DIPLOMA IN MECHATRONIC TECHNOLOGY KSH 115,500
79 1240912 DIPLOMA IN SOCIAL WORK AND COMMUNITY DEVELOPMENT KSH 115,500
80 1240987 DIPLOMA IN AGRIPRENEURSHIP KSH 115,500
81 1240988 DIPLOMA IN SUPPLY CHAIN MANAGEMENT KSH 115,500
82 1240991 DIPLOMA IN WELDING AND FABRICATION KSH 115,500
83 1240994 DIPLOMA IN AGRICULTURAL EXTENSION KSH 115,500
84 1240B95 DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY KSH 115,500
85 1240C26 DIPLOMA IN WATER AND SANITATION ENGINEERING KSH 115,500

Get full information about all courses offered in different universities here:

Multimedia University Courses, requirements and how to apply
Maasai Mara University Courses, Students Portal log in, Website, Requirements, Fees and Application
Kenya Highlands University Courses, Website, portals, fees, admission requirements and procedure
Dedan Kimathi university courses, website, portals, student fees and application details
Pioneer International University Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Pwani University Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Bomet University Courses; Kuccps cut off points per university, requirements, Course Code & Fees
Lukenya University courses, student portal log in, website, fees, requirements and application procedure
ALUPE University Courses; Kuccps cut off points  per university, requirements, Course Code & Fees
Murang’a University Courses, Admissions, Intakes, Requirements, Location, Contacts, Students Portal and Website
Kabarak University Courses, Requirements, Fees, Portals and How to apply
Karatina University Courses, Requirements, Fees and How to apply
Machakos University Courses (Requirements, How To Apply and Fees)
Meru University Courses, Admissions, Fees, Website, Student Portal Log in, Contacts and Applications
Co-Operative university courses, Admission requirements, student portal login, fees and how to be admitted
Laikipia University Courses, Requirements, Fees, Students Portal log in and application
Full list of KUCCPS university courses that were rejected by students: Details
Kisii University Courses, application requirements, fees and procedures
RAF International University Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Kibabii University Courses, requirements, application, students portals, fees and website
Kirinyaga University Courses, Fees, Requirements, website, student portals log in and how to join
Pan Africa Christian University Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
KUCCPS latest Cutoff Points For All University Courses
Bomet University Courses; Requirements, Fees, Duration
Maseno University Courses, Admissions, Requirements, Students Portal Log in, Website, Contacts and Application
Kibabii University Courses, online application, fees and other requirements
Baraton University List of all Courses & Requirements (Latest, Updated)
Africa International University Of Africa List of all Courses & Requirements (Latest, Updated)
How to Log in to Kirinyaga University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
kenya Highlands Evangelical University List of all Courses & Requirements (Latest, Updated)
Catholic University Of East Africa List of all Courses & Requirements (Latest, Updated)
Kisii University List of all Courses & Requirements (Latest, Updated)
How to Log in to Technical University of Kenya Students Portal, https://portal.tukenya.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Courses selection guide; University study areas and career paths
How to Log in to Garissa University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
The Tom Mboya University College KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
How to Log in to Kenya Assemblies of God, KAG, East Africa University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Maseno University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Lukenya University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Kuccps list of Courses offered at Egerton University; Course Codes, Fees, Requirements, Cluster Cut Off Points
The Co-Operative University List of all Courses & Requirements (Latest, Updated)
Kabarak University List of all Courses & Requirements (Latest, Updated)
Laikipia University List of all Courses & Requirements (Latest, Updated)
Moi University List of all Courses & Requirements (Latest, Updated)
Daystar University list of Kuccps Courses, requirements, cutoff points and fees
Technical University of Mombasa KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Alupe University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
USIU University introduces new internationally marketable courses
St Paul’s University Approved Courses, Education Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contact
Kenya Assemblies of God, KAG, East Africa University; Academic programmes, courses, requirements, student portals and how to apply
Kuccps list of Courses offered at Garissa University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Africa International University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Kuccps list of Courses offered at Jaramogi Oginga Odinga, JOOUST, University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Kuccps list of Courses offered at Bomet University; Course Codes, Fees, Requirements, Cluster Cut Off Points
St. Paul’s University List of all Courses & Requirements (Latest, Updated)
Taita Taveta University List of all Courses & Requirements (Latest, Updated)
Pwani University List of all Courses & Requirements (Latest, Updated)
Management University of Africa, MUA; Courses, Admissions, Requirements, Fees, Students Portal, Website and How to apply
Scott Christian University List of all Courses & Requirements (Latest, Updated)
Kabarak university fees structure, Courses, list of students admitted by KUCCPS and important information for students.
Kuccps list of Courses offered at Chuka University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Amref International University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Umma University KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
How to Log in to Kabarak University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Maseno University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Alupe University; Course Codes, Fees, Requirements, Cluster Cut Off Points
How to Log in to Meru University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Kibabii University Students Portal online, https://portal.kibu.ac.ke/, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Multi Media University List of all Courses & Requirements (Latest, Updated)
Rongo University Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Turkana University College KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Mount Kenya University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at GRETSA University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Pan Africa Christian University List of all Courses & Requirements (Latest, Updated)
Technical University of Kenya List of all Courses & Requirements (Latest, Updated)
KCA university Education, Courses, fees, Website, requirements and how to apply
How to Log in to Technical University of Mombasa Students Portal, https://students.tum.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Garissa University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Jomo Kenyatta, JKUAT, University; Course Codes, Fees, Requirements, Cluster Cut Off Points
How to Log in to Pwani University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Pan Africa Christian University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Laikipia University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
The East African University KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
How to Log in to Egerton University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Pwani University List of all Courses & Requirements (Latest, Updated)
How to Log in to Technical University of Mombasa Students Portal, https://students.tum.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Kaimosi Friends University College (KAFUCO) Education Courses, admission requirements, cluster, fees and how to apply
Kuccps list of Courses offered at Jomo Kenyatta, JKUAT, University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Alupe University List of all Courses & Requirements (Latest, Updated)
Catholic University Of East Africa List of all Courses & Requirements (Latest, Updated)
Africa International University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Presbyterian University of East Africa Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Kenya Methodist University, KeMU, degree courses, portals, contacts, requirements, fees and application procedure
Kuccps list of Courses offered at GRETSA University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Kuccps list of Courses offered at Great Lakes University of Kisumu; Course Codes, Fees, Requirements, Cluster Cut Off Points
KCA University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Daystar University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Africa International University Of Africa List of all Courses & Requirements (Latest, Updated)
List of all courses offered at Mount Kenya University and application procedure
How to Log in to St Pauls University Students Portal, https://students.spu.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
University of Embu; KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Courses selection guide; University study areas and career paths
Kuccps list of Courses offered at Alupe University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Kuccps list of Courses offered at Catholic University of East Africa, Baraton; Course Codes, Fees, Requirements, Cluster Cut Off Points
University of Kabianga List of all Courses & Requirements (Latest, Updated)
How to Log in to Umma University Students Portal, https://students.umma.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Africa Nazarene University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Kenyatta University List of all Courses & Requirements (Latest, Updated)
How to Log in to Mount Kenya University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Moi University List of all Courses & Requirements (Latest, Updated)
How to Log in to Kenyatta University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to KCA University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Africa Nazareen University Of Africa List of all Courses & Requirements (Latest, Updated)
How to Log in to Garissa University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Technical University of Kenya List of all Courses & Requirements (Latest, Updated)
Kenyatta University Education, Courses, Requirements, Fees, Students Portal, Contacts and application procedure
Kenya Methodist University List of all Courses & Requirements (Latest, Updated)
Egerton University Education Courses, subjects combinations, clusters, requirements, fees and application login
Multi Media University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Egerton University; Course Codes, Fees, Requirements, Cluster Cut Off Points
How to Log in to Jaramogi Oginga Odinga University of Science and Technology Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Kirinyaga University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Jomo Kenyatta University of Agriculture and Technology Courses, Requirements, Fees
How to Log in to Machakos University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Afrika Nazarene University Of Africa List of all Courses & Requirements (Latest, Updated)
How to Log in to Kabarak University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to South Eastern Kenya University Students Portal, http://portal.seku.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Management University of Africa, MUA; Courses, Admissions, Requirements, Fees, Students Portal, Website and How to apply
Moi University admission requirements, courses, student portal, fees structure
Kuccps list of Courses offered at Garissa University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Education Courses requirements and Teaching Subjects combinations at the University of Eastern Africa, CUEA
South Eastern Kenya University List of all Courses & Requirements (Latest, Updated)
Dedan Kimathi University list of Kuccps Courses, requirements, cutoff points and fees
Mount Kenya University (MKU) online application procedure for courses, forms, requirements, fees payment and important information for students.
The Open University of Kenya (0UK) Portal, Courses, Applications, Requirements and Fees
How to Log in to Kibabii University Students Portal online, https://portal.kibu.ac.ke/, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Jomo Kenyatta University of Agriculture and Technology (JKUAT) Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
University of Kabianga; KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Kuccps gives guide on selection of University, College Courses to KCSE Candidates
JKUAT University List of all Courses & Requirements (Latest, Updated)
St Paul’s University Approved Courses, Education Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contact
How to Log in to Maasai Mara University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
St. Paul’s University List of all Courses & Requirements (Latest, Updated)
How to Log in to Meru University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Egerton University List of all Courses & Requirements (Latest, Updated)
Chuka university website, Education, courses, requirements, portals, fees and application procudure
How to Log in to University of Eldoret Students Portal, http://portal.uoeld.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Daystar University List of all Courses & Requirements (Latest, Updated)
Machakos University Education Courses (Requirements, How To Apply and Fees)
Laikipia University List of all Courses & Requirements (Latest, Updated)
Machakos University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Chuka University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Garissa University List of all Courses & Requirements (Latest, Updated)
Great Lakes University List of all Courses & Requirements (Latest, Updated)
Daystar University list of Kuccps Courses, requirements, cutoff points and fees
Zetech University List of all Courses & Requirements (Latest, Updated)
How to Log in to Kaimosi Friends University College Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Scott Christian University List of all Courses & Requirements (Latest, Updated)
How to Log in to Management University of Africa Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Technical University of Kenya University KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Multimedia University of Kenya Courses, Contacts, Student Portal, Fees, Location, Application and intakes
How to Log in to University of kabianga Students Portal, http://portal.kabianga.ac.ke/; for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Co-Operataive University of Kenya Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Lukenya University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
KEMI To Offer University Degree Courses Online
How to Log in to Tom Mboya University College Students Portal, http://student.tmuc.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
JOOUST: Jaramogi Oginga Odinga University of Science and Technology Courses, Requirements, Fees
How to Log in to Pioneer International University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Maasai Mara University List of all Courses & Requirements (Latest, Updated)
Mount Kenya University List of all Courses & Requirements (Latest, Updated)
USIU University introduces new internationally marketable courses
Kuccps list of Courses offered at Dedan Kimathi University of Technology; Course Codes, Fees, Requirements, Cluster Cut Off Points
How to Log in to Kisii University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Scott Christian University Students Portal, https://studentportal.scott.ac.ke/login.php, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Maseno University List of all Courses & Requirements (Latest, Updated)
How to Log in to Presbyterian University of East Africa Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Taita Taveta University Students Portal, http://portal.ttuc.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Jaramogi Oginga Odinga University of Science and Technology, JOOUST: Education courses, requirements, fees and application procedure
Scott Christian University Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
KCA university Education, Courses, fees, Website, requirements and how to apply
Aga Khan University List of all Courses & Requirements (Latest, Updated)
Kabarak university fees structure, Courses, list of students admitted by KUCCPS and important information for students.
Tangaza University KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
How to Log in to Turkana University Students Portal, https://tuc.ac.ke/student-portal/, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Turkana University College KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
How to Log in to East African University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Kuccps list of Courses offered at International Leadership University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Kuccps list of Courses offered at Bomet University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Chuka University List of all Courses & Requirements (Latest, Updated)
List of Courses Offered at Alupe University; Requirements, Fees
How to Log in to Maseno University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Baraton University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Co-operative University of Kenya; Course Codes, Fees, Requirements, Cluster Cut Off Points
Jaramogi Oginga Odinga University List of all Courses & Requirements (Latest, Updated)
Kirinyaga University List of all Courses & Requirements (Latest, Updated)
Adventist University Of Africa List of all Courses & Requirements (Latest, Updated)
Riara University Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
How to Log in to Kenya Assemblies of God, KAG, East Africa University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
University of Eldoret; KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Dedan Kimathi University of Technology List of all Courses & Requirements (Latest, Updated)
Amref International University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
How to Log in to Tangaza University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
How to Log in to Pwani University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Jaramogi Oginga Odinga University Kuccps Courses List, Requirements and Fees
Egerton University Kuccps Courses List, Requirements and Fees
Kuccps list of Courses offered at Islamic University of Kenya; Course Codes, Fees, Requirements, Cluster Cut Off Points
How to Log in to Riara University Students Portal, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Kuccps list of Courses offered at Africa International University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Technical University of Mombasa List of all Courses & Requirements (Latest, Updated)
How to Log in to Baraton University Students Portal, http://registration.ueab.ac.ke/a_students, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
kenya Highlands Evangelical University List of all Courses & Requirements (Latest, Updated)
Technical University of Mombasa KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Taita Taveta University KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Kenya Assemblies of God, KAG, East Africa University; Academic programmes, courses, requirements, student portals and how to apply
How to Log in to Multimedia University of Kenya Students Portal, https://studentportal.mmu.ac.ke/, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Bomet University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Pan Africa Christian University List of all Courses & Requirements (Latest, Updated)
Rongo University Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Alupe University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Masinde Muliro University List of all Courses & Requirements (Latest, Updated)
Mount Kenya University, MKU; Approved Courses, Admissions, Requirements, Fees, Student Portal, Website and Applications
Tangaza University List of all Courses & Requirements (Latest, Updated)
How to Log in to Dedan Kimathi University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Kuccps list of Courses offered at AMREF International University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Pwani University Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Alupe University Course List, Fees, Requirements, How to Apply
Laikipia University Course List, Requirements, Fees
KUCCPS Announces Second Revision of University Courses
Murang’a University Course List, Fees, Requirements, How to Apply
Kenyatta University Course List, Fees, Requirements, How to Apply
Maseno University Course List, Fees, Requirements, How to Apply
Kaimosi Friends University Course List, Requirements, Fees
Kisii University Courses, application requirements, fees and procedures
Egerton University Course List plus their requirements, fees and duration
Bomet University Course List, Fees, Requirements, How to Apply
Dedan Kimathi university courses, website, portals, student fees and application details
Jomo Kenyatta University Course List, Fees, Requirements, How to Apply
ALUPE University Courses; Kuccps cut off points  per university, requirements, Course Code & Fees
Kuccps Final Course List for Management University of Africa; Course Codes, Fees, Requirements, Cluster Cut Off Points
Kuccps opens student portal for University and College placement applications/ revision of courses
Kabarak University Kuccps Course List, Codes, Clusters and Cutoff Points
Bachelor of Education Technology (Civil Engineering) Degree; Kuccps cut off points per university, requirements, Course Code & Fees
Rongo University List of all Courses & Requirements (Latest, Updated)
Bachelor of Science in Medical Psychology Degree Course; Kuccps cut off points per university, requirements, Course Code & Fees
Bachelor of Science (Information Science) Degree; Kuccps cut off points  per university, requirements, Course Code & Fees
Bachelor of Science in Radiography Degree Course; Kuccps cut off points per university, requirements, Course Code & Fees
How to apply for the University admissions through KUCCPS, online; Course codes and choices guide
Bachelor of Technology in Water, Sanitation and Habitat Engineering Degree; Kuccps cut off points  per university, requirements, Course Code & Fees
Bachelor of Science in Epidemiology & Biostatistics Degree Course; Kuccps cut off points  per university, requirements, Course Code & Fees
University of Nairobi List of all Courses & Requirements (Latest, Updated)
Koitalel Samoei University College Courses, Requirements, Fees, Website, Students Login and application
How to Log in to Laikipia University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Kuccps Final Course List for Lukenya University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Kuccps Final Course List for University of Embu; Course Codes, Fees, Requirements, Cluster Cut Off Points
Open University of Kenya Bachelor of Science In Cyber Security Course Requirements, Fees
Technical University of Kenya Course List, Fees, Requirements, How to Apply
The East African University KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Kuccps Final Course List for Kenya University, KU; Course Codes, Fees, Requirements, Cluster Cut Off Points
How to Log in to Egerton University Students Portal online, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Pwani University List of all Courses & Requirements (Latest, Updated)
How to Log in to Technical University of Mombasa Students Portal, https://students.tum.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results
Management University of Africa Kuccps Course List, Codes, Clusters and Cutoff Points
Bachelor of Education (Science & Arts) Degree; Kuccps cut off points per university, requirements, Course Code & Fees
Kuccps Final Course List for Mama Ngina University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Bachelor of Education Science Degree; Kuccps cut off points per university, requirements, Course Code & Fees
Bachelor of Science in Laboratory Sciences & Technology Degree Course; Kuccps cut off points  per university, requirements, Course Code & Fees
Kaimosi Friends University College (KAFUCO) Education Courses, admission requirements, cluster, fees and how to apply
Kuccps list of Courses offered at Jomo Kenyatta, JKUAT, University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Alupe University List of all Courses & Requirements (Latest, Updated)
Catholic University Of East Africa List of all Courses & Requirements (Latest, Updated)
Bachelor of Science (Electronics) Degree; Kuccps cut off points per university, requirements, Course Code & Fees
Africa International University Kuccps Courses List, Requirements, Cluster Cutoff Points and Fees
Bachelor of Science in MidWifery & Reproductive Health Degree Course; Kuccps cut off points  per university, requirements, Course Code & Fees
Presbyterian University of East Africa Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts
Kenya Methodist University, KeMU, degree courses, portals, contacts, requirements, fees and application procedure
Kuccps list of Courses offered at GRETSA University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Bachelor of Science in Global Health & Travel Medicine Degree Course; Kuccps cut off points  per university, requirements, Course Code & Fees
Kuccps list of Courses offered at Great Lakes University of Kisumu; Course Codes, Fees, Requirements, Cluster Cut Off Points
KCA University List of all Courses & Requirements (Latest, Updated)
Kuccps list of Courses offered at Daystar University; Course Codes, Fees, Requirements, Cluster Cut Off Points
Africa International University Of Africa List of all Courses & Requirements (Latest, Updated)
Kuccps Final Course List for Riara University; Course Codes, Fees, Requirements, Cluster Cut Off Points
The Co-operative University of Kenya Kuccps Course List, Codes, Clusters and Cutoff Points
Kuccps Final Course List for Machakos University; Course Codes, Fees, Requirements, Cluster Cut Off Points
List of all courses offered at Mount Kenya University and application procedure
Bachelor of Science in Biomedical Engineering Degree; Kuccps cut off points per university, requirements, Course Code & Fees
How to Log in to St Pauls University Students Portal, https://students.spu.ac.ke, for Registration, E-Learning, Hostel Booking, Fees, Courses and Exam Results

University of Embu; KUCCPS Approved Courses, Admissions, Intakes, Requirements, Students Portal, Location and Contacts

Bachelor of Science (Occupational Health & Safety) Degree Course; Kuccps cut off points  per university, requirements, Course Code & Fees

Courses selection guide; University study areas and career paths

Bachelor of Engineering in Mechanical & Production Engineering Degree; Kuccps cut off points  per university, requirements, Course Code & Fees

The Co-operative University of Kenya Course List, Requirements, Duration & Fees

Course offered at Tharaka University, Requirements & Fees Structures

Kuccps Final Course List for Zetech University; Course Codes, Fees, Requirements, Cluster Cut Off Points

Kuccps list of Courses offered at Alupe University; Course Codes, Fees, Requirements, Cluster Cut Off Points

Kuccps list of Courses offered at Catholic University of East Africa, Baraton; Course Codes, Fees, Requirements, Cluster Cut Off Points

Bachelor of Business management Degree; Kuccps cut off points per university, requirements, Course Code & Fees

Kuccps Final Course List for Kiriri Women’s University; Course Codes, Fees, Requirements, Cluster Cut Off Points

Kuccps Final Course List for Tom Mboya University; Course Codes, Fees, Requirements, Cluster Cut Off Points

Bachelor of Technology in Medical Engineering Degree; Kuccps cut off points per university, requirements, Course Code & Fees

Simplified Kuccps courses application guide

Reverse delocalization of teachers- MPs tell TSC

MPs direct TSC to ‘end’ delocalization policy

The National Assembly has directed TSC to put an end to the controversial delocalization policy.

The MPs resolved that the Teachers Service Commission immediately reverses the ongoing delocalization of teachers and initiates a comprehensive review of the teacher deployment policy with the involvement of teachers in order to make the policy consistent with International Labour Organization (ILO) and UNESCO laws and practices on teacher management and deployment.

According to the law makers, the delocalization of teachers commenced in 2018 by the Teachers Service Commission immensely disrupted teachers’ lives, lowered teacher morale and caused untold trauma to many teachers countrywide.

The MPs are concerned that, the exercise was not supported with a clear policy framework and was initiated without the participation of teachers or their unions, contrary to Articles 118 and 132 of the Constitution on public participation and involvement of the people in the process of policy making.

Free Grade 8 Rationalized Term 2 Schemes of Work

Free Grade 8 Rationalized Term 2 Schemes of Work downloads:

FREE grade-8-rationalised-social-studies-schemes-of-work-term-2-updated

FREE GRADE-8-TERM-2-ENGLISH-SCHEMES

FREE GRADE-8-TERM-2-ENGLISH-SCHEMES-skills

FREE GRADE-8-TERM-2-FRENCH-SCHEMES

FREE GRADE-8-TERM-2-KISWAHILI-SCHEMES

FREE GRADE-8-TERM-2-PRETECHNICAL-SCHEMES

GRADE-8-TERM-2-SCIENCE-SCHEMES-spotlight

FREE GRADE-8-TERM-2-SCIENCE-SCHEMES-mentor

FREE GRADE-8-TERM-2-SOCIAL-STUDIES-SCHEMES

FREE GRADE-8-TERM-2-SOCIAL-STUDIES-SCHEMES-1

FREE grade-8-integrated-science-schemes-of-work-term-2-active-integrated-science

grade-8-integrated-science-schemes-of-work-term-2-mentor

FREE grade-8-pre-technical-studies-schemes-of-work-term-2-merged

FREE grade-8-klb-top-scholar-mathematics-schemes-of-work-term-2

FREE grade-8-rationalised-agriculture-and-nutrition-schemes-of-work-term-2-mtp-updated

FREE grade-8-rationalised-agriculture-and-nutrition-schemes-of-work-term-2-mtp-updated-1

grade-8-rationalised-social-studies-schemes-of-work-term-2-updated (1)

FREE grade-8-rationalized-english-schemes-of-work-term-2-skills-in-english

FREE grade-8-rationalized-french-scheme-of-work-term-2

FREE grade-8-rationalised-creative-arts-and-sports-schemes-of-work-term-2

FREE grade-8-rationalised-cre-schemes-of-work-term-2-mentor

FREE grade-8-rationalised-smart-minds-english-schemes-of-work-term-2

FREE grade-8-rationalized-english-schemes-of-work-term-3-skills-in-english

FREE grade-8-rationalized-english-schemes-of-work-term-2-skills-in-english (1)

FREE grade-8-rationalized-french-scheme-of-work-term-2 (1)

Cheborge Girls High School’s KCSE 2023 Results Analysis, Ranking Grades Distribution and Location

Cheborge Girls High School is a top performing school that is located in Kericho County.

Here are quick facts about Cheborge Girls High

School Name: Cheborge Girls High

School Category: County

School Type: Girls

School Location: Kericho

  • County: Kericho
  • Region: Rift Valley

Cheborge Girls High School’s KCSE 2023 Full Results Analysis.

The top performing school has once again posted impressive results at the 2023 Kenya Certificate of Secondary Education, KCSE, exams.

Teachers, parents and students at the school received the results with excitement after receiving them from the Kenya National Examinations Council, Knec.

The good news is that a majority of the candidates scored a mean grade of C+ (plus) and above. This means that they will be joining university in 2024.

 See the school’s Full details (Location, Fees, Contacts) here:

The school has been ranked at position 47 nationally after garnering a Mean Score of 9.3754 points which translates to a mean grade of B{plain}.

Cheborge Girls High School’s KCSE 2023 Results Analysis

Position Nationally Name of School Region County kcse 2023 Mean Score kcse 2023 Mean Grade School Type Category
47 CHEBORGE GIRLS Rift Valley Kericho 9.3754 B{plain} Girls County School

BACHELOR OF SCIENCE (AGRICULTURAL ENGINEERING) KUCCPS CUT OFF POINTS, REQUIREMENTS 2022-2023

BACHELOR OF SCIENCE (AGRICULTURAL ENGINEERING) KUCCPS CUT OFF POINTS, REQUIREMENTS 2022-2023

BACHELOR OF SCIENCE (AGRICULTURAL ENGINEERING)
# PROG CODE INSTITUTION NAME PROGRAMME NAME 2022/2023 CUTOFF 2019/2021 CUTOFF 2018 CUTOFF 2017 CUTOFF 2016 CUTOFF 2015 CUTOFF
1 1057121 EGERTON UNIVERSITY BACHELOR OF SCIENCE (AGRICULTURAL ENGINEERING) 27.801 28.901 30.095 30.252 33.665 39.926
2 1111121 KENYATTA UNIVERSITY BACHELOR OF SCIENCE (AGRICULTURAL & BIO-SYSTEMS ENGINEERING) 30.448 29.742 28.359 28.496 30.556
3 1114121 UNIVERSITY OF ELDORET BACHELOR OF ENGINEERING (AGRICULTURAL & BIO-SYSTEMS ENGINEERING) 29.473 29.446 27.817 29.616 39.354
4 1166121 SOUTH EASTERN KENYA UNIVERSITY BACHELOR OF SCIENCE (AGRICULTURAL ENGINEERING) 16.9
5 1249121 JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY BACHELOR OF SCIENCE (AGRICULTURAL AND BIOSYSTEMS ENGINEERING) 31.058 33.081 31.053 33.269 33.487 40.834
6 1263121 UNIVERSITY OF NAIROBI BACHELOR OF SCIENCE (BIOSYSTEMS ENGINEERING) 28.989 28.238 30.253 29.79 31.296 41.776

Education Ministry Details on School Reopening Dates

Education Cabinet Secretary Prof. George Magoha has clarified that learners will only be allowed back in school from the midterm break if the environment is safe after the general elections.

Magoha, who was speaking at Juja Farm, Kiambu County after commissioning a new Competency Based Curriculum (CBC) said the August 11 reporting date that the Ministry had set may change depending on the political environment.

He called on parents not to worry about the safety of their children saying the government will be on the watch and may extend the reporting date if need be.

The CS exuded optimism that the country will remain peaceful after the polls given that the presidential candidates have promised to accept the results.

“Assuming everything else is constant, the children should go back to school on August 11. However, the date may change depending on the political environment. For the love of our children, if we feel that they should stay home for one or two more days, we will then pronounce ourselves at that time. The public should not be worried at all because we will be on the watch,” he stated.

The CS said learners have suffered a lot due to the disruptions from the Covid-19 pandemic and there was no need for more extensions due to an unsafe political environment. He called on politicians to exercise caution as they head to the polls for the sake of the children.

“We hope the political environment will be peaceful after the elections so that schools may reopen from the midterm break as projected. Our children have been disrupted for long by the Covid-19 pandemic and there is no need for further disruptions,” he said.

The schools closed for about eight months during the pandemic period, completely affecting the education calendar. The Ministry hopes to resume the normal school calendar from January next year.

“I plead with all politicians not to cause further disruptions by refusing election results. You must be prepared to win or lose. They must also be careful with whatever they say in public and accept the fact that there can only be one winner,” he said.

Education courses offered at Jaramogi Oginga Odinga University of Science and Technology: Subject combinations and requirements

Various accredited universities offer Courses in Education for prospective students who want to be teachers. The universities have course specific requirements for the various Arts and Sciences courses. They also offer various teaching subjects combinations. Here are the Education courses offered at the Jaramogi Oginga Odinga University of Science and Technology, JOOUST, and links to their application portals:

Admission Procedures and Requirements for the Bachelor’s Degree

    1. Admission Procedures:
      1. Enquiries for all Bachelor’s Degree programmes offered should be made to the Registrar (Academic Affairs), Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya.
      2. The closing date for receiving applications for the Bachelor’s degree programmes shall be as determined by the Senate from time to time.
  1. Minimum Entry Requirements for Bachelor’s Degree:

The entry requirements set out below are only minimum, and they in no way entitle an applicant to a place in the University.
Applicants must:

    1. Have the Kenya Certificate of Secondary Education with a mean grade of C+ (C plus) passed at one sitting from at least seven subjects drawn from subject groupings as specified by the Kenya National Examinations Council or its equivalent.

OR

    1. Have one of the following combinations of passes in the Kenya Advanced Certificate of Education examination:
      1. Two (2) Principal passes obtained at the same sitting.

OR

      1. Two (2) Principal passes obtained at different sittings provided the passes are of grade C or higher.

OR

    1. Hold a Diploma of a recognized institution with a “credit” pass or higher or an equivalent qualification from a recognized institution in the relevant field of specialization acceptable to the Senate. Those with a “pass” diploma will be considered if they have at least two years relevant experience after graduation.

OR

    1. Hold a certificate from a recognized institution with a “credit” pass or higher or equivalent qualification from a recognized institution in the relevant field of specialization, acceptable to Senate

OR

    1. Have exceptional experiential knowledge  and information

AND

  1. Meet additional or specific entry requirements as may be specified by the respective Department, School/Faculty offering the programme.

Also read:

BACHELOR OF EDUCATION (SCIENCE) MINIMUM REQUIREMENTS AS SET BY KUCCPS

Cluster 22 – Education Science & Arts

CLUSTER SUBJECT 1 ENG
CLUSTER SUBJECT 2 MAT A / MAT B / BIO / PHY / CHE / BIO / GSC
CLUSTER SUBJECT 3 BIO / CHE / PHY / BIO / GSC / HAG / GEO / CRE / IRE / HRE
CLUSTER SUBJECT 4 KIS / BIO / PHY / CHE / BIO / GSC / HSC / ARD / AGR / WW / MW / BC / PM / ECT / DRD / AVT / CMP / FRE / GER / ARB / KSL / MUC / BST
NOTE: A subject may only be considered ONCE in this section

MINIMUM SUBJECT REQUIREMENTS

SUBJECT 1 ENG C
SUBJECT 2 MAT A / MAT B C
SUBJECT 3 BIO / PHY / CHE / PSC / BSC / BIO / GSC C+

BACHELOR OF EDUCATION(ARTS) WITH IT MINIMUM REQUIREMENTS BY KUCCPS

CLUSTER SUBJECT 1 ENG
CLUSTER SUBJECT 2 MAT A / MAT B / BIO / PHY / CHE / BIO / GSC
CLUSTER SUBJECT 3 BIO / CHE / PHY / BIO / GSC / HAG / GEO / CRE / IRE / HRE
CLUSTER SUBJECT 4 KIS / BIO / PHY / CHE / BIO / GSC / HSC / ARD / AGR / WW / MW / BC / PM / ECT / DRD / AVT / CMP / FRE / GER / ARB / KSL / MUC / BST
NOTE: A subject may only be considered ONCE in this section

MINIMUM SUBJECT REQUIREMENTS

SUBJECT 1 ENG C
SUBJECT 2 MAT A / MAT B D+
SUBJECT 3 HAG / GEO / CRE / IRE / HRE / SEE C+

Important University portals and Links:

LIST OF KUCCPS APPROVED PROGRAMMES ON OFFER AT JOOUST

S/NPROGRAMME CODEPROGRAMME NAME2019 CUTOFF2018 CUTOFF2017 CUTOFF2016 CUTOFF2015 CUTOFF
11053107BACHELOR OF SCIENCE (ACTUARIAL SCIENCE WITH IT)28.99031.06633.18036.390
21053111BACHELOR OF SCIENCE(BIOLOGICAL SCIENCES)27.73523.25823.000
31053135BACHELOR OF EDUCATION(ARTS) WITH IT26.53430.19730.490
41053137BACHELOR OF EDUCATION(SCIENCE WITH IT)30.07127.81727.01233.260
51053153BACHELOR OF BUSINESS ADMINISTRATION WITH IT24.50926.47423.000
61053155BACHELOR OF EDUCATION (SPECIAL NEEDS EDUCATION, WITH IT)25.05229.097
71053158BACHELOR OF SCIENCE (INFORMATION AND COMMUNICATION TECHNOLOGY)25.41826.65923.463
81053185BACHELOR OF SCIENCE(HORTICULTURE)22.87423.000
91053187BACHELOR OF SCIENCE(AGRIBUSINESS MANAGEMENT)29.45421.31629.994
101053235BACHELOR OF INTERNATIONAL TOURISM MANAGEMENT24.31424.22823.000
111053248BACHELOR OF LOGISTICS AND SUPPLY CHAIN MANAGEMENT24.22924.983
121053293BACHELOR OF SCIENCE (ANIMAL SCIENCE)25.51529.763
131053303BACHELOR OF ARTS(DEVELOPMENTAL AND POLICY STUDIES)26.00425.815
141053415BACHELOR OF SCIENCE (AGRICULTURAL EXTENSION EDUCATION)26.25622.17132.600
151053423BACHELOR OF SCIENCE (COMMUNITY HEALTH AND DEVELOPMENT)27.97621.85730.210
161053479BACHELOR OF SCIENCE (SOIL SCIENCE)24.14323.000
171053483BACHELOR OF SCIENCE(FOOD SECURITY)22.72323.000
181053485BACHELOR OF ARTS(SPATIAL PLANNING)22.90824.70623.000
191053486BACHELOR OF SCIENCE (WATER RESOURCES AND ENVIRONMENT)20.36423.000
201053511BACHELOR OF SCIENCE (COMPUTER SECURITY AND FORENSICS)26.45324.64823.90228.184
211053554BACHELOR OF SCIENCE(BUSINESS INFORMATION SYSTEMS)24.94223.66423.000
221053626BACHELOR OF SCIENCE (RENEWABLE ENERGY TECHNOLOGY AND MANAGEMENT)25.31932.98723.000
231053732BACHELOR OF SCIENCE (PUBLIC HEALTH)26.93228.55436.180
241053776BACHELOR OF SCIENCE(CONSTRUCTION MANAGEMENT)30.28225.51433.40235.858

Reopening of schools: This is why the Kenyan government has been sued

The Kenyan government is finding itself in a tight spot over planned reopening of schools slated for this September. 8 petitioners have moved to the High court seeking answers on how the government is prepared ahead of schools’ reopening. Also of major concern, to the petitioners, is the unequal coverage and distribution of e-learning equipment countrywide.

The petitioners (Robert Olouch, Evans Odhiambo, Walter Akeyo, Michael Kojo, Millicent Adhiambo, Evance Atieno, Irene Adhiambo and Mary Omwanda) hold that government has not fully complied with the United Nations Educational, Scientific and Cultural Organization (UNESCO) guidelines on the reopening of schools. The latest guidelines require that once schools begin to reopen, priority should be on how to reintegrate learners into school settings safely and in ways that allow learning to pick up again, especially for those who suffered the biggest learning losses.

‘The new guidance offers helpful tips and checklists for parents and caregivers, as well as children and students. Actions include:

  • Monitoring children’s health and keeping them home from school if they are ill;
  • Encouraging children to ask questions and express their concerns; and
  • Coughing or sneezing into a tissue or your elbow and avoid touching your face, eyes, mouth and nose.’
SEE ALSO;
THE VIRTUAL LEARNING PROGRAMME IS DISCRIMINATING

The suit that was filed at the Kisii High Court on Thursday, May 28 the petitioners’ Lawyer Japhet Osoro Kaosa has listed Education, Science and Technology Cabinet Secretary, Ministry of Education Science and Technology, Kenya Institute of Curriculum Development and Attorney General were filed as the first, second, third and fourth respondents.

According to the petition papers parents who are registered as essential services providers such as health care workers have little time in guiding their children on e-learning which needs some form of supervision. They thus want the current lessons being streamed by the Kenya Institute of Curriculum Development (kicd) to be declared null and void.

In his latest address, president Uhuru Kenyatta directed the ministry of education to come up with an elaborate plan on how schools are to reopen. He at the same time asked the ministry to rework the school calendar that should be made public by mid August.

There are sharp divisions between stake holders with some supporting the plans to have partial reopening of schools, while others want the year written off and learning to resume in January, 2020.

Also read;

How To Check 2024 Form One Secondary School Selection Results

Here is a simplified guide for KCPE 2023 Candidates on how to check for form one selection and download 2024 admission letter for the secondary school that you have been placed. All students should be able to know which school they will join.

2022 Form One Selection, checking Secondary school placed, and how to download 2022 Admission Letter/Photo Source

Criteria of Secondary school selection 2024

The criteria used for placement of KCPE 2023 Candidates to various secondary schools is based on merit or performance. Background of school is also considered. Form one selection is categorized into three;

  • National Schools
  • Extra County School (Formally Provincial Schools)
  • County Schools

Selection will start with National schools then proceed to county schools and sub-county secondary schools.

How to Check Secondary School Selected via sms code

To check the secondary schools that you have been selected to join in 2024 by the ministry of education use the SMS code below;

To check secondary school selected  

  • Go your sms message in your phone
  • Send SMS message with  your KCSE index number to 22263 (the code works for safaricom, Airtel and Telkom).
  • Your will receive an sms with the school that you were selected to join
  • The sms charges ksh. 25.

NOTE 1: The sms code provided above for checking school selection does not bring selection results instantly. Kindly be patient as the SMS will arrive.

NOTE 2: Selection is an ongoing process and it begins with national schools and admission letters will be updated.

How to Download form One Admission Letter Online

Below is a guide on how to download your form one admission letter using the official ministry of education website’

  • Step 1, Go to: Form One Selection
  • Step 2, Click on the school selected to join (National, Extra or County School)
  • Step 3 Select the county and sub county where type did you KCPE Exams then enter your Index Number
  • Step 4, Click Submit
  • Step 5, At the bottom of the page click ADMISSION LETTER
  • Step 6, Download to your computer then print
  • Step 7, Take the admission letter to your Head Teacher to stamp it for endorsement

NOTE: If you are asked for a .go.ke email address and you are lost kindly contact your headmaster to provide you with one so that you can download your admission letter.

2024 Form One Admission Day Requirements

During admission day, you are supposed to present the stamped calling letter to your high school or secondary during.  You are also supposed to carry your birth certificate and copy.

Here is your full guide to the 2024 form one selection results and placement letters.

How to easily Check 2024 Form One Selection via SMS, Online

2024 Form One Secondary School Placement Letter online

2024 Form One Selection and Placement; Check Secondary Placement Here

2024 Form one placement results online; Step by step guide

2024 Form one placement results online portal

2024 Form one results and placement portal; Kenya Education Management Information System (KEMIS)

How To Check 2024 Form One Placement Results for KCPE 2023 Candidates On Your

2024 Form One Selection Portal; Get selection results and download your admission letter

2024 Form One Selection Results Portal

2024 Form One Placement/ Admission Results – How To download admission letter

2024 Form one selection criteria, results and admission letters; Extra County schools

2024 Form One Selection Results, Lists

2023 KCPE Candidates 2024 Form 1 Placements

2024 Form one selection, selection results; admission letters

2024 Form One Selection Results, Joining Instructions And Admission Letters

How to know 2024 form one admission results and download 2024 County School admission.

How 2024 Form One Selection will be done

2024 Form one placement and selection criteria for KCPE 2023 candidates

How to download the whole school’s 2024 form one selection list, admit all learners

2024 Form one selection criteria, results and admission letters; Extra County schools

2024 Form one selection results and admission letters; National schools

2024 form one reporting date, joining instructions

How to know 2024 form one admission results and download 2024 Extra County School

How to get 2024 form one admission results through sms and download secondary schools

2024 Form One Admission Letters, Joining Instructions Download For All Schools

KCB 2024 Form One Scholarship Forms, Cutoff Marks and Interview Dates Per County

2024 Form One Scholarships – Requirements, How To Apply

2024 form one admission letters for National, Extra County, County and Sub county schools

How to receive 2024 Form One Selection Results via SMS Code (See selection criteria

2024 Form One Selection Results announced

How to know 2024 form one admission results and download 2024 National School admission

How to change 2024 form one placement, selected secondary school- Simplified procedure

2024 Form One Joining Instructions

2024 form one admission letter and joining instructions (See how to easily get yours)

2024 Form One Selection Criteria, Results, Reporting Dates, Admission Letters and Instructions

2024 Form One Joining Instructions, Admissions for all National, Extra County and County schools

2024 Form one reporting dates, school fees; admission letters

JOSEPHINE BAKHIT MASINGA Girls School 2021/2022 KCSE Results Analysis, Grade Count

JOSEPHINE BAKHIT MASINGA Girls School 2021/2022 KCSE Results Analysis, Grade Count

The School recorded an impressive result in the 2021 KCSE exams. Below is the full analysis of the school’s KCSE 2021/2022 performance.

Get to see the school’s mean grade, grade count analysis and number of students who qualified for university degree courses.

HERE IS THE SCHOOL’S 2021/2022 KCSE RESULTS ANALYSIS IN FULL

GRADE ENTRY A A- B+ B B- C+ C C- D+ D D- E X Y U P W 2021 2020 2019 DEV 2021-2020
NO OF CANDIDATES 57 1 1 0 10 21 44 50 39 14 6 1 0 0 0 0 0   6.203 6.907 6.090 -0.704
SCHOOL MEAN GRADE C(plain)                               . .        
UNIVERSITY DIRECT ENTRY 77                               . .        
TOTAL CANDIDATES 187                               . .        
% DIRECT ENTRY 41.17647                               . .        

County Secondary Schools in Mombasa County; School KNEC Code, Type, Cluster, and Category

County Schools in Kenya form the third tier of secondary schools; after National and Extra County schools, respectively. The schools admit students from majorly within the country. Admissions to these schools is done online by the Ministry of Education.These schools are in 3 Categories i.e category 1 (C1), Category 2 (C2) and Category 3 (C3). The Schools are either of Mixed or single sex type.

Here are the County Schools in Mombasa County:

School  Code School NameCategoryType
03106101ALLIDINA VISRAM HIGH SCHOOLCountyBoys
03106103TUDOR DAY SECONDARY SCHOOLCountyBoys
03106105STAR OF THE SEA HIGH SCHOOLCountyGirls
03106107SACRED HEART HIGH SCHOOL, MOMBASACountyMixed
03106116SERANI SECONDARY SCHOOLCountyBoys
03106118SHARIFF NASSIR GIRLSCountyGirls
03106121MBARAKI GIRLS SECONDARY SCHOOLCountyGirls
03106122TONONOKA SECONDARY SCHOOLCountyBoys
03106124ALFARSY GIRLS SECONDARY SCHOOLCountyGirls
03106125MVITA BOYS SECONDARY SCHOOLCountyBoys
03106132MAKANDE GIRLS SECONDARY SCHOOLCountyGirls
03106133MAKUPA BOYS SECONDARY SCHOOLCountyBoys
03108101MOI FORCES ACADEMY-MOMBASACountyMixed
03108103MTONGWE GIRLS SECONDARY SCHOOLCountyGirls
03108104SHIKAADABU SECONDARY SCHOOLCountyMixed
03108114MWAHIMA SECONDARY SCHOOLCountyMixed
03108201LIKONI SECONDARY SCHOOLCountyBoys
03108209PUMA SECONDARY SCHOOLCountyMixed
03108211MRIMA MIXED DAY SECONDARY SCHOOLCountyMixed
03108217BUBUBU BOYS SECONDARY SCHOOLCountyBoys
03120101CHANGAMWE SECONDARY SCHOOLCountyMixed
03120102ST. CHARLES LWANGA SECONDARY SCHOOLCountyMixed
03120117MWIJABU SECONDARY SCHOOLCountyMixed
03120118CHAANI SECONDARY SCHOOLCountyMixed
03120121BOMU SECONDARY SCHOOLCountyMixed
03121204MWAKIRUNGE SECONDARY SCHOOLCountyMixed
03121216MTOPANGA MIXED SECONDARY SCHOOLCountyMixed
03121220HASSAN JOHO GIRLS’ SECONDARY SCHOOLCountyGirls
03121226MARIMANI MIXED SECONDARY SCHOOLCountyMixed
03124105KAJEMBE HIGH SCHOOLCountyMixed
03124108MIRITINI SECONDARY SCHOOLCountyMixed
03124110JOMVU GIRLS HIGH SCHOOLCountyGirls
03124111MIRITINI COMPLEX HIGH SCHOOLCountyMixed
03126106MAWENI MIXED SECONDARY SCHOOLCountyMixed
03126123FRERETOWN SECONDARY SCHOOLCountyMixed

More reading on TSC matters;

2023 East Africa School Games (FEASSSA) Full Rugby Results, Ranking

2023 East Africa School Games (FEASSSA) Full Rugby Results, Ranking

FIXTURES

RUGBY 15s                                        Venue:  TTC

Round-Robin    
1.         King’s College, Buddo (Ug)  
  1. All Saints (Ke)
2.         St. Mary’s College Kisubi (Ug)   5.      St. Antony’s, Kitale (Ke)
3.         Namilyango College (Ug)   6.      Butula Boys (Ke)
     

DAY 2    SUNDAY               20TH AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
9.00am   King’s College, Buddo (Ug) Vs St. Mary’s, Kisubi (Ug) 07 13
2.00pm   St. Antony’s, Kitale (Ke) Vs Butula Boys (Ke) 12 10

 

DAY 3    MONDAY             21ST AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
9.00am   Butula Boys (Ke) Vs King’s College, Buddo (Ug) 27 06
11.00am   All Saints (Ke) Vs St. Antony’s, Kitale (Ke) 19 16

 

DAY 4    TUESDAY             22ND AUGUST 2023                         PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
11.00am   St. Antony’s, Kitale (Ke) Vs St. Mary’s, Kisubi (Ug) 07 12
2.00pm   Butula Boys (Ke) Vs All Saints (Ke) 39 11

 

DAY 6    THURSDAY          24TH AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
9.00am   St. Mary’s, Kisubi (Ug) Vs Butula Boys (Ke) 18 12
2.00pm   All Saints (Ke) Vs King’s College, Buddo (Ug) 10 00

 

DAY 8    SATURDAY          26TH AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
9.00am   King’s College, Buddo (Ug) Vs St. Antony’s, Kitale (Ke)    
9.00am   All Saints (Ke) Vs St. Mary’s Kisubi (Ug)    

 

 

 

FIFTEENS ROUND ROBIN WINNER TAKE IT ALL

 

  PLAYED WON TIE LOSS FOR AGAINST DIFF BONUS POINTS POSITION
Smack 4 4   0 46 32 14 0 16  1
Butula 4 2   2 78 47 31 4 12  2
St Anthony 4 2   2 7 60 -53 2 10  3
All Saints 4 2   1 46 76 -30 0 8  4
Kings College 4 0   3 45 41 4 1 1  5

 

TEAM OVERALL RANKING

RUGBY 15s 

RANK TEAM COUNTRY
1. St. Mary’s Kisubi Uganda
2. Butula Boys Kenya
3. St. Antony’s, Kitale Kenya
4. All Saints Kenya
5. Kings College Buddo Uganda

 

MVP                 Mathew Musasizi                   St. Mary’s Kitende (Uganda)

FIXTURES

RUGBY 7s                                          Venue:  TTC

Order of Play to be done at the venue

POOL A   POOL B
1.     Koyonzo (Ke)   1.        Vihiga High (Ke)
2.     Kiira College (Ug)   2.        Jinja SS (Ug)
3.     Kitondo Sec (Ke)   3.        St. Mary’s, Yala (Ke)
4.     London College (Ug)   4.        Makerere College (Ug)
5.   5.       GS Gitisi (Rw)

 

DAY 1    SUNDAY               20TH AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
11:00am   Vihiga High (Ke) Vs St. Mary’s, Yala (Ke) 35 00
11:00am   Koyonzo (Ke) Vs Kitondo Sec (Ke) 38 00
2:00pm   Jinja SS (Ug) Vs Makerere College (Ug) 42 00
2:00pm   Kiira College Butiki (Ug) Vs London Col of St. Lawrence (Ug) 19 00

 

DAY 2    MONDAY             21ST AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
2:00pm   Koyonzo (Ke) Vs London College (Ug) 34 00
2:00pm   Jinja SS (Ug) Vs St. Mary’s, Yala (Ke) 21 17
2:00pm   Jinja SS (Ug) Vs GS Gitisi (Rw) 33 07
2:00pm   Kiira College Butiki (Ug) Vs Kitondo Sec (Ke) 26 28

 

DAY 3    TUESDAY             22ST AUGUST 2023                          PRELIMINARIES

MATCH NO. TIME   TEAMS SCORES
2:00pm   St. Mary’s Yala (Ke) Vs Makerere college (Ug) 37 00
2:00pm   Vihiga (Ke) Vs Jinja SS (Ug) 19 10
2:00pm   Koyonzo (Ke) Vs Kiira College (Ug)  34 10
2:00pm   Kitondo Sec (Ke) Vs London College (Ug) 19 12
3:00pm   St. Mary’s, Yala (Ke) Vs GS Gitisi (Rw) 21 14

 

 

 

TABLE STANDINGS

RUGBY    SEVENS

  PLAYED WON TIE LOSS FOR AGAINST DIFF TRIES POINTS POSITION
VIHIGA 4 4 0 107 5 102 12 1
JINJA SS 4 3 1 68 17 51 9 2
ST MARYS YALA 4 2 2 54 70 -16 6 3
GITISI TSS 3 0 3 0 106 -106 0 4
MAKERERE COLL 3 0 3 0 106 -106 0 5

 

  PLAYED WON TIE LOSS FOR AGAINST DIFF TRIES POINTS POSITION
KOYONZO 3 3 0 0 106 10 96 9 1
KITONDO 3 2 0 1 47 64 -17 6 2
KIIRA 3 1 0 2 55 62 -7 3 3
LONDON COLLEG 2 0 0 3 0 72 -72 0 4

TEAM OVERALL RANKING

RUGBY 7s 

RANK TEAM COUNTRY
1. Koyonzo Kenya
2. Vihiga Kenya
3. Jinja Secondary School Uganda
4. Kitondo Kenya
5. St Marys Yala Kenya
6. Kiira College Uganda
7. London College Uganda
8. GS Gitisi (Rw) Rwanda
9. Makerere College school Uganda

MVP                     Seketa Jackson Koyonzo (Ke)

2019 TSC Intern teachers’ Interview dates, time and Venues; Kericho County- Bureti

The Teachers Service Commission, TSC, has lined up interviews to fill the 10,300 teacher internship posts for Primary and Secondary Schools. This is after the Commission carried out the shortlisting of the thousands of applicants who expressed interest to take up the slots. According to the Commission, the lists of shortlisted applicants has been dispatched to all counties. “Applicants are advised that interviews shall be conducted at the county TSC offices. A list of applicants have been sent to each county,” reads a memo dated November 7, 2019 from Catherine Lenairoshi; of TSC Corporate Communications Office.

Do not miss out on any news concerning KNEC and Exams. Be the first one to receive KNEC related news as it breaks. Here, below, is your all important link for you; 

What to carry to the interview sessions.

According to instructions on the TSC memo, the shortlisted Candidates are required to carry the following to the interviews once invited:
  • i. A valid certificate of Good conduct
  • ii. A valid personal accident cover
  • iii. National ID card
  • iv. Disability card if any
  • v. Two passport size photographs
  • vi. KCSE certificate
  • vii. KCPE certificate
  • viii. Diploma / degree certificate and Transcripts
  • ix. Primary/secondary or college leaving certificate
  • x. Kra pin xi. Bank plate

Important links:

Interview dates for Bureti Sub County

The shortlisted candidates will be taken through interview sessions to be organized by the TSC County Directors; countrywide. Interviews in Bureti Sub County will be done from Monday November 18 to Friday November 22, 2019. Here is the interview schedule for this Sub County. RECRUITMENT PROGRAM FOR INTERNS – NOVEMBER 2019 BURETI SUB COUNTY.
DAY/DATE/TIME VENUE SCHOOLS SUBJECTS
MONDAY 18/11/2019 AT 2.00 PM TENGECHA BOYS
  1. AIC LITEIN GIRLS
  2. CHEMOIBEN SEC
  3. ITOIK SEC
  4. KAPKARIN SEC
  5. KAPKATET DAY
  6. LITEIN BOYS
  7. TENGECHA GIRLS
  8. TENGECHA BOYS
  9. LITEIN DAY
ENG/LIT ENG/LIT KISW/CRE ENG/LIT AGRI/BIO MATHS/PHYSICS BIO/CHEM KISW/GEO, ENG/LIT ENG/LIT
TUESDAY 19/11/2019 AT 2.00 PM CHELILIS GIRLS
  1. CHELILIS GIRLS
  2. GETARWET DAY
  3. GETARWET GIRLS
  4. KABARTEGAN SEC
  5. KAMINJEIWET SEC
  6. NGORORGA SEC
  7. RORET BOYS
  8. RERESIK SEC
  9. TULWET SEC
ENG/LIT CRE/GEO BIO/AGRI MATHS/CHEM CHEM/BIO BIO/AGRI BIO/AGRI KISW/GEO ENG/LIT
WEDNESDAY 20/11/2019 AT 2.00 PM KAPKISIARA GIRLS
  1. CHEPKULGONG SEC
  2. KABORUS SEC
  3. KAPKISIARA GIRLS
  4. KIPTOBON SEC
  5. ST PAULS CHARERA
  6. TEPKUTWET SEC
  7. MABASI SEC
  8. NGOINA SEC
HIST/CRE CRE/HIST GEO/BST, COMPUTER BST/GEO BIO/AGRI GEO/BST PHY/MATHS KISW/GEO
THURSDAY 21/11/2019 AT 2.00 PM KORONGOI GIRLS
  1. KAPTELE SEC
  2. KELUNET SEC
  3. KIBUGAT SEC
  4. KIPTEWIT GIRLS
  5. KIPTEWIT BOYS
  6. CHEBORGE GIRLS
  7. CHEBORGE BOYS
  8. SIONGI SEC
  9. KORONGOI GIRLS
  10. SOSIT DAY
MATHS/BST HIST/CRE GEO/BST GEO/BST, BIO/CHEM AGRI/BIO HIST/GEO BIO/AGRI, ENG/LIT ENG/LIT ENG/LIT, MATHS/BST GEOG/HIST
FRIDAY 22/11/2019 AT 2.00 PM CHEBWAGAN BOYS
  1. TIRIITABMOITA SEC
  2. KAPSOGERUK SEC
  3. KAPSINENDET SEC
  4. AROKYET GIRLS
  5. NGESUMIN GIRLS
  6. CHEBWAGAN BOYS
  7. SOSIT GIRLS
CHEM/BIO BST/GEO CRE/HIST HIST/CRE, BIO/AGRI BIO/AGRI BIO/CHEM, GEO/BST ENG/LIT
  Remember to visit this portal TSC NEWS PORTAL for all the latest TSC News; including interview lists downloads, dates and marking scheme.

Hot news; 

Duration of internship

Successful candidates will be absorbed for a period of one year; since the Internship period will be twelve (12) months.

Remuneration

Recruited interns will be entitled to payment of a monthly stipend of Kshs 15,000 for Secondary School Teacher interns and Ksh 10,000 for Primary School Teacher Inters. This stipend will subjected to statutory deductions where applicable.

Also read;

 

How to apply for the TSC Secretariat job Vacancies

To apply for the advertised Secretariat job vacancies at the TSC:

  • The applications are made online. Click on the this link, to take you to the official TSC Secretariat Recruitment portal; https://services.tsc.go.ke
  • Click on the link at the bottom indicated as, Click Here to register.
  • Enter your ID Number, Phone Number and Email and click on the ‘REGISTER’ tab.
  • You will receive an SMS verification code.
  • Enter the Verification code and password and log in. This will take you to the TSC- Secretariat Recruitment Portal. Read the application instructions and select ‘Agree to the above instructions’ tab.
  • Select the radio button next  to the Vacancy of your choice and click on  ‘apply’.
  • Fill through all the sections:

KCSE REVISION MATHEMATICS (QUESTIONS & ANSWERS)

MATHEMATICS I

PART I

SECTION I (50 MARKS)

  1. Evaluate without mathematical tables leaving your answer in standard form

0.01712 X 3

855 X 0.531                                                                                                                  (2 Mks)

  1. Six men take 14 days working 8 hours a day to pack 2240 parcels. How many more men working

5 hours a day will be required to pack 2500 parcels in 2 days                                                      (3 Mks)

 

  1. M                                  In quadrilateral OABC, OA = 4i – 3j. OC = 2i + 7j

AB = 3OC. cm: mB = 2:3. Find in terms of  i and j

C                                                           vector Om                                           (3 Mks)

 

 

 

 

 

O                                                A

 

  1. By matrix method, solve the equations

5x + 5y = 1

4y + 3x = 5                                                                                                                         (3 Mks)

 

 

  1. In the given circle centre O, ÐABC = 1260.

Calculate ÐOAC                                           (3 Mks)

 

A                                     C

 

 

 

B

 

  1. Solve the equation

2(3x – 1)2 9 (3x – 1) + 7 = 0                                                                                               (4 Mks)

  1. Maina, Kamau and Omondi share Shs.180 such that for every one shilling Maina gets, Kamau gets 50

Cts and for every two shillings Kamau gets, Omondi gets three shillings. By how much does Maina’s

share exceed Omondi’s                                                                                                         (3 Mks)

  1. Expand (2 + 1/2x)6 to the third term. Use your expression to evaluate 2.46 correct to 3 s.f (3 Mks)
  2. The probability of failing an examination is 0.35 at any attempt. Find the probability that

(i)   You will fail in two attempts                                                                                  (1 Mk)

(ii)   In three attempts, you will at least fail once                                                                       (3 Mks)

  1. Line y = mx + c makes an angle of 1350 with the x axis and cuts the y axis at y = 5. Calculate the

equation of the line                                                                                                             (2 Mks)

  1. During a rainfall of 25mm, how many litres collect on 2 hectares? (3 Mks)
  2. Solve the equation a 3a – 7 = a – 2 (3 Mks)

3       5          6

  1. The sum of the first 13 terms of an arithmetic progression is 13 and the sum of the first 5 terms is

–25. Find the sum of the first 21 terms                                                                                (5 Mks)

  1. The curved surface of a core is made from the shaded sector on the circle. Calculate the height of

the cone.                                                                                                                            (4 Mks)

 

 

 

 

 

O

20cm      1250                   20 cm

 

 

 

 

 

 

  1. Simplify (wx – xy – wz + yz) (w + z) (3 Mks)

z2 – w2

  1. The bearing of Q from P is North and they are 4 km apart. R is on a bearing of 030 from P and on

a bearing of 055 from Q. Calculate the distance between P and R.                                        (3 Mks)

 

SECTION II (50 MARKS)

  1. In the given circle centre O, ÐQTP = 460, ÐRQT = 740 and ÐURT = 390

 

 

U                                                   T                                P

 

 

Q

S          390

      Calculate                                                                                    R

(a)  ÐRST                                                        (1 Mk)

(b)  ÐSUT                                                       (3 Mks)

(c)  Obtuse angle ROT                                    (2 Mks)

(d)  ÐPST                                                        (2 Mks)

  1. The exchange rate on March 17th 2000, was as follows: –

1 US$ = Kshs.74.75

1 French Franc (Fr) = Kshs.11.04

      A Kenyan tourist had Kshs.350,000 and decided to proceed to America

(a)  How much in dollars did he receive from his Kshs.350,000 in 4 s.f?                               (2 Mks)

(b) The tourist spend  ¼  of the amount in America and proceeded to France where he spend Fr

16,200. Calculate his balance in French Francs to 4 s.f                                                   (3 Mks)

(c) When he flies back to Kenya, the exchange rate for 1 Fr = Kshs.12.80. How much more in

Kshs. does he receive for his balance than he would have got the day he left?                 (3 Mks)

  1. On the provided grid, draw the graph of y = 5 + 2x – 3x2 in the domain -2 £ x £ 3               (4 Mks)

(a) Draw a line through points (0,2) and (1,0) and extend it to intersect with curve y = 5 + 2x – 3 x 2

read the values of x where the curve intersects with the line                                         (2 Mks)

(b)  Find the equation whose solution is the values of x in (a) above                                     (2 Mks)

  1. (a) Using a ruler and compass only, construct triangle PQR in which PQ = 3.5 cm, QR = 7 cm

and angle PQR = 300                                                                                                     (2 Mks)

(b)  Construct a circle passing through points P, Q and R                                                     (2 Mks)

(c)  Calculate the difference between area of the circle formed and triangle PQR                   (4 Mks)

  1. The given Region below (unshaded R) is defined by a set of inequalities. Determine the inequalities (8 Mks)

Y

 

4

 

 

 

2                   R              (3,3)

  

 

X

-3                           5

 

 

 

 

 

 

 

  1. The table below shows the mass of 60 women working in hotels

 

Mass (Kg) 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 85 – 89
No. of women 8 14 18 15 3 2

 

(a)   State (i)   The modal class                                                                                             (1 Mk)

(ii)  The median class                                                                                           (1 Mk)

(b)   Estimate the mean mark                                                                                                           (4 Mks)

(c)   Draw a histogram for the data                                                                                       (2 Mks)

  1. XY, YZ and XZ are tangents to the circle centre O

at points A, B, C respectively. XY = 10 cm,

YZ = 8 cm and XZ = 12 cm.                                                                                         (2 MKS)

Z

 

 

C

 

 

 

 

..                    B

X

 

A                    Y

 

 

(a)  Calculate, length XA                                                                                                    (2 Mks)

(b)  The shaded area                                                                                                                  (6 Mks)

  1. Maina bought a car at Kshs.650,000. The value depreciated annually at 15%

(a)  After how long to the nearest 1 decimal place will the value of the car be Kshs.130,000        (4 Mks)

(b)  Calculate the rate of depreciation to the nearest one decimal place which would make the value of

the  car be half of its original value in 5 years                                                              (4 Mks)

 

MATHEMATICS I

PART II

SECTION 1 (50 MARKS)

 

 

  1. Simplify 32a10   -2/5 ÷  9b4      11/2

b15             4a6                                                                                                 (2 Mks)

 

  1. Use logarithm tables to evaluate

Ö0.375 cos 75

tan 85.6                                                                                                       (4 Mks)

  1. The marked price of a shirt is Shs.600. If the shopkeeper gives a discount of 20% off the marked price, he makes a loss of 4%. What was the cost of the shirt? (3 Mks)
  2. The surface area (A) of a closed cylinder is given by A = 2pr2 + 2prh where r is radius and h is height of the cylinder. Make r the subject. (4 mks)
  3. In the circle centre O, chords AB and CD intersect at X. XD = 5 cm

      XC = 1/4 r where r is radius. AX:XO = 1:2 Calculate radius of the circle.                             (3 mks)

 

A             5cm       D

 

 

C                O

 

B

 

 

  1. Simplify     2       –        1                                                                                             (3 mks)

5 – 2Ö3     5 + 2Ö3

 

 

  1. P is partly constant and partly varies as q2. When q = 2, P = 6 and when q = 3, P = 16. Find q when P = 64                               (4 mks)
  2. The figure on the side is a tent of uniform cross-section A                           F

ABC. AC = 8m, BC = 8m, BD = 10m   and (ACB = 1200.                  8m

If a scout needs 2.5 m3 of air, how many scouts can fit                      120o C                     E

in the tent.                                                                                                            8m                   (4 mks)

B                              D

10m

  1. The length of a rectangle is given as 8 cm and its width given as 5 cm. Calculate its maximum % error in its perimeter                (3 mks)
  2. ABCD is a rectangle with AB = 6 cm, BC = 4 cm AE = DH = 4 cm BF = CG = 12 cm. Draw a

labelled net of the figure and show the dimensions of the net

  1. Expand (1 + 2x)6 to the 3rd term hence evaluate (1.04)6 (4 mks)
  2. The eye of a scout is 1.5m above a horizontal ground. He observes the top of a flag post at an

angle of elevation of 200. After walking 10m towards the bottom of the flag post, the top is observed at angle of elevation of 400. Calculate the height of the flag post                                  (4 mks)

  1. A bottle of juice contains 405ml while a similar one contains 960ml. If the base area of the

larger Container is 120 cm2. Calculate base area of the smaller container.                             (3 mks)

  1. It takes a 900m long train 2 minutes to completely overtake an 1100m long train travelling at

30km per hour. Calculate the speed of the overtaking train                                                  (3 mks)

  1. Okoth traveled 22 km in 23/4 hours. Part of the journey was at 16 km/h and the rest at 5 km/h.

Determine the distance at the faster speed                                                                           (3 mks)

  1. P and Q are points on AB such that AP:PB = 2:7 and AQ:QB = 5:4 If AB = 12 cm, find PQ

(2 Mks)

SECTION B (50 MARKS)

 

  1. The income tax in 1995 was collected as follows:

      Income in Kshs. p.a                rate of tax %

1 – 39,600                               10

39,601 – 79,200                               15

79,201 – 118,800                             25

118,801 – 158,400                           35

158,401 – 198,000                           45

      Mutua earns a salary of Kshs.8,000. He is housed by the employer and therefore 15% is added to his salary to arrive at its taxable income. He gets a tax relief of Shs.400 and pay Shs.130 service charge. Calculate his net income                                                                                    (8 Mks)

  1. The probability Kioko solves correctly the first sum in a quiz is 2/5 Solving the second correct

is 3/5 if the first is correct and it is 4/5 if the first was wrong. The chance of the third correct is

2/5 if the second was correct and it is 1/5 if the second was wrong. Find the probability that

(a)  All the three are correct                                                                                    (2 Mks)

(b)  Two out of three are correct                                                                              (3 Mks)

(c)  At least two are correct                                                                                     (3 Mks)

  1. A businessman bought pens at Shs.440. The following day he bought 3 pens at Shs.54. This

purchase reduced his average cost per pen by Sh.1.50. Calculate the number of pens bought earlier and the difference in cost of the total purchase at the two prices                                      (8 mks)

 

 

 

 

  1. In D OAB, OA = a, OB = b

OPAQ is a parallelogram.

      ON:NB = 5:-2, AP:PB = 1:3

Determine in terms of a and b vectors

(a)  OP                                                                                                                   (2 Mks)

(b)  PQ                                                                                                                   (2 Mks)

(c)  QN                                                                                                                   (2 Mks)

(d)  PN                                                                                                                   (2 mks)

 

  1. A cylindrical tank connected to a cylindrical pipe of diameter 3.5cm has water flowing at 150

cm per second. If the water flows for 10 hours a day

(a)  Calculate the volume in M3 added in 2 days                                                                   (4 ms)

(b) If the tank has a height of 8 m and it takes 15 days to fill the tank, calculate the base radius

of the tank                                                                                                                     (4 mks)

  1. A joint harambee was held for two schools that share a sponsor. School A needed Shs.15 million while

School B needed 24 million to complete their projects. The sponsor raised Shs.16.9 million while other

guest raised Shs.13.5 million.

(a) If it was decided that the sponsor’s money be shared according to the needs of the school

with the rest equally, how much does each school get                                               (5 mks)

(b) If the sponsor’s money was shared according to the schools needs while the rest was in the  ratio of

students, how much does each school get if school A has 780 students and school B 220

students                                                                                                                        (3 mks)

  1. Voltage V and resistance E of an electric current are said to be related by a law of the form

V = KEn where k and n are constants. The table below shows values of V and E

      V

0.35 0.49 0.72 0.98 1.11
E 0.45 0.61 0.89 1.17 1.35

      By drawing a suitable linear graph, determine values of k and n hence V when E = 0.75(8mks)

  1. The vertices of triangle P,Q,R are P(-3,1), Q (-1,-2), R (-2,-4)

(a)  Draw triangle PQR and its image PIQIRI of PQR under translation T =    3    on the provided grid                                                                                                                4                        (2 Mks)

(b)  Under transformation matrix m =    4  3  , PIQIRI is mapped on to PIIQIIRII. Find the

co-ordinates of PIIQIIRII and plot it   1  2    on the given grid                                          (4 Mks)

(c)  If area of D PIQIRI is 3.5 cm2, find area of the images PIIQIIRII                                        (2 Mks)

 

MATHEMATICS I

PART 1

MARKING SCHEME

 

  1. 171 X 171 X 3 X 10-5 M1

                                  855 X 531

= 2 X 10-6                                                                                     A1

  2

 

  1. No. of men = 6 X 14 X 8 X 2500 M1

                                  2 X 5 X 2240

= 75                                                                            A1

Extra men        = 75 – 6 = 69                                                                B1

 3

  1. OM = 2i + 7j + 2/5 (4i – 3j + 6i + 21j – 2i – 7j) M1

= 2i + 7j + 2/5 (8i + 11j)                                                           M1

= 26 i + 57 j

5       5                                                                               A1

  3

 

 

 

 

 

  1. 2 5       x         =      1

3  4       y                   5                                                                                    M1

 

x          -1/7   5/7       1

y    =     3/7   -2/7      5                                                                M1

 

x    =  3

y       -1

 

x, 3, y = -1                                                                                A1

 3

 

  1. Reflex ÐAOC = 126 x 2 = 2520 B1

Obtuse ÐAOC = 360 – 252 = 1080                                                               B1

= 1/2 (180 – 108)0

= 360                                                                                B1

 3

  1. 18x2 – 39x + 18 = 0

6x2 – 13x + 6 = 0                                                                                         B1Ö equation

6x2 – 9x – 4x + 6 = 0

3x(2x – 3) (3x – 2) = 0                                                                                  M1

x = 2/3  or                                                                                  A1

x =1 ½                                                                                      B1

4

 

  1. M :  K  :  O  =  4 : 2 : 3                                                                              B1Ö ratio

      Maina’s  = 4/9 X 180

= 80/-                                                                                     B1Ö Omondi’s

      Omondi’s = 60/-                                                                                          and Maina’s

      Difference = Shs.20/-                                                                                   B1 difference

3

  1. (2 + 1/2x)6 = 26 + 6(25) (1/2x + 15 (24) (1/2 x)2 M1

= 64 + 96x + 60x2                                                                     A1

2.46      = (2 + 1/2 (0.8))6

= 64 + 96 (0.8) + 60 (0.64)                                                        M1

= 179.2

@179 to 3 s.f                                                                             A1

 4

  1. P (FF) = 7/20 X 7/20

= 49/100                                                                                                            B1

P (at least one fail) = 1 – P (FI FI FI)

= 1- 13/20   3                                                      M1

= 1 – 2197                                                       M1

8000

= 5803

                                                     8000                                                                        A1

 4

 

  1. grad = term 135

= -1                                                                                                            B1

y  = mx + c

y  = -x + 5                                                                                          B1

 2

 

  1. Volume = 2 x 10,000 x 10,000 x 25 M1Ö x section area

1000                 10                                                            M1Ö conv. to litres

= 500,000 Lts                                                               A1

 3

 

  1. 10a – 6(3a – 7) = 5(a -2) M1

10a – 18a + 42 = 5a – 10

– 13a    = -52                                                                                        M1

a        = 4                                                                                           A1

 3

  1. 2a + 12d = 2

2a + 4d = -10                                                                                              M1

8d   = 12

d   = 11/2                                                                                                   A1

a   = -8                                                                                                     B1

S21  = 21/2 (-16 + 20 X 3/2)                                                                           M1

= 147                                                                                             A1

 5

 

  1. 2 p r = 120 x p x 40 M1

360

r = 6.667 cm                                                                                         A1

h =  Ö 400 – 44.44                                                                                 M1

= 18.86 cm                                                                                          A1

 4

  1. = (w (x – z) – y (x – z)) (w + z) M1Ö factor

(z – w) (z + w)

= (w – y) (x – z) (w + z)                                                             M1Ö grouping

(z – w) (z + w)

= (w – y) (x – z)

z – w                                                                                         A1

 3

 

R

250                                                                                B1Ö sketch

  1. 550

Q  125                                            PR = 4 sin 125                                              M1

Sin 25

A1

30

P                                                                                                          3

  1. (a) <RST = 1800 – 740  = 1060                                                              B1

(b) < RTQ = 900– 740           = 160                                                                B1

< PTR = 460 + 160         = 620                                                                B1

< SUT = 620 – 390         = 230                                                                B1

(c)  Reflex ÐRQT = 180 – 2 x 16

= 180 – 32 = 1480                                                                      B1

Obtuse ROT = 360 – 148 = 2120                                                                   B1

(d)  < PTS = 46 + 180 – 129 = 970                                                                      B1

< PST = 180 – (97 + 39) = 440                                                                      B1

8

(a)  Kshs.350,000 = $ 350,000                                                                           M1

74.75

= $ 4682                                                                                   A1

(b) Balance             = 3/4 x 4682

= $ 3511.5                                                                          B1

$3511.5      = Fr 3511.5 x 74.75                                                                   M1

11.04

= Fr 23780                                                                    A1

Expenditure      = Fr 16 200

Balance            = Fr 7580

(c) Value on arrival = Kshs.7580 X 12.80

= Kshs.97,024

Value on departure        = Kshs.7580 X 11.04                                                              B1 bothÖ

= Kshs.83 683.2

Difference                      = Kshs.97,024 – 83683.2                                         M1

= Kshs.13,340.80                                                   A1

 8

X -2 -1 0 1 2 3
Y -11 0 5 4 -3 -16

B1Övalues

 

y

S1Ö scale

8 —                                                                P1Ö plotting

6 —                                                                C1 Ö curve

4 —

2

 

-2 —    1            2          3                                x

-4 —

-6 —

-8 —                                                        y=2x=2

-10 —

-12 —

-14 —                                                                            x   =-0.53 + 0.1  BI

-16 —                                                                           Nx = 1.87+ 0.1

 

y = 5+2x-3x2 =2-2x                  MI for equation

3x2-4x-4x-3=0                   AI equation

8

x     = -0.53 ± 0.1                                                                     B1

mx   = 1.87 ± 0.1

 

 

y = 5 + 2x – 3x2 = 2 – 2x                               M1 Ö for equation

\ 3×2 – 4x – 3 = 0                                                         MA1 Ö equation

 8

 

 

 

 

 

 

 

 

 

20.

 

 

 

 

B1 Ö 300

 

R                                                                                                      B1 Ö 2 ^ PQ, QR

B1 Ö 2 ^ bisectors

B1 Ö circle

 

 

9                         Q

 

 

Radius = 4.2 ± 0.1                                                                                 B1Ö radius

Area of circle = 22/7 x 4.22

= 55.44 ± 3 cm2

Area of D PQR = 1/2 x 3.5 x 7.5 sin 30                                                    M1Ö D and circle

= 6.5625 cm2

Difference               = 55.44 – 6.5625                                                                 M1Ö sub

= 48.88 cm2                                                                       A1

 8

  1. Line (i) y/2 + x/5 = 1

5y + 2x = 10                                                                             B1Öequation

5y + 2x = 10                                                                             B1Ö inequality

      Line (ii)      y/4 + x/-3 = 1

3y = 4x + 12                                                                 B1Ö equation

3y < 4x + 12 or 3y – 4x < 12                                          B1Ö inequality

      Line (iii)     grad = -1/3 y inter = 4

3y + x = 12 or 3y = -x + 12                                            B1Ö equation

3y + x < 12                                                       B1Ö inequality

      Line (iv)      y – 3 = -3

x – 3      2

2y + 3x = 15                                                                 B1Ö equation

\         2y + 3x £ 15                                                                 B1Ö equation

  8

CLASS

F x Fx Cf
60 – 64

65 – 69

70 – 79

75 – 79

80 – 84

85 – 89

8

14

18

15

3

2

62

67

72

77

82

87

 496

938

1296

1155

246

174

8

28

40

55

58

60

  Sf = 60       Sfx 3809  

 

B1Ö x column

B1Ö f column

 

 

 

 

(a)  (i)  Modal class   = 70 – 74                                                                    B1Ö model class

(ii) Median class = 70 – 74                                                                    B1Ö median

 

(b)              Mean =  3809

                                         60                                                                           M1

= 63.48                                                                         A1

 

S1Ö scale

B1 Ö blocks

59.5 – 64.5

64.5 – 69.5 e.t.c.

 8

(c)

 

Histogram

 

 

 

20  —

 

 

15  —

 

 

10 – –

 

 

5  —

 

 

 

 

55    60        65        70        75        80        85        90

 

  1. (a) XA = a, YA = 10 – a, YB = 10 – a, CZ = 10 – a = ZB

YZ = 10 – a + 12 – a = 8                                                                         M1

2a = 14

a = 7 cm                                                                                 A1

Cos X = 100 + 144 – 64

240                                                                               M1Ö any angle of the D

= 0.75

X = 41.410

     1/2 X = 20.700                                                                                     A1Ö 1/2 of the angle

 

r = OA = 7tan 20.7                                                                                   B1 Ö radius

= 2.645 cm

Shaded area = 1/2 X 10 X 12 sin 41.41 – 22/7 X 2.6452                                    M1 Ö D & circle

= 39.69 – 21.99

= 17.7 cm2                                                                    A1Ö

 8

 

 

 

 

 

 

 

  1. (a) 650,000 (0.85)n = 130,000                                                         M1Ö formula

1.15n    = 0.2

n    = log 0.2                                                         M1Ö

log 0.85

1.3010

1.9294

= – 0.6990                                                        M1

– 0.0706

= 9.9 years                                                       A1

(b)  650,000 (1 – r/100) 5 = 325,000                                                                 M1

(1 – r/100) 5 = 0.5

1 – r/100     = 0.5 1/5                                                                   M1

= 0.8706

r/100 = 0.1294                                                                 A1

r    = 12.9 %                                                               B1

 8

MATHEMATICS I

PART II

MARKING SCHEME

 

SECTION I (50 MARKS)

 

 

  1. = b15      2/5    X    4a6   3/2

32a10                9b4                                                                   M1Ö reciprocal

 

 

=          2a5                                                                                           A1

27                                                                                            2

 

      No.             Log.                

0.375          1.5740 +

cos 75         1.4130

2.9870 _

tan 85.6      1.1138

3.8732 =  4 + 1.8732

2                  2

2.9366

0.0864

 

  1. S. Price =  80   X 600

100

= Shs.480                                                                         B1

Cost Price = x

96x       = 480                                                                            M1

100

x  =   Shs.500                                                                      A1

 3

  1. r2 + hr = A/2p                                                 M1

r2 + hr + (h/2)2 = A/2A + h/4                                                                            M1

(r + h/2)2 =  Ö 2A + h2

4p                                                                                        M1

r    = -h/2 ±   Ö2A + h2                                                                            A1

4p                                                                               4

 

  1. (12/3r) (1/3 r) = (1/4 r) (5) M1

4r2 – qr = 0

r(4r – q) = 0                                                                                                 M1

r = 0

or   r  = 2.25                                                                                         A1

 3

 

  1. = 2 (5 + 2Ö3) – 1 (5 – 2Ö3) M1

(5 – 2Ö3) (5 + 2Ö3)

= 10 + 4Ö3 – 5 +2Ö3                                                                                                M1

13

= 5 + 6Ö3                                                                                                    A1

13                                                                                                      3

  1. P = Kq2 + c

6 = 4k + c

16 = 9k + c                                                                                     M1 Ö subtraction

5k = 10

k = 2

c = -2                                                                                                         A1 Ö k and c

      P = 64     2q2 = 66

q  = Ö33

= ± 5.745                                                                                A1

 4

  1. Volume = 1/2 X 8 X 8 sin 120 X 10 M1 Ö area of x-section

      No. of scouts = 32 sin 60 X 10                                                         M1 Ö volume

2.5                                                                               M1

= 110.8

= 110                                                                                        A1

 3

 

  1. Max. error = 2(8.5 + 5.5) – 2(7.5 + 4.5)

2

= 2                                                                                           B1

% error = 2/26 X 100                                                                                 M1

= 7.692%                                                                                  A1

G                                                                          3

 

 

  1. B1 Ö net

 

H             D                             G                       H                                  B1 Ö dimen. FE must be 10cm

 

4cm                                                                                  4cm

 

B1 Ö labelling

E 4cm  A                        12cm      F     10cm    E                                      3

4cm                12cm

E

F

  1. (1 + 2x)6 = 1 + 6(2x) + 15 (2x)2 M1

= 1 + 12x + 60x2                                                                       A1

(1.04)6 = (1 + 2(0.02))6

= 1 + 12 (0.02) + 60(0.02)2                                                        M1

= 1.264                                                                                     A1

 4

 

 

 

 

  1. BT = 10 cm                              B1

CT = 10 sin 40                          M1

= 6.428 m                                 A1

A1 10cm    B                  C                                h = 6.428 + 1.5

1-5                                  = 7.928                                  B1

  4

 

 

  1. A.S.F = 405 2/3  =  27  2/3   =   9                                                                  B1

960           64            10

smaller area = 29  X 120                                                                        M1

164

= 67.5 cm2                                                                                A1

  3

 

  1. Relative speed = (x – 30)km/h B1

2 km     =          2 hrs

(x – 30)km/h      60                                                                             M1

2x – 60 = 120

x = 90 km/h                                                                              A1

  3

  1. 16 Km/h 5 Km/hr

x Km                          (22 – x) Km

x + 22 – x   = 11

16        5           4                                                                                    M1

5x + 352 – 16x = 220                                                                 M1Ö x-multiplication

11x  = 132

x  = 12 km                                                                  A1

  3

 

  1. AP = 2/9 x 12 = 22/3 cm B1 Ö both AP & AQ

      AQ = 5/9 x 12 = 62/3 cm

\ PQ = 62/3 – 22/3 = 4 cm                                                                            B1 Ö C.A.O

  2

 

  1. Taxable income = 115/100 x 8000 M1

= Shs.9200 p. m

= Shs.110,400 p.a                                                                   A1

Tax dues = 10/100 x 39600 + 15/100 x 39600 + 25/100 x 31200                 M1 Ö first 2 slabs

= 3960 + 5940 + 7800                                                               M1 Ö last slab

= Shs.17,700 p.a

= 1475 p.m                                                                               A1

net tax = 1475 – 400

= Shs.1075                                                                             B1 Ö net tax

Total deductions = 1075 + 130

= Shs.1205

net income = 8000 – 1205                                                                      M1

= Shs.6795                                                                   A1

  8

 

 

 

 

 

(a)  P (all correct) = 2/3 x 3/5 x 2/5                                                                  M1

= 12/125                                                              A1

(b)  P (2 correct) = 2/5 x 3/5 x 3/5 + 2/5 x 2/5 X 1/5 + 3/5 x 4/5 x 2/5

                                                                                                                        M1

= 18/125 + 4/125 + 24/125                                         M1

= 46/125                                                              A1

(c) P (at least 2 correct)

= P(2 correct or 3 correct)

= 46/125 + 12/125                                                                           M1

= 46 + 12                                                                                  M1

125

=  58

                                         125                                                                          A1

  8

  1. Old price/pen = 440

x

New price/pen = 494                                                                 B1Öboth expressions

x + 3

440494   = 1.50

x      x + 3                                                                               M1 Ö expression

440(x + 3) – 494x = 1.5x2 + 4.5x                                                M1Ö x-multiplication

x2 + 39x – 880 = 0                                                                     A1 Ö solvable quad. Eqn

x2 + 55x – 16x – 880 = 0                                                 M1 Ö factors or equivalent

(x – 16) (x + 55) = 0

x = -55

or x = 16                                                                                   A1 Ö both values

\ x = 16

difference in purchase = 19 X 1.50                                                        M1

= Shs.28.50                                                           A1

  8

  1. (a) OP = a + 1/4 (b – a) M1

= 3/4 a + 1/4 b                                                                            A1

(b)  PQ = PO + OQ

= –3/4 a – 1/4 b + 1/4 (a – b)                                                          M1

= –1/2 a – 1/2 b                                                                           A1

(c)  QN = QO + ON

= 1/4 (b – a) + 5/3 b                                                              M1

= 23/12 b – 1/4 a                                                                    A1

(d)  PN = PB + BN

= 3/4 (b – a) + 2/3 b                                                               M1

= 17/12 b – 3/4 a                                                                     A1

  8

  1. (a) Volume in 2 days = 22 x 3.5 x 3.5 x 150 x 20 x 3600 M1 Ö area of x-section

7       2        2           1,000,000                                 M1 Ö volume in cm3

= 103.95 m3                                                                  M1 Ö volume in m3

(b)  22 X r2 x 8 = 103.95 x 15   x 7                                                               M1

7                               2

 

r2 = 103.95 x 15 x 7                                                                   M1

                                  2 x 2 2x 8

= 31.01                                                                                     M1

r = 5.568 m                                                                               A1

  8

  1. (a) Ration of needs for A:B = 5:8

A’s share = 5/13 x 16.9 + 1/2 x 13.5                                                          M1

= 13.25 Million                                                                         A1

B’s share = (13.5 + 16.9) – 13.25                                                                        M1

= 13.25                                                                                     M1

  • A’s share 5/13 x 16.9 + 39/50 x 13.5

6.5 + 10.53

= 17.03 m                                                                                 A1

B’s share = 30.4 – 17.03                                                                         M1

= 13.37 Million                                                                         A1

  8

  1. Log V = n Log E = log k
Log V -0.46 -0.13 -0.14 -0.01 0.05
Log E -0.35 -0.21 -0.05 0.07 0.13

B1Ö log V all points

B1Ö log E all points

S1 Ö scale

P1Ö plotting

Log V = n log E + log K                                    L1 Ö line

                                                Log K = 0.08

K = 1.2 ± 0.01                                                  B1 Ö K

N = 0.06/0.06                                                        B1 Ö n

= 1 ± 0.1

\ v = 1.2E                                                       B1Ö v

when E = 0.75, V = 0.9 ± 0.1                            8

  1. (a) T 3 PQR ® PIQIRI

4    PI (0,5), QI (2,2) RI (1,0)

PI QI RI       PII  QII  RII

(b)  4  3    0   2   1   =   15    14   4                                                              M1 Ö

1  2     5   2   0        10     6    1                                                             A1 Ö

 

PII (15,10), QII (14,6), RII (4,1)                                                               B1Ö

(c)  Area s.f = det M

= 5

 

area of PII QII RII = 5 (area PIQIRI)

= 5 X 3.5                                                          M1Ö

= 16.5 cm2                                                        A1

  8

 

 

 

MATHEMATICS 2

PART I

 

SECTION A: 

 

  1. Use logarithm tables to evaluate                      (4 mks)

 

0.0368 x 43.92

361.8

 

  1. Solve for x by completing the square                           (3mks)

2x2  – 5x + 1 = 0

 

  1. Shs. 6000 is deposited at compound interest rate of 13%. The same amount is deposited at 15% simple interest. Find which amount is more and by how much after 2 years in the bank       (3mks)

 

  1. The cost of 3 plates and 4 cups is Shs. 380. 4 plates and 5 cups cost Shs. 110 more than this. Find the cost of each item.                                                                                                        (3mks)

 

  1. A glass of juice of 200 ml content is such that the ratio of undiluted juice to water is 1: 7 Find how many diluted glasses can be made from a container with 3 litres undiluted juice       (3mks)

 

  1. Find the value of θ within θ  < θ < 360if  Cos (2 θ + 120) =  γ3                                                     (3mks)

2

 

  1. A quantity P varies inversely as Q2 Given that P = 4 When Q = 2.  , write the equation joining P and  Q

hence find P when Q = 4                                         a                                                                      (3mks)

 

  1. A rectangle measures 3.6 cm by 2.8 cm. Find the percentage error in calculating its perimeter.                                                                                                                                                 (3mks)

 

  1. Evaluate:          11/6   x  ¾  –  11/12                                                                                              (3mks)

½  of 5/6

 

  1. A metal rod, cylindrical in shape has a radius of 4 cm and length of 14 cm. It is melted down and recast into small cubes of 2 cm length. Find how many such cubes are obtained          ( 3mks)

 

  1. A regular octagon has sides of 8 cm. Calculate its area to 3 s.f.             (4mks)

 

  1. Find the values of x and  y if                                                                                                       ( 2 mks)

3          x          1   =     2

2          1          -1         y

 

  1. An equation of a circle is given by x2 + y2 – 6x + 8y – 11 = 0       (3mks)

Find its centre and radius

 

 

 

 

 

 

  1. In the figure given AB is parallel to DE. Find the value of x and y

 

 

 

 

 

 

 

 

  1. A line pass through A (4,3) and B(8,13). Find                                                  (6 mks)

(i)  Gradient of the line

(ii)  The magnitude of AB

(iii) The equation of the perpendicular bisector of AB.

 

  1. A train is moving towards a town with a velocity of 10 m/s. It gains speed and the velocity becomes 34 m/s after 10 minutes . Find its acceleration (2mks)

 

 

SECTION B:

 

  1. Construct without using a protractor the triangle ABC so that BC=10cm, angle ABC = 600 and

BCA = 450

  1. On the diagram , measure length of AC
  2. Draw the circumference of triangle ABC
  3. Construct the locus of a set of points which are equidistant from A and B.
  4. Hence mark a point P such that APB = 450 and AP = PB
  5. Mark a point Q such that angle AQB = 450 and AB = AQ

 

  1. (a) A quadrilateral ABCD has vertices A(0,2) , B(4,0) , C(6,4) and D(2,3). This is given a

transformation by the matrix   -2  0  to obtain its image AI B I CI DI. under a second transformation

0 – 2

which has a rotation centre (0,0) through –900 , the image AII  BII  CII  DII  of AI  BI  CI  DI  is

obtained.    Plot the three figures on a cartesian plane                                                         (6mks)

(b)  Find  the  matrix of  transformation  that  maps  the  triangle  ABC  where A (2,2)   B (3,4)   C (5,2)

onto  A B C   where  A( 6,10)  B  (10,19 )  C ( 12, 13).                                                    ( 2mks)

 

 

 

 

19.

 

 

 

 

 

 

In the triangle OAB, OA = 3a , OB = 4b and OC = 5/3 OA.  M divides OB in the ratio 5:3

  1. Express AB and MC in terms of a and b
  2. By writing MN in two ways, find the ratio in which N divides
  3. AB
  4. MC

 

 

 

 

 

 

  1. In the figure below, SP = 13.2 cm, PQ = 12 cm, angle PSR = 80O and angle PQR = 900. S and Q are the centres       (8mks)

 

Calculate:

The area of the intersection of the two circles

The area of the quadrilateral  S P Q R

The area of the shaded region

 

 

 

 

 

 

 

 

 

 

 

  1. In an experiment the two quantities x and y were observed and results tabled as below
X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28

 

  1. By  plotting  1/y  against x, confirm that y is related to x by an equation of the form

 

Y =      q

 

 

P + x

where p and q are constants.                                                                             (3mks)

 

(b)  Use your graph to determine p and q                                                                                   (3mks)

 

(c )  Estimate the value of   (i) y when x = 14

(ii) x when y = 0.46                                                             (2mks)

 

  1. A racing cyclist completes the uphill section of a mountain course of 75 km at an average speed of v km/hr. He then returns downhill along the same route at an average speed of (v + 20) km/hr. Given that the difference between the times is one hour, form and solve an equation in v.

Hence

  1. Find the times taken to complete the uphill and downhill sections of the course.
  2. Calculate the cyclists average speed over the 150km.

 

  1. In the diagram below, X is the point of intersection of the chords AC and BD of a circle. AX = 8 cm, XC = 4cm and XD = 6 cm
  2. Find the length of XB as a fraction
  3. Show that XAD is similar to XBC
  4. Given that the area of AXD = 6cm2, find the area of BXC
  5. Find the value of the ratio

Area of       AXB

Area of        DXC

 

 

 

 

 

 

 

  1. A town B is 55 km on a bearing of 0500. A third town C lies 75km due south of B. Given that D lies on a bearing of 2550 from C and 1700 from A, make an accurate scale drawing to show the positions of the four towns.                                                                                           (3mks)

(scale 1cm rep 10 km)

From this find,

(a) The distance of AD and DC in km                                                                     (2mks)

(b) The distance and bearing of B from D                                                               (2mks)

(c)  The bearing of  C from A                                                                                 (1mk)

 

MATHEMATICS 2

PART 1

MARKING SCHEME             (100MKS)

 

 

  1. No. Log

=   3.6502

0.3681              2.5660

0.3682              1.6427 +                                -4  =  1.6502      = 2.8251

0.2087              Logs                            2

361.8                2.5585              + – v   ans  (4)         6.6850 x 10 -2

3.6502                                         = 0.06685

 

  1. 2 x2 – 5x + 1 = 0

x2 5 x + ½ = 0

2

x25 x   = ½

2

x – 5x  +     5 2    =  ½   +     5    (m)

2         4                        4

 

= x –  5    = ½ +      25    =  17                    (3)

4                   16        16

 

= x – 5/4  =  17/16   =    1.0625

x – 5/4    ±  1.031

X1 = -1.031 = 1.25 = 0.2192

X2 = 1.031  + 1.25  = 1.281

 

  1. A1 = P(1 + R/100)2 = 6000  x  113/100 x 113/100 = Sh. 7661.40

 

A2 = P + PRT/100         =   6000 + 15 X 2 = 6000 + 1800

100

=   Shs. 7800

 

Amount by simple interest is more by Shs.  (7800 – 7661. 40)

Shs. 138.60

  1. Let a plate be p and a cup c.

3p + 4c = 380  x 5             15p + 20c  = 1900

4p + 5c  = 490  x 4       16p + 20c  = 1960 

-p      -60                (m)

 

 

 

 

 

p = Shs 60

 

3(60) + 4 c = 380

4c = 380 –180 = 2000                (3)

c=   Shs. 50

Plate = Shs. 60 ,            Cup = Shs. 50            (A both)

 

  1. Ratio of juice to water = 1          :           7

In 1 glass = 1/8 x 200 = Sh 25

3 litres = 300 ml (undiluted concentrate)           (3)

No. of glasses =v    3000  =  120 glasses

25

 

  1. Cos (2 θ + 120) = 3/2 = 0.866

Cos 30 , 330, 390, 690, 750 ….

            2 θ + 120                = 330

2 θ = 210          ,     = 1050                                                                                        (3)

2 θ = 390 – 120   = 2700          θ2 1350

2 θ =  690 – 120  = 5700  ,       θ3 2850       (for 4 ans)

θ4= 315o    ( for >2)

2 θ =  750 – 120   = 6300 ,

 

  1. P =          k                      4  =  K/4           (substitution)

Q2                         9

K = 4 X 4         =            16

9                           9

P =  16   v         when Q = 4

9Q2

 

P =         16        =   1/9              (A)                 (3)

9x4x4

 

  1. The perimeter = (3.6 + 2.8 ) x 2 = 12.8 cm

Max perimeter = (3.65 + 2.85) x 2 = 23 cm    Expressions

% error =   13 –12.8     x  100    m         =     0.2        x     100  (3)

12.8                                     12.8

= 1.5620%        (A)

 

  1.      1 1/6 x ¾  – 11/12   = (7/6 x ¾ )  -11/12         =  7/8 – 11/12   =   21-22  

½  of 5/6                       ½ of 5/6                        5/12              5/12

= -1/24    = -1  x 12    =  -1

5/12        24   5          10       (3)

 

  1. Volume of rod = П r2h = 22/7 x 4  x 14 = 704cm3                (m)

                    Volume of each cube = 2x2x2 = 8 cm3                         A

 

No. of cubes = 704 /8  = 88 cm3   A

 

 

 

 

 

 

 

 

 

  1. < AOB = 360 = 450

                          8

Tan 67.5 =  h

4

h = 4 x 2.414                A

=  9.650cm

Area of 1 triangle = ½ x 8 x 9.656 x 8 cm = 38.628 x 8   vm

Octagon area  =  38.628 x 8      m

=  309.0 cm2        (A)

 

  1. 3   2        -1             2

=

2              1          -1           y

 

3 – x = 2       (1)       x = 1                          (2)

2 –  1 = y                 y = 1  (A)

 

  1. x 2 + y2 – 6x + 8y – 11 = 0

x2 – 6x + (-3)2 + y2 + 8y + (4)2 = 11 + (-3)2 + (4)2         (completing the square)

(x – 3)2 + (y+4)2 = 11 + 9 + 16 = 36

(x – 3)2 + (y + 4)2 = 62                                                                                          

Centre is  (3, -4)

Radius       = 6 units           As                                            (3)

 

 

14.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs A C B  and D C E are similar

AB       =          AC       =  and   AB       =          BC

                         DE                    DC                 DE                   CE

 

10    =  6 + x

3          6

= 10   =  15 + y,     m

3            y                                                    60 = 18 + 3x

10y  = 15 + 3y                                                   3x = 42

7y = 15                                                                x = 14

 

y = 15/7              (A)                                                                             (3)

A (4 , 3)           B(8,13)

 

  1. (i) gdt          = change in y    = 13-3 = 10     =  5

change in x       8-4       4          2

 

(ii)      Mag  AB  =  8     -4           4                                                    =

13 -3         10

Length =   Ö42 + 10   = Ö116 = 10.77 units

(iii)   Mid point  = 4 +8  ,    3 + 3

2             2

=  (6, 8)    (mid point)                                                (5 mks)

gdt of perpendicular to AB = -ve rec. of 5/2

-2/5

Eqn is  y = -2/5 x + c

8 = -2/5  x 6 + c    =  40  = -12  +  5c

= c = 52/5

 

y = -2/5 x + 52/5        (A)

 

 

  1. Acceleration = Change in velocity

Time

= (34 – 10) m/s                  = 24 m/s

60 x 10                                600

 

= 0.04m/s2-                                (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Triangle                                    (8)

AC = 9cm

Circumference Centre

Circle

Perpendicular bisector of AB

P

Q

 

 

 

  1. (b) a b   2       3          5        6          10        12

c          d   2       4          2        10        19        13

 

2a +2b = 6  x 2       = 49 + 4b = 12

3a + 4b = 10             3a + 4b = 10

a     = 2              4 + 2b = b

 

2c + 2d = 10×2 = 4c + 4d = 20                2 b = 2  b = 1

3c + 4d  = 19        3c + 4d  = 19

c           = 1

2 (1)  + 2d = 10

2d = 8                           Matrix is           2          1      (A)

d = 4                                                  1          4

 

 

 

 

 

OC = 5/3 (31) = 5A

 

19.

 

 

(a)  = AO + OB                         MC = MO + OC

= -3a  = 4b                         = -5/8 (4b) + 5

= 5A – 5/2 b

 

(b) MN = 5 Mc     = 3(5a – 5/2 b)

= 5 s a – 5/2 s b

 

MN = BN + BN

=  3/8 (4 b) + (1 – t) (-BA)

=  3/8 (4 b) + (1 – t)(3a – 4 b)

=  3/2  b + 3 ta –4b + 4tb

= (3-3t) a (4t – 5/2)b

 

MN = MN

= 5 s a – 5/2  sb = (3-3t)a +   (4t – 5/2 )b

=  5 a =  3 – 3t       = 5s + 3t =3

= -5/2 s = 4t –5/2  v     5s + 8t = 5 

-5t = -2            t = 2/5

5 s   = 3 – 3(2/5)

= 3 – 6/5 = 9/5

= 3 – 6/5 = 9/5

s = 9/25

 

(i)    AN :     NB = 2 : 3

 

(ii)   MN :    9   :  16

 

 

 

 

 

 

 

 

20.

 

 

θ x pr2

360

 

  1. Area of sector SPR =  80/360 x 13.2 x 13.2 x 3.142

=  121.6

Area of triangle SPR ½ x 13.2  x 13.2 x sin 80

= 85.8 cm2

(m of area of ) A (at least one)

(m of area)  A(at least one)

Area of segment = 121.6 – 85.8

= 35.8 cm2

Area of sector QPR = 90/360 x 3.142 x 12 x12

 

Area of  PQR = ½ x 12 x 12 = 722

                    Area of segment = 113.1 – 72

= 41.1cm2

Area of intersection = (35.8 + 41.1) = 76.9 cm2

 

b).  Area of quadrilateral  = Area of   PQR + SPR

=  85.8 + 72 = 157.8cm2

Area of shaded region  =  Area of Quadrilateral – Area of sector SPR

=  157.8 – 121.6

=  36.2 cm2

 

 

  1. y = q                   p + x = q                       1  =  x + p

p + x                          y                      y      q    q

 

Gradient  = 1/q   at (0, 0.95)  (8,2.0)  (8,2.0)  gradient   =  2.0 – 0.95  =  1.05

8                 8

1          =  0.1312

q

=  1      =  7.619

0.1312

q =  7.62.

 

y(1/y)  Intercept   p    =  0.95     P   =  0.95

q                7.62

 

p = 7.62 x 095  =  7.27

at x =  14,  y = 2.7

at  y = 0.46,  1/y  =  2.174

x  =  9.6.

 

 

 

 

 

 

  1. a) Distance  =  75km   uphill speed  =  vkm/h

uphill Time  =  75/v hrs

Downhill speed  = ( + 20)  km/h

Downhill Time    =        75         hrs.

                                             v + 20

Takes larger uphill

75  –  75             =  1

v         v+20

75 (v+20) – 75v            = 1

v(v + 20)                    1

75v + 1500 – 75v  =  v(v + 20)  =  v2 + 20v.

v2 + 20v  – 1500  =  0

v  =  – 20 +  202 – 4(1)  (-1500)

2(1)

v  =  –20 +  400 + 6000  = –20 + v6400

2                        2.

V1     =  –20  +  80      =  30km/hr

2

V2    =   – 20 – 80      X   impossible

2

speed uphill      =  30 km /hr,  T = 75  time =  2 ½ hrs

30

speed downhill =  50 km /hr  Time = 75      Time =  2 ½ hr

50

Average speed   =  Total  distance         =  150km          =  37.5 km/ hr

                                                Total time                      4hrs

 

X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28
1/y 1.0 1.56 2.0 2.38 2.94 3.57

 

 

  1. A                 B

 

 

 

 

D                      C

 

A x X x C  =  BX .  XD

8 x 4           =  6BX

BX       =  8 x 142          =   16  

6                     3

X AD   =  XBC

XA       =  8    =  24      =  3

XB        16        16          2

XD      =    6      =    3

XC               4              2

 

<   AXD   =   BXC            (vertically opposite  <s))

                                                    SAS holds  :  they are similar.

LSF  =   3/2    ASF  =  (3/2)2  =  9/4

Area  A x A  =  6cm2    Area  B x C  =  6 x 9       =  27   =  13.5cm2

4

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. a) AD =   50km

DC   =   35km

BD  = 90km

Bearing is 020

Bearing is 134o                                                                                                       (8mks)

 

 

MATHEMATICS  I

PART II

 

SECTION (52 MARKS)

 

  1. Without using tables, simplify

1.43 x 0.091 x 5.04

2.86 x 2.8 x 11.7                                                                                             (3mks)

 

  1. Make x the subject of the formula if

y = a/x  +  bx                                                                                                    (3mks)

 

  1. Give the combined solution for the range of x values satisfying the inequality

2x + 1<  10 – x  <   6x – 1                                                                                 (3mks)

 

  1. A man is employed at a KShs. 4000 salary and a 10% annual increment. Find the total amount of money received in the first five years                                                                   (4mks)

 

  1. A town A is 56 km from B on a bearing 0620.  A third town C is 64 km from B on the bearing of 140o.  Find

(i) The distance of A to C                                                                                        (2mks)

(ii) The bearing of A from C                                                                                          (3mks)

 

  1. Expand (x + y)6 hence evaluate (1.02) to 3d.p.                                                         (3mks)

 

  1. Rationalise the denominator in                                                                               (2mks)

 

Ö 3

1 – v3

 

 

 

  1. The table below shows daily sales of sodas in a canteen for 10 days.

 

 Day 1 2 3 4 5 6 7 8 9 10
No. of 52 41 43 48 40 38 36 40 44 45

 

Calculate the 4 day moving averages for the data                                                     (3mks)

 

  1. Find the image of the line y = 3x = 4 under the transformation whose matrix is.

3mks

2           1

-1         2

 

  1. Three points are such that A (4 , 8), B(8,7), C (16, 5). Show that the three points are collinear                                                                                                                                          (3mks)
  2. Write down the inverse of the matrix 2 – 3 hence solve for x and y if

4     3

2x  – 3y = 7

4x + 3y +5                                                                                                        (3mks)

 

  1. Use the table reciprocals to evaluate to 3 s.f. 3mks

1/7  +  3/12  +  7/0.103

 

 

 

 

 

 

 

Given that O is the centre of the circle and OA is parallel to CB, and that angle

ABC =   1070,  find

(i) Angles AOC,                (ii) OCB               (iii) OAB                                                 (3mks)

  1. Two points A and B are 1000m apart on level ground, a fixed distance from the foot of a hill. If the angles of elevation of the hill top from A and B are 60o and 30o respectively, find the height of the hill                                                                                           (4 mks)
  2. Two matatus on a dual carriageway are moving towards a bus stop and are on level 5 km from the stop. One is travelling 20 km/hr faster than the other, and arrives 30 seconds earlier. Calculate their speeds.       (5mks)
  3. If log x = a and log y = b, express in terms of a and b

Log  x 3 

VY                                                                                                             (2mks)

 

SECTION B:

 

  1. The table below gives the performance of students in a test in percentage score.
Marks 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of Students  

2

 

4

 

7

 

19

 

26

 

15

 

12

 

5

 

Using an assumed mean of 44.5, calculate

  1. The mean
  2. The standard deviation
  3. Find the median mark

 

 

 

  1. Draw the graph of y = 2x2 – x – 4 for the range of x -3  = x  =  3.  From your  graph

State the minimum co-ordinates

  1. Solve the equations
  2. 2x2 – x – 4 = 0
  3. 2x2 – 3x – 4 = 0

 

 

 

 

 

 

  1. Two concentric circles are such that the larger one has a radius of 6cm and the smaller one radius of 4 cm. Find the probability that an item dropped lands on the shaded region           4mks

 

  1. Two unbiased dice are thrown. Find the probability of obtaining (4mks)
  2. A product of 6
  3. A sum of 8

iii. The same number showing                                                                             (4mks)

 

 

 

 

 

 

 

 

 

 

Two pulley wheels centers A and B are joined by a rubber band C D E F G H C round them.  Given that larger wheel has radius of 12 cm and AB = 20 cm, CD and GF are tangents  common to  both  wheels and that CBA = 60o), Find

  1. BD (Length)
  2. CD

iii.  Arc length CHG and DEF, hence find the length of the rubber.

 

  1. V A B C D is a right pyramid with a square base A B C D of side 5 cm. Each of its four triangular

faces is inclined at 750 to the base. Calculate

  1. The perpendicular height of the pyramid
  2. The length of the slant edge VA
  3. The angle between edge VA and base A B C D
  4. The area of the face VAB

 

  1. Plot the graphs of y = sin xo and y = cos 2xo on the same axes for –180 £ x £180o.

Use your graphs to solve the equation 2 sin x = cos  2x

 

  1. The depth of the water in a rectangular swimming pool increases uniformly from 1M at the shallow

end to 3.5m at the deep end.  The pool is  25m long  and  12m  wide. Calculate the volume of the pool

in cubic meters.

The pool is emptied by a cylindrical pipe of internal radius 9cm. The water flows through the pipe at speed of 3 metres per second.  Calculate the number of litres emptied from the pool in two minutes to the nearest 10 litres.          (Take II = 3.142)

 

 

 

  1. A rectangle A B C D is such that A and C lie on the line y = 3x. The images of B and D under a

reflection in the line y = x are B1 (-1, -3) and D1 (1,3) respectively.

  1. Draw on a cartesian plane, the line y = x  and mark points B1 and D1
  2. Mark the points B and D before reflection
  3. Draw the line y = 3x hence mark the points A and C to complete and draw the rectangle ABCD.

State its co-ordinates, and these of A1 and C1.

  1. Find the image of D under a rotation, through – 900, Center the origin.

 

 

MATHEMATICS I

PART II

MARKING SCHEME.

  1. 1.43 X 0.091 X 5.04100000        91 X 504           =        7/103

                        2.86 X 2.8 X 11.7             105             2 x 28 x 117 x 103

                                                                                                                                                                                    (3)

                                                                                                                         = 0.007            (A)

  1. y = a/x + bx yx = a + bx2

Either

bx2 – yx + a = 0

 

x =     y   ±   v y2 –  4ab

2b                                                         (3)

 

  1. 2x + 1£  10 – x  £    bx  -1

2x + 1 £ 10 – x            10 –x £  6x –1

3x £   9                                    11£   7x

x  £  3                               x   £ 11/7                                                             (3)

11/7 £  x   £   3

 

  1. a = 4000 r = 110/100   =      1.1   ( 4000, 4000 + 4000, 4400 + 0/100 (4400——)

(a and r)

Sn  =  a(r n – 1)       

                                    R  -1                                                     1.1 Log  = 0.04139

     X   5

0.20695

 

0.1                               (4)

= 4000 (1.15 –1)   (any)

1.1 –1                                                   4000 (1.6 – 1)

0.1

A  =  4000 ( 0.6105)

0.1

= Sh. 2442       =    Sh. 24,420       (A)                                       (4)

0.1

 

  1. (i) b2=  a2 + b2 – 2ab Cos B

= 642  + 562– 2(64) (56) cos 78

= 4096 + 3136  – 7168 (0.2079)

= 7232  – km 1490.3

 

b2  = 5741.7  = 5.77 km                  (5)

 

(ii)        b                a

            Sin B          Sin A

 

75.77    =      64

Sin 78         sin A         Sin A = 64 x 0.9781     

75.77                   

Sin A = 0.08262

A  = 55.70  (or B = 46.30)

 

Bearing = 90 – 28 – 55.7

= 0.06.30                       (A)

 

  1. (x + y) 6 =  1 (x) 6 (y)0 + 6 (x)5 (y)1+15(x)4 (y)2 + 20x3y3 + 15x2y4 + 6xy5 + y6

(1.02)6 = (1 +0.02)6 x = 1

y = 0.02

 

(1.02)6 = 1+6 (0.02) + 15 (0.02)2 + 15(0.02) + 20(0.02)3 + 15 (0.02)4                          

=  1 + 0.12  + 0.006 + 0.00016

= 1.12616

= 1.126  (to 3 d.p)                                                                                 (3)

 

  1.       3(1 +  3)                 =  3  +  3          3 + v3

(1-  3)(1+  3)                     1-3                          2

 

  1. Moving averages of order 4

M1        =  52 + 41 + 43 + 48                  184       = 146

4                                   4

M2            184 – 52 + 40   = 172  = 43                               for 7

4                 4                                   for > 4

M3             = 172– 40 + 38 = 170    = 42.5

4                     4

M4             170 – 38+36  = 168   = 42

4                  4

M5        = 168 – 36 + 40 = 173    = 43                (3)

4                4

M6             = 172 – 40 + 44 = 176    = 44

4              4

M7             = 176 – 44 + 45 = 177    = 44.25

4             4

 

  1. y = 3x + 4

A(0,4) B (1,7) Object points

                                                A         B          A         B

2          1          0          1          4          9

=

-1         2          4          7          8          13

Y =  Mx + C

M = 13 – 8  =  5  = 1

9-4                  5     1

 

y = x+c                                  y = x + 4

8 = 4 + c    c  = 4

 

  1. AB = 8     -4                        4                      BC =   16      – 8                        -8     for either

=

7     -8                      -1                                  5        – 7             -2

 

 

AB = ½   BC  and AB and BC share point B.

A,B,C  are collinear.                                                                (3)

 

  1. 2          -3

 

4          3          det. = 6 + 12 = 18

Inv.=     1         3          3

18

-4         2

1         3      3     2     -3   x       1           3   3       7

18                                            18

-4    2      4       2  y                     -4  2       5

x                       36

1

y          18        -18                    (3)

x = 2, y = -1      (A)

 

  1. 1/7 + 3/12.4 + 7/0.103

1/7 + 3/1.24 x 10-1 + 7/1.03 x 10-1

 

  0.1429 + 3(0.8064) + 7 x 10 (0.9709)

10

= 0.1429 + 0.2419 + 67.96                                 (3)

=70.52                             (A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. (i) ADC = 2×73

= 1460

 

(ii) OCB = x = 180 – 146 = 34

(iii) 360 – 107 – 146 – 34

= 73 0

 

  1. Tan 300 = y/x y  =  x tan  30

Tan 600  = 1000 + y       ;     y = x tan 60 – 1000

X

X tan 300  = x tan 60 – 1000

0.5773 x = 1.732x – 1000

1.732x – 0.577 = 1000

1.155x = 1000

x = 1000

1.155           = 866.0 m         (A)                   (4)

 

 

  1. 5 km Slower speed = x km/hr

Time    = 5/x

Faster = (x+20) k/h

Time = 5/x=20            T1 – T2 = 5/x  – 5/x+20 = 30/3600

5 (x+20) –5x       1

x(x+20) 120

120 (5/x + 100 – 5x) = x2 + 20x             (5)

x2 + 20x – 12000

x = –20      400 + 48000

2

x = -20 ±  220

2

Spd = 100 km/h

And x = 120 km/h                                 (A)

  1. Log x = a log y = b

Log  x3  = Log x3  –  log y ½

y

= 3 Log x – ½ Log y

= 8a –  ½ ab

 

SECTION B

 

17.

Marks Mid point (x) d = x-44.5 F E = d/10 Ft T2 Ft2   v
0-9 4.5 -40 2 -4 -8 16 32
10-19 14.5 -30 4 -3 -12 9 36
20-29 24.5 -20 7 -2 -14 4 28
30-39 34.5 -10 19 -1 -19 1 19
40-49 44.5 -0 26 0 0 0 0
50-59 54.5 -10 15 1 15 1 15
60-69 64.5 20 12 2 24 4 48
70-79 74.5 30 5 3 15 9 45

=90                              =1                                =223

 

 

(a)   Mean = (1 / 90 x 10) + 44.5 = 44.5 + 0.111

= 44.610

 

(b)   Standard deviation = 10  233/90  – (1/90)2                        

                                                            10  2.478  – 0.0001                              (8)

10   2.478

10 x 1.574  = 15. 74    (A)

(c)    Median 45.5th value  = 39.5  + (13.5 x 10/ 26)

39.5 + 5.192                 (A)

44.69

 

(a)     The probability  = Shaded area

                                     Large circle area

Shaded area = ПR2 – П r2

= 22/7 (42 – 32) v  = 22/7 x 7  = 22

            Large area  = 22/7 x4x4 = 352/7 (A)

Probability = 22         = 22  x  7 =    7

352/7            352      16

 

(b)

  1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6

(M)

 

(i)    P(Product of 6) = P((1,6) or (2,3) or (3,2) or (6,1))

= 4/36   =  1/9

(4)

(ii)   P (sum of 8)   = P( (2,6) or (3,5) or (4,4) or (5,3) or (6,2) )

= 5/36               (A)

 

(iii)  P (same number)  = P (1,1) or (2,2) or (3,3) or (4,4) or (5,5) or (6,6)

6/36  = 1/6   (A)

 

 

 

 

 

 

 

 

 

 

(i)         Cos 60   = x/20 x = 20 x 0.5  = 10 cm

BD = 12 – 10 = 2 cm

 

(ii)          CD = y  Sin 60  = y/20                        y = 20x 0.8666

CD = 17.32 cm

 

 

 

 

(iii)        CHG  = 120        reflex  = 2400

CHG = 240/360 x 2 x p x r

= 50.27

DBF = 1200/360  x 2 x  П x  r  =  1/3 x 2 x 3.142 x 2

=  4.189                               (A)

Length C D E f G H C  =          50.27 + 2(17.32) + 4.189

= 89.189                     (A)

 

  1. (a) From the diagram, XO = 5/2 = 2.5

Tan 750 = VO/2.5          v m

VO  =  2.5 x 3.732

 

Perpendicular height  = VO  = 9.33 cm

2                      (A)

  1. Diagonal of base = 52 + 52  = 50
        Length of diag.   50       = 7.071    = 5.536

VA2 = AO2 + VO2     (m)

3.5362  + 9.32

12.50 + 87.05

= 99.55 = 9.98 cm2        (A)                  (8)

 

 

(c )                   = VAO  Tan =      9.33     = 2.639

3.536

VAO = 69.240                                                (A)

 

 

(d)                    Cos VBA = = 2.5 /9.98   = 0.2505

VBA = 75.490

Area VBA = ½  x 5  x 4.99 x sin 75.45             m  ( or other perimeter)

= 5 x 4.99 x   0.9681

= 24.15 cm2                  (A)

 

  1. Volume = cross – section Area x L

X-sec Area = (1 x 25)  +  (½  x 25 x 2.5)

=  25 + 31.25  =  56. M

Volume  = 56.25 x 12

= 675 m3                               

            Volume passed / sec  = cross section area x speed

= П r2 x l           = 3.14  x  9/100 x  9/100  x 3                 (8)

= 0.07635  m3 /sec         v (M)

Volume emptied in 2 minutes

= 0.07635 x 60 x 2

= 9.162 m2                (A)

1 m3  = 1000 l

= 9.162 litres

= 9160 litres                 (A)

 

 

 

 

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICS II

PART I

 

SECTION A (52 MARKS)

 

  1. Use tables to evaluate

3Ö 0.09122 + Ö 3.152                                                           (5mks)

0.1279 x 25.71

  1. Simplify  (a – b)2

a2 – b2                                                             (2mks)

 

 

  1. The gradient function of a curve that passes through point: (-1, -1) is 2x + 3.

Find the equation of the curve.                                                                               (3mks)

  1. Find the value of k for which the matrix k     3

has no inverse.   (2mks)                            3     k

  1. Without using tables, evaluate       log 128 – log 18

log 16 – log 6                                                          (3mks)

  1. Find the equation of the locus of points equidistant from point L(6,0) and N(-8,4). (3mks)
  2. The value of a machine is shs. 415,000. The machine depreciates at a rate of 15% p.a. Find how many years it will take for the value of the machine to be half of the original value. (4mks)
  3. Use reciprocal tables to evaluate to 3 d.p. 2             1   

0.321           n2.2                                          (4mks)

  1. Using the trapezium rule, estimate the area bounded by the curve y = x2, the x – axis and the co-ordinates x = 2 and x = 5 using six strips. (4mks)
  2. Solve the equation for 00 £ q £ 3600 and Cos2q + ½ Cosq = 0 (3mks)
  3. Point P divides line MK in the ratio 4:5. Find the co-ordinates of point P if K is point (-6,10) and M is

point (3,-8)                                                                                                                          (3mks)

  1. How many multiples of 3 are there between 28 and 300 inclusive. (3mks)
  2. The line y = mx – 1, where m is a constant , passes through point (3,1). Find the angle the line makes with the x – axis. (3mks)
  3. In the figure below, AF is a tangent to the circle at point A. Given that FK = 3cm, AX = 3cm, KX = 1.5cm and AF = 5cm, find CX and XN. (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Make X the subject of the formula (3mks)

V = 3Ö k + x

sk – x

 

 

 

 

 

 

 

 

  1. Write down the inequalities that describe the unshaded region below. (4mks)

y

 

 

0.5         2                   x

 

-1.5

-2

 

      SECTION B (48 MARKS)

     

  1. Draw the graph of y = -x2 + 3x + 2 for –4 £ x £ 4. Use your graph to solve the equations

(i.) 3x + 2 – x2 = 0               (ii) –x2 – x = -2                                                       (8mks)

 

  1. The marks obtained by Form 4 students in Examination were as follows:

 

 

Marks 0-9 10-19 20-29 30-39 40-49 50-59
No. of students 2 8 6 7 8 10
Marks 60-69 70-79 80-89 90-99  
No. of Students 9 6 3    

      Using 74.5 as the Assumed mean, calculate:

(i) The mean mark

(ii) The standard deviation                                                                                      (8mks)

  1. In the figure below, a and b are the position vectors of points A and B respectively. K is a point on

AB such that the AK:KB = 1:1. The point R divides line OB in the ratio 3:2 and point S divides OK in

the ratio 3:1.

 

B

R

B                                 K

 

0               a                     A

(a) Express in terms of a and b

(i) OK       (iii) RS

(iii) OS      (iv) RA

(b) Hence show that R,S and A are collinear.                                                          (8mks)

 

  1. The figure below is the roof of a building. ABCD is a rectangle and the ridge XY is centrally placed.

 

 

 

 

 

 

 

 

 

 

 

Calculate:

(i) The angle between planes BXC and ABCD.

(ii) The angle between planes ABXY and ABCD.                                                          (8mks)

  1. On the same axis, draw the graph of y = 2cosx and y = sin ½x for 00 £ x £ 1800, taking intervals of 150

                                                                                                                                                                                                          (6mks)

From the graph, find:

(a) The value of x for which 2cosx = sin ½ x                                                                              (1mk)

(b) The range of values of x for which –1.5 £ 2cos x £ 1.5                                              (1mk)

  1. Two towns T and S are 300km apart. Two buses A and B started from T at the same time travelling towards S. Bus B travelled at an average speed of 10km/hr greater than that of A and reached S 1 ¼ hrs earlier.

(a) Find the average speed of A.                                                                                    (6mks)

(b) How far was A from T when B reached S.                                                                (2mks)

  1. P and Q are two ports 200km apart. The bearing of Q from P is 0400. A ship leaves port Q on a bearing of 1500 at a speed of 40km/hr to arrive at port R 7 ½ hrs later. Calculate:

(a) The distance between ports Q and R.                                                                        (2mks)

(b) The distance between ports P and R.                                                                  (3mks)

(c) The bearing of port R from port P.                                                                      (3mks)

  1. A farmer has 15 hectares of land on which he can grow maize and beans only. In a year he grows maize on more land than beans. It costs him shs. 4400 to grow maize per hectare and shs 10,800 to grow beans per hectare. He is prepared to spend at most shs 90,000 per year to grow the crops. He makes a profit of shs 2400 from one hectare of maize and shs 3200 from one hectare of beans. If x hectares are planted with maize and y hectares are planted with beans.

(a) Write down all the inequalities describing this information.                                      (13mks)

(b) Graph the inequalities and find the maximum profit he makes from the crops in a year.          (5mks)

 

 

MATHEMATICS II

PART II

 

  1. Use logarithm tables to Evaluate

3Ö 36.5 x 0.02573

1.938                                                                                                              (3mks)

  1. The cost of 5 shirts and 3 blouses is sh 1750. Martha bought 3 shirts and one blouse for shillings 850. Find the cost of each shirt and each blouse.             (3mks)
  2. If K = ( y-c  )1/2

4p

  1. a) Make y the subject of the formula.       (2mks)
  2. b) Evaluate y, when K = 5, p = 2 and c = 2                                                                   (2mks)
  3. Factorise the equation:

x + 1/x = 10/3                                                                                                             (3mks)

  1. DA is the tangent to the circle centre O and Radius 10cm. If OD = 16cm, Calculate the area of the shaded Region.       (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Construct the locus of points P such that the points X and Y are fixed points 6cm apart and

ÐXPY =     600.                                                                                                            (2mks)

  1. In the figure below, ABCD is cyclic quadrilateral and BD is diagonal. EADF is a straight line,

CDF = 680, BDC = 450 and BAE = 980.

 

 

 

 

 

 

 

 

Calculate the size of:                                                                                               (2mks)

  1. a) ÐABD                                       b) ÐCBD
  2. Otieno bought a shirt and paid sh 320 after getting a discount of 10%. The shopkeeper made a profit of 20% on the sale. Find the percentage profit the shopkeeper would have made if no discount was allowed?       (2mks)
  3. Calculate the distance:
  4. i) In nautical miles (nm)
  5. ii) In kilometres (km)

Between the two places along the circle of Latitude:

  1. a) A(300N, 200E) and B(300N, 800E) (Take Radius of Earth = 6371Km).                (2mks)
  2. b) X(500S, 600W) and Y(500S, 200E) (Take Radius of Earth = 6371Km).                  (2mks)
  3. A rectangular tank of base 2.4m by 2.8m and height 3m contains 3,600 litres of water initially. Water flows into the tank at the rate of 0.5m/s. Calculate the time in hours and minutes required to fill the tank. (4mks)
  4. Expand (1 + a)5 up to the term of a power 4. Use your expansion to Estimate (0.8)5 correct to 4 decimal places. (4mks)  
  5. A pipe is made of metal 2cm thick. The external Radius of the pipe is 21cm. What volume of metal is there in a 34m length of pipe (p = 3.14).       (4mks)
  6. If two dice are thrown, find the probability of getting: a sum of an odd number and a sum of scoring more than 7 but less than 10. (4mks)
  7. Find the following indefinite integral ò 8x5 – 3x dx                                                                  (4mks)

x3

  1. The figure below represents a circle of radius 14cm with a sector subtending an angle of 600 at the centre.

 

 

.

 

 

 

 

 

 

 

Find the area of the shaded segment.                                                                                         (3mks)

 

 

 

 

 

 

 

 

  1. Use the data below to find the standard deviation of the marks.

 

Marks (x ) Frequency (f)
5

6

7

8

9

3

8

9

6

4

(4mks)

 

SECTION II (48MKS)

 

  1. The figure below shows a cube of side 5cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate:

  1. a) Length FC                                                                                                      (1mk)
  2. b) Length HB                                                                                                        (1mk)
  3. c) Angle between GB and the plane ABCD. (1mk)
  4. d) Angle between AG and the Base.       (1mk)
  5. e) Angle between planes AFC and ABCD. (2mks)
  6. f) If X is mid-point of the face ABCD, Find angle AGX. (2mks)
  7. Draw on the same axes the graphs of y = Sin x0 and y = 2Sin (x0 + 100) in the domain 00 £ x0 £ 1800
  8. i) Use the graph to find amplitudes of the functions.
  9. ii) What transformation maps the graph of y = Sin x0 onto the graph of : y = 2Sin (x0 +100).
  10. The table below shows the masses to the nearest gram of 150 eggs produced at a farm in Busiro

country.

Mass(g) 44 45 46 47 48 49 50 51 52 53 54 55
Freq.  1  2  2  1  6  11  9  7  10  12  16  16
Mass(g) 56 57 58 59 60 61 62 63 64 65 70  
Freq.  10  11  9  7   5  3  4  3  3  1  1  

 

Make a frequency Table with class-interval of 5g. Using 52g as a working mean, calculate the mean mass. Also calculate the median mass using ogive curve.

  1. A shopkeeper stores two brands of drinks called soft and bitter drinks, both produced in cans of same

size. He wishes to order from supplies and find that he has room for 1000 cans. He knows that bitter

drinks has higher demand and so proposes to order at least twice as many cans of bitter as soft. He

wishes however to have at least 90cans of soft and not more than 720 cans of bitter. Taking x to be

the number of cans of soft and y to be the number of cans of bitter which he orders. Write down the

four inequalities involving x and y which satisfy these conditions. Construct and indicate clearly by

shading the unwanted regions.

 

 

 

 

  1. Two aeroplanes, A and B leave airport x at the same time. A flies on a bearing 0600 at 750km/h and B flies on bearing of 2100 at 900km/h:
  2. a) Using a suitable scale draw a diagram to show the positions of Aeroplanes after 2hrs.
  3. b) Use your graph to determine:
  4. i) The actual distance between the two aeroplanes.
  5. ii) The bearing of B from A.

iii) The bearing of A from B.

  1. The Probabilities that it will either rain or not in 30days from now are 0.5 and 0.6 respectively. Find the probability that in 30 days time.
  2. a) it will either rain and not.
  3. b) Neither will not take place.
  4. c) One Event will take place.
  5. Calculate the Area of each of the two segments of y = x(x+1)(x-2) cut off by the x axis. (8mks)
  6. Find the co-ordinates of the turning point on the curve of y = x3 – 3x2 and distinguish between them.

 

MATHEMATICS II

PART I

MARKING SCHEME:

 

  1. 0.09122 = (9.12 x 10-2)2 = 0.008317

Ö 3.152 = 1.776

3Ö 1.776 + 0.008317

0.1279 x 25.91

= 3Ö 1.784317              No.             log      

0.1279 x 25.91           1.784         0.2514

0.1279    -1.1069

25.71           1.4101 +

0.5170

-1.7344

x 1/3

10-1 x 8.155(6)                    1-1.9115

Or 0.8155(6)

 

  1. (a – b)(a – b) a – b

(a – b)(a + b)       a + b

 

  1. dy = 2x + 3

dx

y = x2 + 3x + c

-1 = 1 – 3 + c

c = 1     ;     E.g  y = x2 + 3x + 1

 

  1. K2 – 9 = 0

K = ± 3

 

  1. log 128    =  log       64

18                    9

 

log   16        log     8 

6                    3

2 log (8/3)

log (8/3)

= 2

 

  1. Midpoint -8 + 6, 4 + 0         (-1, 2)

2         2

Gradient of LN = 4/-14 = -2/7

Gradient of ^ bisector = 7/2

y – 2  = 7/2

x + 1

y = 7/2X + 11/2

 

  1. 207,500 = 415,000(1 – 15 )n

100

0.5 = ( 85 )n

100

0.5 = 0.85n

log 0.5 = n log 0.85

log 0.5  = n

log 0.85

n = –1.6990   =    -0.3010 = 4.264yrs

-1.9294      -0.0706

 

  1. 2 x      1        =   1  . x 20 = 0.3115 x  20 = 6.230

3.21 x 10-1    3.21

   1     =         1      =  0.5807 = 0.005807

172.2    1.722 x 102           100

6.230 – 0.005807 = 6.224193

= 6. 224(3d.p)

 

X 2 2.5 3 3.5 4 4.5 5
y 4 6.25 9 12.25 16 20.25 25

h = ½

Area= ½ x ½[29+2(6.25+9+12.25+16+20.25+25)]

= ¼ [29 + 127.5]

= ¼  x 156.5  =  39.125  sq. units.

 

  1. Cos q (cos q + ½ ) = 0

cos q = 0        cos q = -0.5

q = 900, 2700    q = 1200, 2400              

\ q = 900, 1200, 2400, 2700

 

  1. MP = 4 MK MK =      -9

9                                   -18

MP = 4 ( -9  ) = ( -4 )

9  -18          8

\ P is ( -1,0 )

 

  1. a = 30 d = 3   l = 300

300 = 30 + 3 (n – 1 )

300 = 30 + 3n – 3

300 – 27 = 3n

273 = 3n

91 = n  

 

 

 

 

  1. y = mx – 1

1 = 3m – 1

m = 2/3 = 0.6667

tan q = 0.6667  ;     q = 33.690    

 

  1. FK x FC = FA2

FC = 25/3 = 8 1/3 cm

CX = 81/3 – 9/2 = 23/6 = 35/6 cm

CX x XK = XA x XN

33/6 x 3/2 = 3 x XN

\ XN = 111/12 cm

 

  1. V3 = k + x

k – x

V3k – V3x = k + x

V3k – k = x + V3x

V3k – k = x( 1 + v3)

V3k – k  = x

1 + V3

 

  1. (i.) x = 2 Þ x £ 2

(ii) y = -2 Þ y > -2

(iii)pts. (0.5,0)

(0,-1.5)

m = -1.5 – 0  = 3

0 – 0.5

Eq. Y = 3x – 1.5    y < 3x – 1.5

 

     

SECTION B

 

X -4 -3 -2 -1 0 1 2 3 4
Y -26 -16 -8 -2 2 4 4 2 -2

(i) Roots are x = -0.5   x = 3.6

 

(ii)  y = -x2 + 3x + 2

0 = -x2 – x + 2 

y = 4x     (-2, -8) (1, 4)

Roots are x = -2, x = 1

 

  1. class x f       d=x-74.5       fd             d2       fd2    

0 – 9        4.5    2         – 70         – 140       4900        9800

10 – 19    14.5     8         – 60         – 480       3600     28,800

20 – 29    24.5     6         – 50         – 300       2500     15,000

30 – 39    34.5     7         – 40         – 280       1600     11,200

40 – 49    44.5     8         – 30         – 240         900       7,200

50 – 59    54.5    10        – 20         – 200         400       4,000

60 – 69    64.5     9         – 10           – 90         100          900

70 – 79    74.5     6            0               0              0              0

80 – 89    84.5     3          10              30         100          300

90 – 99    94.5     1          20            20         400          400   

Sf =       Sfd =                                     Sfd2 =     77,600

60                        -1680

(i) Mean = 74.5 + -1680

60

= 74.5 – 28  =    46.5

(ii) Standard deviation = Ö 77600 – ( –1680 )2

60            60

= Ö 1283.3 – 784

= Ö 499.3 = 22.35

 

  1. a (i.) OK = OA + AK = ½ a + ½ b

(ii) OS = ¾ OK = 3/8 a + 3/8 b

(iii)RS = RO + OS = 3/8 a – 9/40 b

(iv) RA = RO + OA = – 3/5 b + a

 

  1. RA = a – 3/5 b   RS = 3/8 a + 9/40 b

= 3/8( a – 3/5 b)

\ RS = 3/8 RA

The vectors are parallel and they have a common

point R  \ point R, S and A are collinear

 

 

 

 

 

 

 

 

 

 

 

 

 

KB = 3m   NK = 1.5m   XB = 5m

(i)  XK = Ö 52 – 32  = Ö 16 = 4m

let ÐXKN = q

cos q = 1.5  = 0.375

4

q = 67.97(8)0

 

(ii) In DXNK

XN = Ö 42 – 1.52 = Ö 13.75 = 3.708

In D SMR; MR = KB = 3m

SM = XN = 3.708m

Let ÐSRM = a

tan a = 3.708  =1.236

3

a = 51.02(3)0

 

 

 

 

 

 

 

 

 

21.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.

 

  0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Y =2cosX 2.00 1.93 1.73 1.41 1.00 0.52 0.00 -0.52 -1 -1.41 -1.73 -1.93 -2.00
Y = sin ½ X 0.00 0.13 0.26 0.38 0.50 0.61 0.71 0.79 0.87 0.92 0.97  0.99 1.00

(a) X = 730 ± 10

(b) Between 40.50 and 139.50

 

 

  1. 300km

T                                               S

Let the speed of A be X km/hr

Speed of B = (X + 10) km/hr

Time taken by A = 300 hrs

X

Time taken by B = 300 hrs

X + 10

300300  =  5

x    x + 10    4

300(x + 10) – 300x  = 5

x(x + 10)    4

300x + 300 – 300x = 5

x2 + 10x

x2 + 10x – 2400 = 0.

x = 44.25

X = -54.25 N/A

(b) Distance covered by A in 1 ¼ hrs  = 44.25 x 5/4  = 55.3 km

Distance of A from T is 300 – 55.3 = 244.7 km

 

 

 

 

 

 

 

 

 

  1. (a) Distance = 15 x 40 = 300km

2

(b)

 

 

 

 

 

 

 

 

 

 

 

PR2 = 2002 + 3002 –2x 200 x 300 cos700

= 130,000 – 41040   =   88,960

PR = 298.3 km

 

(c) 298.3  = 300

sin 700    sin a

sin a = 300 sin 700

298.3

= 0.9344

a = 69.10

 

Bearing of R from P is

40 + 69.1 = 109.10

 

  1. (i.) X > y

(ii) 4,400X + 10,800Y £ 90,000

Simplifies to 11X + 27y £ 225

(iii) X + y £ 15

X > 0;  y > 0

Boundaries

x = y pts (6,6) (12,12)

11x + 27y = 225 pts (13,3) (1,8)

X + y = 15 pts (0,15) (8,7)

Objective function

2400 x 3200y

(pt (2,1)

2400X + 3200y = 8000

Search line ® 3X + 4y = 10

Point that give maximum profit is (12,3)

\ maximum profit

= 2400 x 12 + 3200 x 3 = 38,400 shs.

 

 

 

 

 

 

 

 

 

MATHEMATICS  II

PART II

MARKING SCHEME

 

  1. No log.

36.5        1.5623

0.02573   –2.4104 +

-1.9727

1.938         0.2874 –

-1.6853

 

-3  + 2.6853 

3         3

-1 + 0.8951

1.273(4) ¬ 0.1049

= 1.273(4)

 

  1. Let shirt be sh x,

let blouse be sh. y.

5x + 3y =1750 (i.)

3x + y = 850    (ii)

mult (ii) by 3

9x + 3y = 2550 (iii)

Subtract  (iii) – (i.)

– 4x = -800

Subt for x

  1. = 250

Shirt = sh 200  ;   Blouse = sh 250

     

  1. (a) K2 = y – c

4p

y – c = 4pK2

y = 4pK2 + c

(b)    y = 4 x 2 x 25 + 2   ;      y = 202

 

  1. x2 + 1 – 10x = 0

3

3x2 – 10x + 3 = 0

3x (x – 3) – 1(x – 3) = 0

(3x – 1) (x – 3 ) = 0

x = 1/3  or x = 3                                                                                                             

 

  1. Area D OAD pyth theorem AD =12.49cm

½  x 12.49 x 10  =   62.45cm2

Cos q = 10/16 = 0.625

q = 51.30                                     62.5

Sector 57.30  x 3.14 x 100    40.2 –

360                        = 22.3

 

 

 

 

 

 

 

 

  1. ÐXPY = 600

\ÐXC1Y = 1200

              B1             \ÐC1XY = ÐC1YX

= 1800 – 1200  = 300

2

 

 

 

 

Construct 300  angles

at XY to get centres

B1           C1 and C2  mojar arcs drawn

2            on both sides with C1X and C2X

as centres.

 

 

 

 

 

 

 

 

 

 

  1. DAB = 1800 – 980  = 820

ADB = 180 – (68 + 45 ) = 670

                                                                                                                                              ABD = 180 – (67 + 82)

= 310

 

(a) 1800 – (67 + 82)0 = 310

       ÐABD = 310                                                                                 Opp = 1800

(b) (180 – 82)0 = 980                                                                                   82 + 98 = 1800

        1800  – (980 – 450) =

ÐCBD = 370                                                                                  180 – (98 + 45)

= 370

  1. 10 x 320

100     Discount = sh 32

Sold at      sh 288

If no Discount = ( 320 x 20 ) % = 22.7%

288

 

  1. (a) Dist along circle of lat.

Long diff x 60 x cos q nm

100 x 60 x Cos 500

100 x 60 x 0.866

5196nm =      100 x 2pR Cos 500

                                               360

100  x 2 x 3.14 x 6371

360                       =  5780Km

 

 

 

 

 

 

(b) 80 x 60 Cos 50  = 3895 Km

 

  1. Vol =2.8 x 2.4 x 3 = 20.16m3

          1m3 = 1000 L

20.16m3 = 20160 L

20160

    3600       

16560 L to fill

0.5 L – 1 sec

16560 L – ?

 165600

5 x 3600

33120  hr

3600             @ 9.41 hrs     ;     @ 564.6 min.

 

  1. 15 + 5.14a + 10.13.a2 + 10.12a3 + 5.1.a4

a = -0.2

1 + 5(-0.2) + 10(-0.2)2 + 10(-0.2)+ 5 (-0.2)4

1 – 1.0 + 0.4 – 0.08 + 0.008  =   0.3277 (4d.p)                                                                                                                     

 

  1. Area of metal : Material – Cross section.

p(R2 – r2)

3.14 (21 –19)

Vol  6.28cm2 x 3400cm

= 215.52m3        

                                       

  1. Possibility space:

 

.            1  2  3  4  5  6 

1     2  3  4  5  6  7

2     3  4  5  6  7  8

3     4  5  6  7  8  9

4     5  6  7  8  9  10

5     6  7  8  9 10 11

6     7 8  9 10 11 12

 

P(odd) = 3/6 = ½

P(Sum > 7 but < 10)   =   9 /36

\ P(odd) and P(sum > 7 but < 10 )

= ½  x 9/36 = 9/72     =  1/8

 

  1. ò( 8x5/x3 – 3x/x3) d4

ò( 8x2 – 3x-2) d4                                                                

16x3/3 + 6x-3/-3  + C                                                 

16x3/3 – 2/x+ C

 

  1. Area of DAOB

½  x 14 x 14 x 0.866  =  84.866cm2

Area of sector  =  60  x3.14 x 14 x14 = 10.257

360

Shaded Area

84.666  –  10.257 = 74.409cm2                            

 

 

 

 

 

Marks F Fx fx2
5 3 15 75
6 8 48 288
7 9 63 441
8 6 48 384
9 4 36 324

 

åx =    åf=30   åfx=210   1512

S.d =  Ö åfx2  –  ( åfx )2

                             åf            åf

= Ö 1512   –  (210)

30            30

=  Ö 50.4 – 49

=   Ö 1.4  = 1,183                                                       

 

       SECTION II                                               .

 

  1. (a) FC = Ö 52 + 7.072 = Ö 50 = 7.071

(b) HB = Ö 52 + 7.072    = Ö 75 = 8.660

(c) q = Tan-1 5/5 = Tan-1   = 450                                                         

(d)  b = Tan-1 5/7.071 = Tan-1 0.7071  =  35.30                                                        

(e)  y = Tan-1 5/3.535   = Tan-1    = 54.70                                                        

(f) ÐAGX = 19.40

 

 

  1. y = Sin x
      x0 00 300 600 900 1200 1500 1800
sin x0 0 0.50 0.66 1.00 0.866 0.500 0

 

y = 2 Sin (x0 + 100)

      X0 00 300 600 900 1200 1500 700
2 Sin(x +100) 0.3472 1.286 1.8794 1.286 0.3472 -0.3472 -1.8794

Amplitudes for y = Sin x0 is 1

For

y = Sin(x+100) is 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c.f X F
61 53 12
16   54
93 55 16
103 56 10
11   57
123 58 9
130 59 7
135 60 5
138 61 3
142 62 4
145 63 3
148 64 3
149 65 1
150 70 1

 

Mean =  x    + 52  + -4

150

52 –  0.02

=     51.08

Median  =     51.4g.

 

class interval 59

Class interval mid point Freg. c.f
44-48 46 12 12
49-53 51 49 61
54-58 56 64 125
59-63 69 22 147
64-68 66 3 130
69-73 71 1 150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. X + Y £ 1000

X £ 2Y

Y < 720

X > 90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.(a)    1cm = 200Km/h

A = 200 x 7.5  =  1500 Km

B =  200 x 9  = 1800Km.

 

(b) (i.) 15.8cm x 200                     (ii) Bearing 2240

= 3160 Km.                              (iii) Bearing 0490

 

  1. (a) P(R) x P(R)1                         (b) P(R)¢ x P(R)                        (c) P(R) x P(R’)

= 0.5 x 0.6                                     0.5 x 0.4                                          P(R)’ x P(R)

= 0.3                                     =  0.2                                            0.5 x 0.6 = 0.3

0.5 x 0.4 = 0. 2= 0.5

  1. y = x(x + 1)(x – 2)

= x3 – x2 – 2x

A1 = ò(x3 – x2 –2x) d4                                

-1[¼ x4 –  1/3 x2]-1

= 0 – ( ¼ + 1/3 – 1)    =  5/12

A2 = 2ò(x3 – x2 –2x) d4

0ò ¼ x4 – 1/3 x3 – x2)-20                     

= ( ¼ .16 – 1/3 .8 – 8 )

= 4-0 – 8/3 – 4  =   – 8/3

              A1 = 5/12= A2 = 2 2/3         

                            

  1. y = x3 – 3x2

dy  = 3x2 – 6x

At stationary

Points      dy = 0

dx

i.e   3x2 – 6x = 0

3x(x – 2) = 0

x = 0 or 2

Distinguish

dy = 3x2 – 6x

dx

d2y  =  6x – 6

dx2

    (i)    x = 0  dy2 = 6x – 6 = -6                 (ii)       x = 2

dx2                                                 d2y  =  6

-6 < 0 – maximum.                               dx2

\ (0,0) Max Pt.                                                6 > 0 hence

Minimum Pt.

x = 2,  y = 8 – 12 = -4

(2, -4)     minimum point.

 

MATHEMATICS II

PART I

 

SECTION 1 (52 Marks)

  1. Without using tables evaluate:

 

Ö7.5625 x 3Ö3.375

15                                                                                                        (5 mks)

 

  1. Make k the subject of the formula.

y = 1  Ök + y                                                                            

T2      k                                                                                                       (3 mks)

 

  1. If A = (x, 2) and xB     =     x     and if AB = (8), find the possible values of x.

-2                                                                                 (3 mks)

  1. Simplify completely. (3 mks)

rx4 – r

2xr – 2r

 

  1. Solve the equation. (3 mks)

Log 3 (8-x)  –  log 3 (1+x) = 1

 

  1. Under an enlargement scale factor -1, A(4,3) maps onto A1 (4,-5). Find the co-ordinates of the centre of enlargement. (3 mks)

 

  1. Find the equation of the line perpendicular to the line 4x-y = -5 and passing through the point (-3,-2).       (2 mks)
  2. Find the standard deviation of the data below:

3,5,2,1,2,4,6,5                                                                                                   (4 mks)

 

  1. What is the sum of all multiples of 7 between 200 and 300? (4 mks)

 

  1. Solve the equation.

½ tan x  =  sin x for -1800  £  x  £  3600.                                                            (3 mks).

 

  1. Expand (1-2x)4. Hence evaluate (0.82)4 correct to 5d.p. (4 mks)

 

  1. The line y = mx – 3 passes through point (5,2). Find the angle that the line makes with the x-axis. (2 mrks)
  2. A two digit number is such that 3 times the units digit exceed the tens digit by 14. If the digits are reversed, the value of the number increases by 36. Find the number (4 mks)

 

 

 

 

 

 

  1. In the figure below, O is the centre of the circle, OA = 7 cm and minor arc AB is 11 cm long. Taking P = 22/7, find the area shaded. (3 mks)

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. A box contains 36 balls, all identical except for colour. 15 of the balls are black, 15 are brown and the rest are white. Three balls are drawn from the box at random, one at a time, without replacement. Find the probability that the balls picked are white, black and brown in that order. (2 mks)

 

  1. Find the inequalities that describe the unshaded region R below. (4 mks)

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION  2 (48 Marks)

 

  1. Draw the graph of y = x2 + x – 6 for -4 £ x £

Use your graph to solve the equations.

(i)  x2 + x – 6 = 0                       (ii) x2 + 2x – 8 = 0                                             (8 mks)

 

  1. The diagram below represents a bucket that has been placed upside down. The radius of the top surface is 15cm and that of the bottom is 40cm. The vertical height of the bucket is 50cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine:-

  • The volume of the bucket.
  • The curved surface area of the bucket. (leave your answers in terms of p)

 

  1. Draw, on the same axes, the graphs of y = cos q and y = 5 sin q for – 1800 £ q £ 1800
  • From your graph, determine the amplitude of each wave.
  • For what value(s) of q is cosq – 5 sin q = 0 (8 mks)

 

  1. A point P lies on a coast which runs from West to East. A ship sails from P on a bearing of 0320. When it reaches Q, 7km from P, a distress signal is observed coming from another ship at R. Given that R is N.E of P and on a bearing of 0660 from Q, calculate:
  • Ð
  • The distance QR, between the two ships.
  • The shortest distance from R to the shore. (8 mks)

 

  1. A bag contains x red balls and y yellow balls. Four times the number of red balls is equal to nine times the number of yellow balls and twice the total number of balls exceeds the number of yellow balls by 44.
  • How many balls of each colour are three in the bag?
  • If two balls are drawn out of the bag at random one at a time with replacement what is the probability that the two balls are red? (8 mks)

 

  1. A Kenyan businessman goes on a trip to West Germany through Italy and back to Kenya. In Kenya he is allowed to take Ksh. 67,000 for sales promotion abroad. He converts the Kenya currency into US dollars. While in Italy, he converts 2/5 of his dollars into Italian lire, which he spends in Italy. While in West Germany, he converts 5/8 of the remaining dollars into Deutsche marks which he uses up before coming to Kenya. Using the conversion rates 1 US dollar = 1.8 Deutsche marks = 16.75

Ksh = 1340 Italian lire. Answer the following questions:

  • How many US dollars did he take out of Kenya?
  • How many Italian lire did he spend in Italy?
  • How much money, in Deutsche marks did he spend in West Germany?
  • How much money in Ksh. did he have on his return to Kenya? (8 mks)

 

  1. PQRS is a parallelogram in which PQ = r and PS = h. Point A is the midpoint of QR and B is a point on PS such that PS : PB = 4:3. PA and QB intersect at M.

 

 

 

 

 

 

 

 

 

 

Given that PM = kPA and BM = tBQ where k and t are scalars, express PM in two different ways and hence find the values of k and t.

Express PM in terms of r and h only.                                                                                   (8 mks)

 

 

 

 

 

 

 

 

  1. Two variables T and X are connected by the equation T = abx where a and b are constants. The values of T and X are given in the table below:

 

T 6.56 17.7 47.8 129 349 941 2540 6860
X 2 3 4 5 6 7 8 9

 

 

Draw a suitable straight line graph and use it to estimate the values of a and b.              (8 mks)

 

 

MATHEMATICS III

PART II

 

Section I:   (52 Marks)

 

  1. Use mathematical tables to evaluate:

 

8.67                                                                                                                        (3 mks)

Ö 0.786 x (21.72)3

 

  1. Simplify completely. (3 mks)

4      –    1

x2 – 4        x-2

 

  1. An Indian on landing at Wilson Airport changes Re 6000 into Kenya shillings when the exchange rate is Re = Ksh. 1.25. He spent Ksh. 5000 when in Kenya and converted the remaining amount to Rupees at the same rate as before. Find out how much the Indian is left with in Rupees. (3mks)

 

  1. The last of three consecutive odd numbers is (2x+3). If their sum is 105, find the value of x. (4 mks)

 

  1. a S  b is defined by:           a S b  =  (a + b)

ab

If B S   (2  S   3)  =  4  S   1, Find B.                                                                                   (3 mks)

  1. Find the value of M. (3 mks)

 

 

M

 

850

 

1600

 

 

  1. (a) Expand (1+2x)6 upto the term containing x3 .                                                                (2 mks)

 

(b)  By putting x = 0.01, find the approximate value of (1.02)6 correct to 4 S.F.                    (2 mks)

 

 

  1. Show that x is the inverse of : Y =    3          -3      1           X =       2      1                       (3 mks)

-5        2                     5      3

 

 

 

 

 

 

  1. The probabilities of three candidates K, M and N passing an examination is 2/3, ¾ and 4/5 Find the probability that :

(a)  All pass:                                                                                                           (1 mk)

(b)  At least one fails:                                                                                              (2 mks)

 

  1. In the figure, PR is tangent to the circle centre O. If ÐBQR=300, ÐQBC=270,and ÐOBA=370, find ÐBAC and Ð

 

C                        A

 

 

 

 

B                                                                                            P                                                                                 R

  1. A frustrum of height 10cm is cut off from a cone of height 30cm. If the volume of the cone before cutting is 270cm3 , find the volume of the frustrum. (3 mks)

 

  1. Evaluate 0 (2 mks)

( 3x2 –  1 ) dx

4 x 2

1

  1. If one litre of water has a mass of 1000g, calculate the mass of water that can be held in a rectangular tank measuring 2m by 3m by 1.5m. (give your answer in tonnes). (2 mks)
  2. Write down the three inequalities which define the shaded region. (3 mks)

 

 

 

(3,2)

 

 

 

 

 

 

(2,1)                                   (4,1)

 

 

 

 

  1. The depth of sea in metres was recorded on monthly basis as follows:

 

Month March April May June July
Depth (m) 5.1 4.9 4.7 4.5 4.0

Calculate the three monthly moving averages.                                                               (3 mks)

  1. A number of women decided to raise sh. 6300 towards a rural project for bee keeping. Each woman had to contribute the same amount. Before the contribution, seven of them withdrew from the project. This meant the remaining had to pay more. If n stands for original number of women, show that the increase in contribution per woman was: 44100                   (3 mks)

n(n-7)

 

 

 

 

 

SECTION II:   (48 Marks)

 

  1. Find the distance between points A(500 S, 250 E) and B(500 S, 1400 E) in:

(i)   Km                  (ii)   nm                                                                                                (8 mks)

(take radius of earth to be 6400km, P =  3.14)

 

  1. The distance S in metres, covered by a moving particle after time t in seconds, is given by :

S  =  2t3 + 4t3– 8t + 3.

Find:

(a)  The velocity at :            (i)  t  =  2                      (ii)  t  =  3

  • The instant at which the particle is at rest. (8 mks)

 

  1. A car starts from rest and its velocity is measured every second for six seconds. (see table below).
Time (t) 0 1 2 3 4 5 6
Velocity v(ms -1) 0 12 24 35 41 45 47

 

Use trapezium rule to calculate the distance travelled between t = 1 and t = 6.                (8 mks)

 

  1. Using a pair of compass and ruler only, construct triangle ABC such that AB=9cm, BC=14cm and ÐBAC = 1200 . Draw a circle such that AB, BC and AC are tangents. What is the radius of this circle?                                                                                                                                (8 mks)
  2. The marks scored by 100 students in mathematics test is given in the table below:
Marks 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of students 8 15 15 20 15 14 13

 

(a)  Estimate the median mark.                                                                               (2 mks)

(b) Using 44.5 as the assumed mean, calculate:-

(i)         The mean mark:                                                                                   (2 mks)

(ii)        The variance:                                                                                        (2 mks)

(iii)       The standard deviation:                                                                         (2 mks)

 

  1. (a) On the same axes, draw the graphs of : y  =  sin x  ;  y  =  cos x

y  =  cosx  +  sin X for 00 Ð X Ð 3600 .

(b)  Use your graph to deduce

(i) The amplitude

(ii) The period of the wave y = cos x + sin x.

(c) Use your graph to solve:

Cos x  = – sin x for 00 Ð X Ð 3600 .

 

  1. Given a circle of radius 3 units as shown in the diagram below with its centre at O(-1, 6). If BE and DE are tangents to the circle where E (8,2). Given further that Ð DAB = 800.

B

 

 

A                                                                              E

C

 

 

D

(a)  Write down the equation of the circle in the form ax2 + bx + cy2 + dy + e = 0 where a, b, c,             d, e are constants.                                                                                       (2 mks)

(b)  Calculate the length DE.                                                                                   (2 mks)

(c)  Calculate the value of angle BED.                                                                     (2 mks)

(d)  Calculate the value of angle DCB.                                                                     (2 mks)

 

  1. A building contractor has to move 150 tonnes of cement to a site 30km away. He has at his disposal 5 lorries. Two of the lorries have a carrying capacity of 12 tonnes each while each of the remaining can carry 7 tonnes. The cost of operating a 7 tonne lorry is sh. 15 per km and that of operating a 12 tonne lorry is sh. 25 per km. The number of trips by the bigger lorries should be more than twice that made by smaller lorries.                                                                                     (8 mks)

 

(a)  Represent all the information above as inequalities.

  • How should the contractor deploy his fleet in order to minimise the cost of moving the cement?                                                                                                                                   (8 mks)

 

 

MATHEMATICS III

PART I

MARKING SCHEME

 

 

 

 

 

 

SOLUTION MRK AWARDING  
1. Ö7.5625 = 2.75

 

3Ö3.375 = 3Ö3375 X 3Ö10-3

 

3 Ö33 x 53 x 10-1 = 3 x 5 x 10-1 = 1.5

 

= 2.75 x 1.5  =  2.75  =  0.275

1.5 x 10          10

 

1

 

1

 

1

1

1

 

 

Method for Ö7.5625

Square root

 

Method for 3Ö

3Ö

Answer

 
    5    
2. T2y  =  Ö k+y

K

T4y2k =  k+y

T4y2k – k  =  y

K(T4y2-1) =  y

K  =  y

T4y2 – 1

 

 

1

 

 

1

 

1

 

 

Removal of square root

 

Rearrangement of terms

Answer

 
    3    
3. (x 2)         x      =  (8)

-2

 

x2 – 4  =  8

 

x  =  +Ö12 = + 2Ö3 = + 3.464

 

1

 

 

1

 

1

 

 

Matrix equation

 

 

Quadratic equation

Answers in any form

 
    3    
4. r(x2 – 1)

2r(x – 1)

 

r(x2 – 1)(x2 + 1)

2r (x – 1)

 

r(x – 1)(x + 1)( x2 + 1)

2r (x – 1)

 

=   (x + 1)( x2  + 1)

2

 

 

 

 

1

 

 

 

1

 

 

1

 

 

 

 

Complete factorisation of numerator

 

Factorisation of denominator

 

Answer

 
    3    
5.       1  =  log3 3

8 – x    =   3

1+x

 

-4x  =  -5

 

x = 5

4

1

 

 

 

1

 

1

 

 

 

Logarithic expression.

 

 

Equation

 

Answer

 

 

 
    3    
6. Let the centre be (a,b)

 

4-9        =  -1      4-a

-5-b                  3-b

 

4-a  =  -4+9           -5-b  =  -3+b

a  =  4                     b  =  -1

centre is (4,-1)

 

 

 

1

 

 

1

 

1

 

 

 

 

 

Equation

 

 

Linear equations

 

Centre

 

 
    3    
7. Y  =  4x + 5

Gradient = 4

Gradient of ^ line – ¼

y + 2  =  – 1

x + 3        4

4y + x  =  -11

 

 

1

1

 

 

Gradient of ^ line.

Equation.

 

 
    2    

8.

X  = 28  =  3.5

8

 

 

standard deviation = Ö 22 = Ö2.75  =  1.658

8

 

 

1

 

 

1

1

 

1

 

Mean

 

 

d values

d2 values

 

Answer

 
    4

 

   
9. a = 203    d = 7   L = 294

 

294  =  203 + 7(n-1)

n  =  14

 

S 14  =  14 (203 +  294)

2

 

=  7 x 497

=  3479

 

1

 

1

 

 

1

 

 

 

1

 

For both a and b

Equation

 

 

For n

 

 

 

Sum

 

 
    4    
10. Sin x  =  2 sin x

Cos x

 

Sin x  =  2 cosx

Sin x

 

2 cos x  =  1

cos x  =  0.5

 

x  =  600, 3000, -600

 

 

 

1

 

 

 

1

 

1

 

 

 

 

Simplification

 

 

 

Equation

 

All 3 values

 
    3    
11. (1 +-2x)4  =  1-8x + 24x2 – 32x3 + 16x4

 

(0.82)4  =  (1 + -2 x 0.09)4

x     =  0.09

(0.82)4  = 1 – 0.72 + 0.1944 – 0.023328 + 0.00119376

= 0.35226576

@  0.35227 (5 d..p)

1

 

 

1

1

 

1

 

Expansion

 

 

Value of x

All terms

 

 

Rounded

 
    4    
12.   2  =  5m – 3

m =  1

tan q  =  1                    q  =  450

 

1

1

 

 

Value of m.

Angle

 
    2    
13.  Let the number be xy

3y  =  x + 14

10y + x  =  10x + y + 36  =  9y – 9x  Þ  36

3y – x  =  14

9y – 9x  =  36

y  =  5

x  =  1

the number is 15.

 

1

1

 

1

 

 

1

 

 

1st equation

2nd equation

 

method of solving

 

Answer

 

 
   

 

S

4    
14. Let ÐAOB  =  q

  q  x  2  x   22  x  7  =  11

360              7

q  =  900

 

Area shaded  =   90 x 22 x 7 x 7 – 1 x 7 x 7

360    7                2

77 49

2     2

= 28  =  14cm2

2

 

 

 

1

 

1

 

 

1

 

 

 

 

Value of q

 

Substitution

 

 

Answer

 
    3    
15. P(WBb)  =  6 x 15 x 15

36    35   34

 

=   15

476

1

 

 

1

 

Method

 

 

Answer

 
    2    
16. Equation                                  inequality

L1    y =  x                                   y  £  x

L2    y = -2                                   y  ³ -2

L3    2y + 5x = 21                        2y + 5x < 21

1

1

1

1

 

1 mark for each inequality.

Method for obtaining L3

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(i)  roots are x = -3

x = 2

(ii)  y = x2 + x-6

0 = x2 + 2x-8

y = -x + 2

roots are x = -4

x =  2

4 2

 

 

 

 

 

 

 

1

 

1

 

 

1

 

1

 

1

 

For all correct points.

1 for atleast five correct points.

 

 

 

Correct plotting.

 

Scale

 

 

Smoothness of

curve

 

Both roots

 

 

Linear equation

 

 

Both roots

 

   

 

  8  
         
18.    h     =  15

h+50     40

 

h   = 30cm

H  =  80cm

 

(a)  Volume  =  1/3 p x 40 x 40 x 80 – 1/3  p x 15 x 15 x 30

 

128000 p  –  6750 p

3               3
=   121,250p cm3

3

 

(b)   L2  =  802 + 402                      L    =  152 + 302

= 6400 + 1600                      = 225 + 900

=  8000                                   = 1125

L    =  89.44 cm                    L    =  33.54 cm

Curved surface area of bucket = p x 40 x 89.44

p x15x33.54

= 3577.6p – 503.1p

=  3074.5cm2

1

 

 

1

 

 

1

 

 

 

 

1

 

1

 

1

 

1

 

1

 

Expression

 

 

Value of H

 

 

Substitution

 

 

 

 

Volume

 

L

 

L

 

 

Substitution

 

Area

 

 
    8    
 

 

19.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
         
 

20.

 

 

 

(i)  ÐRPQ  =  130

        ÐPQR  =  320+900+240 =  1460

ÐPRQ  =  1800 – (1460 + 130)

=  210

 

(ii)    P      =        7

sin130         sin 210

P    =   7 sin 130

Sin 210

=  4.394km

 

 

 

 

 

 

 

 

 

 

 

P                                                               T

 

(iii)    Let PR  =  q

 

q       =       7

sin 1460      sin 210

 

q     =  7 sin 1460

sin 21

q       =  10.92 km

 

sin 450  =    RT

10.92

 

RT  =  10.92 sin 450

 

= 7.72 km (2 d..p)

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

1

 

 

1

 

1

 

 

 

Fair sketch

 

 

 

 

 

 

ÐPRQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation

 

Method

 

 

 

Equation

 

 

 

 

 

 

Distance PR

 

 

Equation

 

RT

 

 

 

 

 
  8    
21. (a)  4x  =  9y

2(x+y)  =  y+44  Þ  2x + y  =  44

 

4x – 9y = 0

4x + 2y = 88

11y = 88

y   =  8

 

x  =  18

(b)  P(RR)  =   18  x  18   =  81

26      26      169

 

1

 

1

 

2

 

1

1

1

1

 

 

 

Equation

 

Equation

 

Method of solving

Value y

Value x

Method

Answer

 
    8    
22. (a)  67,000 Ksh  =  67,000 US dollars

16.75

= 4,000 dollars

 

(b)  2 x 4,000  =   1600 US dollars

5

1600 US dollars  =  1600 x 1340

=  2,144,000 Italian lire

(c)  Remainder  =  2400 US dollars

5  x  2400   =  1500 US dollars

8

1500 US dollars = 1500 x 1.8

= 2700 Deutche marks

(d)  Remainder  =  900 US Dollars

900 US Dollars = 900 x 16.75 Ksh.

=  15,075 Ksh.

 

1

 

1

 

1

 

1

1

 

 

1

1

1

 

 

Method

 

Answer

 

Method

 

Answer

 

For 1500

 

 

Answer

 

Method

Ksh.

 
    8    
23. PM  =  kPA

=  k(r + 1h)

2

=  kr + 1kh

2

PM  =  PB +  BM

3h + t BQ

4

=   3h + t(-3h + r)

4          4

 

3h – 3t h + tr

4     4

3 –   3t    h + tr

4     4

 

t = k           33t  =  1k

4   4       2

33t = 1 t

4    4     2

5t  =   3

4       4

t  =  3 + 4

4    5

= 3

5

\   k = 3

5

\   PM  =  3r  +  3h

5       10

 

 

 

1

 

1

 

 

1

 

 

1

 

1

 

 

1

 

1

1

 

 

 

 

 

PM

 

PM

 

 

PM simplified

 

 

 

 

 

 

 

Both equations

 

method

 

 

 

 

Value of k

 

Value k

PM

 

 
    8    
         
 

 

 

24.

Y

LogT

 

 

 

Log T  =  log a + x log b

Log T  Þ  0.82, 1.25, 1.68, 2.11, 2.54, 2.97, 3.40, 3.84

 

y – intercept = log a = 0

a = 1

gradient  =  3.84 – 0.82  =   3.02

9 – 2                  7

= 0.4315

 

log b = 0.4315   =  0.4315

b = antilog 0.4315

b  =  2.7

 

1
1

 

 

 

 

 

 

 

1

2

 

1

 

1

 

 

 

 

1

8

Plotting
Labeling of axis

 

 

 

 

Linear

All correct logs

 

Value of a

Method of gradient

 

Value of  b

 

MATHEMATICS III

PART II

MARKING SCHEME

 

  1. SOLUTION MARKS    AWARDING
1.    No                                      log

 

8.69                                   0.9390

0.786                                 1.8954

21.72                                 1.3369

1.2323

1.7067 – 2

 

21.7067

2           2

– 1  +  0.8533

0.7134 x 10 -1     =  0.07134

 

 

 

 

 

M1

 

 

M1

 

 

 

A1

 

 

ü reading to 4 s.f

 

 

 

 

 

 

Rearranging

    3  
2.  

 4                   –         1

(x-2)(x+2)                  (x-2)

 

 – x+2

(x-2(x+2)

– (x-2)

(x-2(x+2)

 

-1

x+2

 

 

 

M1

 

 

M1

 

 

A1

 

 

 
    3  
3.  

Re6000  =  Ksh. 75000

Spent 5000 Rem 2500

Rem    2500

1.25

Re 2000

M1

 

 

M1

 

A1

 

 
    3  
4. 2x – 1  ,  2z + 1  ,  2x + 3

6x +  3  =  105

6x  =  102

x  =  17

M1

M1

A1

A1

 

Allow M1 for us of different variable.
    4  
5.  

4 * 1  =  5

4

2 * 3  =  5

6

A * 5  =  5

6      4

A + 5  =  5  x  5A

6      4       6

A +  5  =  25 A

6       24

A   =  20

 

 

M1

 

 

 

 

M1

 

 

A1

3

 
6.  

 

 

 

 

180 – M + 20 + 95  =  180

295  –  M  =  180

– M  =  – 115

M  =  115

 

 

 

B1

 

 

B1

 

 

A1

 

 
    3  
 

7.

 

1 + 2x + 60x2 + 160x3 +

1 + 0.2 + 0.006 + 0.00016

=  1.20616

=  1.206

 

M1

M1

M1

A1

4

 

Only upto term in x3.

Correct substitution

 

Only 4 s.f.

 

8.  

3   -1      2    1    =    I

-5   2       5    3

 

6   -5             3    -3

-10 +10         -5 + 6

 

1      0

0       1

 

 

M1

 

M1

 

 

A1

 

 

Matrix multiplication gives :

 

I       1   0

0   1

  3  
9. (a)   2  x  3  x  4      =  2

3      4      5           5

(b)

2  x  3  x 1     +     2  x  1  x  4     +     1  x  3  x  4
3      4     5            3      2      5             3      4      5

 

1  +  4  +  1

10     15     5

 

=     17

10

M1

 

 

M1

 

 

 

 

A1

 

 

 
    3  
10. ÐQCB  =  300

180 – (27 + 30)  =  1230

\     BAC  =  570.

 

 

 

 

OBA  =  370

OAB  =  370

 

 

AOB  =  1060

\ ACB  =  530

 

 

 

M1

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

 

 

Isosceles triangle.

 

Angle at centre is twice angle at circumference.

    3  
11. V  =  1  x  3.14  x  r 2  x 10  =  270

L.S.F.      20   =  2

30       3

V.S.F  =    2   3        =     8

3                   27

Vol. of cone  =  8  x  270

27               =      80cm3

\ Vol. Of frusturm  = (270 – 80)  =  190cm3

 

 

 

M1

 

M1

 

 

A1

 

 
    2  
12.

 

 

 

 

 

 

 

 

3x 3  –  x  -1          2

3       -1         1

 

x 3  +  1     2

x     1

 

8  +  1     –   ( 1  –  1)

2

8 1  –  2     =         6  1

2                           2

 

 

 

 

 

 

M1

 

 

 

A1

2

 
13. (2 x 3 x 1.5)  volume

9 m3

1L  º  1000 cm3

1000 L  =  1 m3

9000 L  =  9 m3

1000 L  =  1 tonne

9000 L  =  9 tonnes.

 

 

M1

 

 

 

A1

 

 
    2  
14.      y   ³ 1            (i)

y   <  x – 1     (ii)

y   <  5 – x     (iii)

 

B1

B1

 

 
    3  
15. M1  =  5.1  +  4.9  +  4.7  =  4.9

3

M2  =  4.9 + 4.7 + 4.5  =  4.7

3

M3  =  4.7 + 4.5 + 4.0  =  4.4

3

M1

M1

M1

 

 

 
    3  
16. Original contribution per woman  =  6300

N

Contribution when 7 withdraw  =  6300

(n-7)

Increase   –  Diff.

6300   –   6300

n-7          n

6300n  –  6300(n-7)

n(n-7)

6300n – 6300 + 44100

n(n-7)

44100

n(n-7)

 

 

 

M1

 

 

M1

 

1

3

 
SECTION II (48 Marks)

 

17. (i)

1150

 

A                                B

 

Centre of circles of latitude 500 S.  R Cos 500

AB  =  115  x  2p R Cos 50o

115  x  40192  x  0.6428

360

=  8252.98  km

 

(ii)   Arc AB 60 x 115  Cos 50 nm

60 x 115 x 0.6428 nm

4435 nm

 

 

 

 

 

M1

M1

 

 

M1

 

A1

 

M1

M1

M1

A1

 

 

 

 

 

 

 

No.                     log

60                      1.7782

1+5                    2.0607

0.6428               1.8080

4435nm             3.6469

    8  
18. (a)  V  =  ds  =  6t2 + 8t – 8

dt

(i)  t  =  2

V  =  6×4 + 8×2 – 8

= 32 ms-1

(ii)  t  =  3

V =  6×9 + 8×3 – 8

= 70ms-1

 

(b)  Particle is at rest when V = 0

6t2 + 8t – 8 = 0

2(3t – 2) (t+2) = 0

t  =  2                   t  =  -2

3

particle is at rest at t = 2 seconds

3

   

 

 

 

 

 

 

 

 

 

 

 

Do not accept t = -2. Must be stated.

    8  
19. Area under velocity – time.

graph  gives distance.

 

A  = { h ½  (y1 + y6 ) + y2 + y3 + y4 + y5 )}

 

= 1 { ½ ( 12+47) + 24 + 35 + 41 + 45)}

=  29.5 + 14.5

=  174.5m

 

 

B1

B1

M1

M1

B1

B1

A1

 

Trapezium rule only accepted.

Formula.

 

Substitution into formular.

    8  
20.                  Drawing actual

Scale 1cm  =  2cm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radius      1cm

=  2cm

 

M1

 

M1

 

M1

 

M1

 

M1

M1

 

M1

M1

 

 

Bisect ÐA

 

Bisect Ð B

 

Intersection at centre of inscribed circle.

Draw circle.

 

Measure radius.

Arcs must be clearly shown.

  8  
 

 

 

21.

 

 

 

 

mean = 44.5 +  130

100

=  44.5  +  1.3

=  45.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Variance  S (x – A) 2  =  2800

Sf               100

= 28

S.D.  =  Ö 28  =  5.292

 

 

 

 

M1

 

 

 

 

 

A1

 

M1

 

A1

M1

A1

 

 
    8  
 

 

 

 

 

22.

y = sin x

x    0        60        120        180     240      30      360

sin x 0    0.866     0.866      0     -0.866   -0.866    0

y = cos x

x     q        60        120        180     240    300  360

cos x 1     0.5       -0.5       -1.0     -0.5     0.5   1.0

y = cosx + sinx

x            q        60       120        180     240      30     360

cosx + sinx 1  1.366   0.366       -1   -1.366  -0.366 1.0

(c)      Cos x = – sin x

x  =  450 , 2250

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i)  amplitude   =  1.366

(ii)  Period  =  3000

 

 

 

(a)  (x+1) 2  +  (y-6)2  =  32

x2 + 2x + 1 + y2 – 12y + 36  =  9

x2 + 2x + y2 – 12y + 28  =  0

 

(b)  cos 10  =  OD             DE  =  3

DE                   0.9848

DE  =  3.046

 

(c)  Twice ÐOED

100 x 2  =  200

 

(d)  DAB  =  800

\ DCB  =  1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

A1

 

M1

A1

 

 

M1

A1

 

M1

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formular

(x-a)2 + (y-b)2 = r2

 

 

 

 

 

 

 

 

 

Cyclic quad.

 

 

    8  
24. Let number of trips by 12 tonne lorry be x.

Let number of trips by 7 tonne lorry be y.

 

(a)   x > 0  ;  y > 0

24x + 21y  £  150

 

12 x 25 x X + 15 x 7 x y £ 1200

300x + 105y  £  1200

x > 2y

 

(b)  Ref. Graph paper.

Minimising:

3 – 12 tonne lorry and 2 – 7 tonne lorries should be deployed.

 

 

 

B1

 

 

 

B1

B1

 

 

 

 

 

 

 

MATHEMATICS IV

PART I

 

SECTION 1 (52MKS)

 

  1. Evaluate using logarithms 3Ö7.673 – 15.612

12.3                                                              (4mks)

 

  1. Solve x   –  3x  –  7    =  x – 2                                                                                   (3mks)

3            5             5

 

  1. In the given figure CD is parallel to BAC, calculate the values of x and y. (3mks)

 

 

C                                       D

 

 

 

 

 

 

B                                                A

 

  1. The surface area and volume of a sphere are given by the formulars S = 4pr2 and V= 4/3 pr3.

Express V in terms of S only.                                                                                (3mks)

 

  1. A line perpendicular to y = 3-4x passes through (5,2) and intercepts y axis at (0,k)

Find the value of K.                                                                                              (3mks)

 

  1. An alloy is made up of metals P,Q,R, mixed in the ratio 4:1: 5: A blacksmith wants to make 800g of the

alloy. He can only get metal P from a metallic ore which contains 20% of it. How many Kgs of the ore

does he need.                                                                                                           (3mks)

 

 

  1. The co-ordinate of point A  is (2,8) vector AB =   5    and vector BC  =  4   Find the

-2                                 3

co-ordinate of point C.                                                                                             3mks)

 

  1. Two buildings are on a flat horizontal ground. The angle of elevation from the top of the shorter building to the top of the taller is 200 and the angle of depression from the top of the top of the shorter building to the bottom of the taller is 300. If the taller building is 80m, how far apart are they

(4mks)

  1. The given figure is a quadrant of a piece of paper from a circle of radius 50cm. It is folded along AB

and AC to form a cone . Calculate the height of the cone formed.

(4mks)

 

 

 

 

5Ocm

 

 

50cm

 

 

  1. Express 3.023 as a fraction                                                                                      (2mks)
  2. Point A (1,9), Point B(3,5) and C (7,-3). Prove vectorically that A,B and C are collinear.       (4mks)
  3. A salesman gets a commission of 4% on sales of upto shs 200,000 and an additional 2% on

sales above this. If in January he got shs 12,200 as commission, what were his total sales    (4mks)

  1. Water flows through a cylindrical pipe of diameter 3.5cm at the rate of 2m/s. How long to the nearest minute does it take to fill a spherical tank of radius 1.4m to the nearest minute? (4mks)
  2. Rationalize the denominator in Ö3

Ö 7 – 2

Leaving your answer in the form Öa + Öb

C

Where a ,b, and c are integers                                                                              (3mks)

  1. For positive values of x, write the integral solutions of 3£ x2  £  35                 (4mks)
  2. 8 girls working 5 hours a day take 12 days to drain a pool. How long will 6 girls working 8 hours a day take to drain the pool?( Rate of work is equal) (2mks)

 

SECTION II  (48 mks)

 

  1. In the given circle centre O , A,E,F, is target to the circle at E. Angle FED = 300  <DEC = 200 and  <BC0  = 150

 

 

 

 

A                                                                       F

 

 

 

 

Calculate   (i) <CBE                                                                                              (3mks)

(ii)  <BEA                                                                                            (2mks)

(iii) <EAB                                                                                            (3mks)

 

  1. The sum of the 2nd and third terms of a G.P is 9/4 If the first term is  3,

(a) Write down the first 4 terms of the sequence .                                              (5mks)

(b) Find the sum of the first 5 terms using positive values of the common ratio (r)

(3mks)

  1. E and F are quantities related by a law of the form E = KFn Where k and n are

constants. In an experiment , the following values of E and F were obtained .

 

E 2 4 6 8
F 16.1 127.8 431.9 1024

 

Use graphical method to determine the value of k and n (Graph paper provided)      (8mks)

 

  1. In the domain –2 £ x £ 4 draw the graph of y = 3x2 + 1 –2x .Use  your graph to solve the equation.  6x2 4x + 4 = 0 (graph paper provided)                                                                 (8mks)
  2. A solid sphere of radius 18cm is to be made from a melted copper wire of radius 0.4mm . Calculate the length of wire in metres required to make the sphere.                                       (5mks)

(b) If the density of the wire is 5g/cm3. Calculate the mass of the sphere in kg.        (3mks)

 

  1. A right cone with slant  height of 15cm and base radius 9cm has a smaller cone of height 6cm chopped off to form a frustum. Find the volume of the frustum formed                    (8mks)

 

 

 

 

 

 

 

 

9cm

 

  1. PQRS are vertices of a rectangle centre. Given that P(5,0) and Q and R lie on the line x+5 = 2y, determine

(a) The co-ordinates of Q,R,S,                                                                                                   (6mks)

(b) Find the equation of the diagonal SQ                                                                                     (2mks)

  1. A tap A takes 3 hours to fill a tank. Tap B takes 5 hours to fill the same tank. A drain tap C takes 4 hours to drain the tank. The three taps were turned on when the tank was empty for 1½ hours. Tap A is then closed. Find how long it takes to drain the tank.

(8mks)

 

 

 

 

 

 

 

 

MATHEMATICS IV

PART II

 

SECTION   I  (52MKS)

 

  1. Without using mathematical tables, evaluate                                                                    (3mks)

 

Ö 0.0784 x 0.27                                              (leave your answer in standard form)

0.1875

 

  1. A father is three times as old as his son. In ten years time , the son will be half as old as the father . How

old are they now?                                                                                                                                      (3mks)

 

  1. A,B,C,D, is a parallelogram diagram. ADE is an equilateral triangle. AB and CD are 3cm apart.

AB = 5cm. Calculate the perimeter of the trapezium ABCE                                               (3mks)

 

E                            D                                    C

A                                   B

  1. Given that a = -2, b = 3 and c = -1, Find the value of   a3 – b – 2c2                                    (2mks)

2b2 – 3a2c

 

  1. The exchange rate in January 2000 was US $ 1 = Ksh 75.60. and UK £1 = Ksh 115.80.    A tourist  came to Kenya with US $ 5000 and out of it spent ksh.189,000. He changed   the balance in UK £ . How many pounds did he receive?                                                                                                   (4mks)

 

  1. ABC is a cross – section of a metal bar of uniform cross section 3m long. AB = 8cm and  AC = 5cm.

Angle BAC = 600 . Calculate the total surface area of the bar in M2.                                     (4mks)

 

  1. The bearing of a school chapel C, from administration block A, is 2500 and 200m  apart.

School flag F is 150m away from C and on a bearing of 0200. Calculate the distance and

bearing of A from F.                                                                                                               (5mks)

  1. A box has 9 black balls and some white balls identical except in colour. The probability of picking a white ball is 2/3

(i) Find the number of red balls                                                                                       (2mks)

(ii) If  2  balls are chosen at random without replacement, find the probability that they are of different colour.                                                                                                                          (2mks)

  1. Under an enlargement of linear scale factor 7, the area of a circle becomes 441.p

Determine the radius of the original circle.                                                              (3mks)

  1. A circle has radius 14cm to the nearest cm . Determine the limits of its area.                     ( 3mks)
  2. Expand (1 + 2x)5 up to the term with x3. Hence evaluate 2.045 to the nearest 3 s.f. (4mks)
  3. The nth term of a  G.P is given by  5 x 2 n-2

(i) Write  down the first 3 terms of the G.P                                                                (1mk)

(ii) Calculate the sum of the first 5 terms                                                                            (2mks)

  1. 3 bells ring at intervals of 12min, 18min and 30min respectively. If they rang together at 11.55am, when will they ring together again.                                                         (3mks)
  2. On a map scale 1:20,000 a rectangular piece of land measures 5cm by 8cm. Calculate its actual area in hectares.                                                                                                                                      (3mks)
  3. It costs Maina shs. 13 to buy 3 pencils and 2 rubbers; while Mutiso spent shs.9 to buy one pencil and 2 rubbers. Calculate the cost of a pencil and one rubber                      (3mks)

 

  1. Three angles of a pentagon are 1100, 1000 and 1300. The other two are 2x and 3x respectively. Find their values .                                                              (2mks)

 

SECTION II (48MKS)

 

  1. Members of a youth club decided to contribute shs 180,000 to start a company. Two members withdrew their membership and each of the remaining member had to pay shs. 24,000 more to meet the same expense. How many members remained? (8mks)
  2. A box contains 5 blue and 8 white balls all similar . 3 balls are picked at once. What is the probability that

(a)  The three are white                                                                                         (2mks)

(b)  At least two are blue                                                                                                    (3mks)

(c) Two are white and one is blue                                                                                         (3mks)

 

  1. A rectangular tennis court is 10.5m long and 6m wide. Square tiles of 30cm are fitted on the floor.

(a) Calculate the number of tiles needed.                                                                             (2mks)

(b) Tiles needed for 15 such rooms are packed in cartons containing 20 tiles. How many cartons are

there in total?                                                                                                                 (2mks)

(c)  Each carton costs shs. 800. He spends shs. 100 to transport  each 5 cartons. How  much would one

sell each carton to make 20% profit ?                                                                             (4mks)

  1. The following was Kenya`s income tax table in 1988.

Income in K£ P.a             Rate (Ksh) £

1          –   2100                  2

2101    –   4200                  3

4201     –  6303                  5

6301     –  8400                  7

 

(a) Maina earns £ 1800 P.a. How much tax does he pay?                                         (2mks)

(b) Okoth is housed by his employer and therefore 15% is added to salary to make  taxable income. He

pays nominal rent of Sh.100 p.m His total tax relief is Shs.450. If he earns K£3600 P.a, how much

tax does he pay?                                                                                              (6mks)

  1. In the given figure, OA = a , OB =b,  OP: PA =3:2,  OQ:QB = 3:2

Q

B
R

O                                                                            A

(a) Write in terms of a and b vector PQ                                                                                       (2mks)

(b) Given that AR = hAB where h is a scalar, write OR in terms h, a. and b                    (2mks)

(c) PR  =  K PQ Where K is a scalar, write OR in terms  of k, a and b                           (1mk)

(d) Calculate the value of k and h                                                                                               (3mks)

 

  1. A transformation P = and maps A(1,3) B(4,1) and C(3,3) onto A1B1C1. Find the

 

 

co-ordinates of A1B1C1 and plot ABC and A1B1C1 on the given grid.

Transformation Q maps A1B1Conto A11 (-6,2) B11(-2,3) and C11(-6,6). Find the matrix Q and plot

A11B11C11on the same grid. Describe Q fully.                                                           (8mks)

 

  1. By use of a ruler and pair of compasses only, construct triangle ABC in which AB = 6cm,

BC = 3.5cm and AC = 4.5cm. Escribe circle  centre 0 on BC to touch AB and

AC produced at P and Q respectively. Calculate the area of the circle.                       (8mks)

  1. The following were marks scored by 40 students in an examination

330       334      354     348     337     349     343    335    344    355

392       341      358     375     353     369     353    355    352    362

340       384      316     386     361     323     362    350    390    334

338       355      326     379     349     328     347    321    354    367

 

(i) Make a frequency table with intervals of 10 with the lowest class starting at 31          (2mks)

(ii) State the modal and median class                                                                         (2mks)

(iii) Calculate the mean mark using an assumed mean of 355.5                                        (4mks)

 

 

MATHEMATICS IV

PART 1

MARKING SCHEME

 

1.  

Ö –  7.939

12.3

 

=      No             log

7.939                       0.8998

12.3              1.0899

T.8099   1/3 = 3 + 2.8099                                T.9363                   3

 

=  -0.8635

B1

 

 

 

 

B

 

M1

 

A1

4

 

 Subtraction

 

 

 

 

Logs

 

Divide by 3

 

Ans

2. 5x – 3 (3x –7 )    =  3(x – 2 )

5x – 9x + 21    =   3x – 6

-7x             = -27

x              =  36/7

 

M1

M1

 

A1

3

Multiplication

Removal ( )

 

Ans

3. 3x +5y + x =  180

9x   =  180

x    =   20

y   =    60

M1

A1

B1

3

Eqn

X

B

 

 

4.  

.                               r   =       3v      1/3

4P

 

.                              r   =        S       ½

4P

 

\ 3V      1/3              =            ½

4P                                 4P

 

3V                         =       S       3/2

4P                                 4P

 

V             =       4P      S     3/2

3            4P

 

 

 

B1

 

 

 

 

 

 

 

M1

 

 

 

A1

3

 

 

 

Value r

 

 

 

 

 

 

 

Equation

 

 

 

Expression

5.

 

 

 

 

6.

Grad  line          = ¼

y – 2        = ¼

x – 5

y            =  ¼ x + ¾

k             =      ¾

P in Alloy         = 4/10  x 800

= 320g

100 x 320

20

=  3.2 kg

 

M 1

 

A1

A 1

3

 

B1

 

M1

 

A 1

 

Equation

 

Equation

K

 

 

P in alloy

 

Expression

 

Ans

 

 

 

 

7.

 

 

 

 

B (a,b) ,            C (x ,y)

.a – 2          =    5

.b – 8               -2

.a  = 8     b = 6      B(8, 6 )

x – 8          =   3

y – 6               4

x = 11,  y = 10 c(11,10)

 

 

 

 

 

B1

 

M1

 

 

A1

3

 

 

 

 

B conduct

 

Formular

 

 

C

8.  

 

 

 

 

 

80 – x

 

 

 

 

 

.h = x tan 70

h = (80 – x ) tan 60

\   x tan 70 = 80 tan 60-x tan 60

2.7475x + 1.732x = 138.6

4.4796 x       =   138.6

.h     =    138.6 x tan 60

4.4796

 

= 53.59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

M1

 

 

 

M1

 

A1

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression for  h both

Equation

 

 

 

Expression for h

 

Ans

9.                 2pr    =  90  x 2p x 50

360

r    =  12.5

h     =  Ö2500 –  156.25

=   Ö2343.75

=   48.41 cm

 

M1

P

A1

M1

 

A1

4

Equation

 

.r

expression for h

 

ans

 

 

10.

 

100 n      =   302.323

     n      =      3.023   

99n       =   299.3

n      =    2993

990

=    323/990

 

M1

 

 

A1

4

 

 

Equation

 

 

Ans

 

11. AB        =     3-1

5-9

=     2

-4

BC         =     4

-8

AB         = ½   BC

\ AB // BC

But B is common

\ A,B,C are collinear.

 

 

 

 

B1

 

 

 

 

 

B1

 

 

B1

3

 

 

A B &  BC

 

 

 

 

 

Both

 

 

Both

 

12.       4% of 200,000  = 8000/=

balance                   = 4200/=

6% of  x                 = 4200/=

x                 = 4200 x 100

6

=  70,000

sales                 =  sh. 270,000

B1

 

 

M1

A1

B1

4

 

 

Both

 

 

Expression

Extra sales

Ans

 

 

 

 

 

 

13 .

 

 

 

 

 

Time          =   22/7 x 3.5/2x 3.5/2 x 200   hrs

22/7x 140x140x 140x 3600

 

8960

3600

= 2 hrs 29min

 

 

 

 

 

M1

M1

 

M1

 

A1

4

 

 

 

 

 

 

Vol tank

Vol tank

 

Div x 3600

 

Tank

 

 

14.

 

 

 

 

 

 

 

    Ö3                      =     Ö3           Ö7 + Ö2

Ö7Ö2                         Ö2Ö2         Ö7+ Ö2

 

= Ö3 Ö7 + Ö2

5

 

= Ö21 + Ö6

5

M1

 

M1

 

A1

3

Multi

 

Expression

 

 

 

Ans

15.           3 £ x 2                   x2 £ 35

±1.732 £x                 x £ ± 5.916

1.732 £ x           £ 5.916

integral x : 2, 3, 4, 5

 

B1

B1

B1

B1

4

Lower limit

Upper limit

Range

Integral values

 

16.  No of days   =  8/6 x 5/8  x 12

=   10 days

M1

A1

2

Expression

days

17. (i)  ÐCED      =  ÐECD   = 30

Ð CDE     =  180 – 60

=  120

Ð CBE    =  180-120

=60

(ii) Ð AEC  = 90+30

= 120

Ð EAB  = 180-(120+45)

= 150

(iii) ÐBEO  = 90-45

= 45

B1

B1

B1

B1

 

B1

 

B1

B1

 

B1

8

 

 

 

 

 

 

 

ÐA EB = 450

 

ÐBEO

18.   .ar + ar2    =  9/4

3r + 3r2   =  9/4

12r2  + 12r – 9 = 0

4r2  + 3r – 3   = 0

4r2 + 6r – 2r –3 = 0

(2r – 1) (2r + 3)  = 0

r  = ½  or r   = -11/2

 

Ss      = 3(1- (1/2 )5)

1 – ½

 

= 3 (1-12/3 2)

½

= 6 ( 31/32)

= 6 31/32

 

B1

B1

 

B1

 

M1

A1

 

M1

 

 

 

M1

 

 

A1

8

 

 
19.

LOG  E.    0.3010   0.6021     0.7782     0.9031

LOG  F      1.2068   2.1065     2.6354     3.0103

 

Log E =n log F  + Log K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.n  = gradient    = 2        2.4 – 1.4   =  12  =  3

Log k.             =  0.3       0.7 – 0.3       4

.k              = 1.995

¾ 2

‹         E     =  2F 3

B1

B1

 

 

S1

 

 

P1

 

 

L1

 

 

M1

A1

 

B1

8

 

Log E

Log F

 

 

Scale

 

 

Plotting

 

 

Line

 

 

Gradient

 

 

K

 

 

 

20  

.x       -2     -1     0    1     2    3      4

.y      17      6      1    6     9  22     41

 

.y  =  3x 2  – 2x + 1    –

0       =  3x 2 – 3x – 2

y   =  x     +  3

 

 

 

 

 

 

 

B2

 

B1

 

B1

 

S1

P1

C1

 

L1

 

B1

 

8

 

 

 

All values

 

At least  5

 

Line

 

Scale

Plotting

Smooth curve

 

Line drawn

 

Value of r

 

 

21. .h          = ¾ p x 18 x 18x 18

p x 0.04 x 0.04

= 24 x 18x 18x 18

0.04   x 0.04 x 100

 

=  48,600m

 

density  = 4/3 x 22/7 x 18 x 18x 18x 15 kg

1000

= 122.2kg

M1

M1

M1

M1

 

A1

 

M1

M1

A1

8

N of wire

¸ to length in cm

¸ for length

conversing to metres

 

length

 

expression for density

conversion to kg

ans

 

 

22.  

H = Ö152 – 92

= Ö144

= 12

 

X/6  = 9/12

X    = 4.5

Volume   = 1/3 x 22/7x (81 x 12 –20.25×6 )

 

= 22/21  (972 – 121 -5)

 

=   891  cm3

 

 

M1

 

 

A1

 

M1

A1

M1

M1

M1

 

A1

8

Method

 

 

 

 

Method

Radius

Small vd

Large vol

Subtraction of vol.

 

Ans

23. R(-a , b) , Q (c,d), S(x , y) ,P (5,0)

PR is  diagonal

(a)    Mid point  PR  (0,0)

a + 5    = 0

2

.a         =   -5

b- 0     =   0

2
b = 0

R (-5,0)

Grad  PQ   = -2

Grad RS   = -2

.d – 0   =  -2

c –5

.d – 0      = ½

c+5

.d+ 2c     = 10

2d – c     = 5×2         –

4d – 2c   = 10

5d         = 20

d         = 4

c         = 3

Q (3, 4)

x + 3  ,    y+4   =  (0,0)

2           2

x  =  -3 , y = -4   \ s(-3 -4)

 

(b) y – 4   =   8

x – 3        6

3y  = 8x – 12

 

 

 

 

 

 

 

B1

 

 

 

M1

 

 

 

 

M1

 

 

 

 

A1

 

M1

A1

 

M1

 

A1

8

 

 

 

 

 

 

 

Ans .

 

 

 

Expression both correct

 

 

 

Equation

 

 

 

 

Ans

 

 

 

 

Expression

 

Equation

 

       

MATHEMATICS IV

PART II

MARKING SCHEME

 

 

1.                784 X 27        =

187500

Ö 784 x 9           =    4 x 7x 3

62500                      250

=       42

125

=       0.336

 

 

 

M1

 

M1

 

 

A1

 

 

 

Factors for

Fraction or equivalent

 

C.A.O

    3  
2.      Father 3x ,  r son  = x

2(x +10)        = 3x + 10

2x +20       =  3x + 10

x        = 10

father            = 30

M1

 

 

A1

B1

 

Expression

 

 

 

 

 

 

    3  
3. 3   = sin   60

AE

AE  = 3

Sin 60

= 3.464

perimeter  = 5×2 + 3.464 x 3

= 10+10.393

= 20.39

M1

 

 

 

A1

 

 

B1

Side of a triangle

 

 

 

 

 

 

Perimeter

    3  
4.    .a3 – b-2c2  =  (-2)3 – 3 –2(-1)2

2b2 – 3a2c      2(3)2 –3(-2)2(-1)

= -8 –3-2

18 + 12

= -13

30

M1

 

 

M1

 

A1

Substitution

 

 

Signs

 

C.A.O

    3  
5.        Ksh  189,000          =   $ 189,000

75.6

= $ 2500

balance                    = $ 2500

=  Kshs. 189,000

Kshs. 189,000          =             189,000

115.8

Uk    ₤1632

M1

 

A1

 

M1

A1

 

A1

4

 

Conversion

 

 

 

Conversion

 

6. Area of 2 triangles  =   2 (½ x 8x 5 sin 60)

=   40 sin 60

=   40x 0.8660

= 34.64 cm2

Area of rectangle    = 300 x 8 + 300 x 5 +300 x BC

BC              = Ö64 +25 – 2 x 40cos 60

= Ö89 – 80 x 0.5

= Ö89 – 40

= Ö49

= 7

Total   S.A.              = 300 (8+5+7) + 34.64 cm2

= 6000 + 34.64

= 6034.64 cm2

M1

 

 

 

 

M1

 

 

 

 

M1

 

A1

Areas of D

 

 

 

 

B.C. expression

 

 

 

 

Area

 

    4  
7.    AF2    = 32+42+-2+12x cos 50

= 25 – 24 x 0.6428

= 25-15.43

= 9.57

AF      =  3.094 x 50

AF      =  154.7m

Sin Q  =  200 sin 50o

154.7

= 0.9904

Q   = 82.040

Bearing = 117.96

M1

 

 

 

 

A1

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

Bearing

    5  
8. (i)  No. of white  = w

w       = 2

w+9         3

3w       = 2w + 18

w      =  18

(ii)  p(different colour )  = p(WB N  BW)

= 2   x   9   + 918

3      25     27    25

= 12/25

M1

 

 

 

 

A1

M1

 

A1

 
    4  
9. A.sf                =  1

49

smaller area       = 1 x 441 p

49

=  9p

pr2          = 9p

r2         =  9

r           = 3

 

 

 

M1

 

M1

 

 

A1

 

 
    3  
10.  Largest area         = 22 x (14.5)2

7

=  660.8 cm 2

smallest area          =  22/7 x (13.5)2

= 572.8

572.8    £ A  £ 660.81

M1

 

 

M1

 

A1

 
    3  
11. (1 +2 x)5  =  1 + 5 (2x) + 10 (2x)2 + 10 (2x)3

=  1 + 10x   + 40x2  + 80x3

2.0455    =   1+2 (0.52)5

= 1+10 (0.52)+ 40(0.52)2+80(0.52)3

= 1+5.2 + 10.82 + 11.25

= 28.27

M1

A1

 

M1

 

A1

 
    4  
12.          Tn           =  5x 2n –2

(i)               T1 , T2, T3 = 2.5, 5, 10

(ii)                      S5      =  2.5(25-1)

2-1

= 2.5 (31)

= 77.5

 

B1

M1

 

 

A1

 

All terms

 

    3  
13. 12         = 22 x 3

18         = 2 x 32

30         = 2x3x5

Lcm         = 22 x 32x 5 = 180 min

=  3hrs

time they ring together =11.55 +3 = 2.55 p.m

M1

 

 

 

A1

B1

 
    3  
14.  Map area      = 40cm 2

Actual area   =  200x200x40m2

= 200x200x40ha

100×100

= 320ha

M1

M1

 

 

A1

Area in m2

Area in ha

 

 

CAO

    3  
15.     3p + 2r    = 13

p + 2r    =   9  –

2p           =   4

p     = sh 2

r     = 3.50

M1

 

 

A1

B1

 
    3  
16. 110 + 100+130+2x +3x = 540

5x  = 200

x  = 400

2x , 3x     = 80 and 1200 res

M1

 

A A1

2

 
17. Contribution / person    = 180,000

X

New contribution    = 180,000

x – 2

180,000   – 180,000  = 24,000

x –2               x

180,000x – 180,000x +360,000 = 24,000(x-2)x

24,000x2  –  48,000x – 360,000 =0

x2  – 2x – 15 = 0

x2 – 5x + 3x – 15 = 0

x (x – 5)+ 3 (x – 5) = 0

(x + 3 )(x – 5)  = 0

x     = -3

or     = 5

remaining members            = 5-2

= 3

B1

 

B1

 

M1

M1

 

 

A1

M1

 

 

A1

 

B1

 

‘C’

 

 

 

eqn

mult

 

 

eqn

factor

 

 

both ans

 

remaining members

    8  
18. (a) P (3 white)         =  8   x  7  x   28

13      12     11    143

(b) P(at least 2 blue)=p(WBBorBBWorBWB)orBBB

= 8  x   5  x   4   +  5  x   4  x  8

13     12     11      13     12    11

+ 5  x   8  x   4 +   8 x   7 x   6

13     12     11    13     12    11

= 204

429

= 68

143

(c) p(2 white and one blue )= p(WWB or WBW or BWW)

= 8  x  7  x  5  +  8  x  57  +  587

13     12    11   13     12   11   13    12   11

= 3 x 8 x 7 x 5

13 x 12 x 11

 

=  70

143

M1

A1

 

 

M1

 

M1

 

 

 

A1

 

 

 

M1

M1

 

 

 

A1

 

 
    8  
19. (a) recourt area    =  10.5 x 6  m2

title  area       =    0.3 x 0.3 m2

No of tiles     =    10.5 x 6

0.3 x 0.3

=  700

(b) No of cartons = 700 x 15

20

= 52.5

 

(c) Cost of 525 cartons  =   525 x 100 + 800 x 525

+ transport                        5

=  10,500+420,000

=   430,500

sale price                  =  120 x 4.30,500

100

=  sh    516,600

s.p of a carton            =  516,600

525

= sh. 984

 

 

M1

A1

 

M1

 

A1

 

 

 

B1

 

M1

 

 

M1

 

A1

 

 

 
    8  
20. (a) Maina`s tax dues       = 1800 x 10

100

=        180

(b) Taxable income        = 3600 x 115 – n rent

100

= 36 x 115 – 100 x 12

20

= 4140 – 60

=         4080

Tax dues                         = 10    x 2100  + 15  x 1980

100                 100

= 210 + 297

=        507

Tax  relief                      =        270-

Tax  paid                        =        237

M1

 

A1

 

 

M1

 

 

A1

M1

M1

 

A1

 

B1

 

 

 

 

 

 

 

 

 

 

1st slab

2nd slab

    8  
21.  (a)            PQ                 =  –3/5 a   +  3/1b

=  31/23/5 a

(b)             OR                 =   h a + h b

=   a – ha + hb

=  (1-h) a + h b

(c)              OR                =  3/5 a   + k (31/2 b – 3/5a)

=  (3/53/5k)a +3k b

(d)                      1 – h     =  3/53/5k    (i)

3k    =  h                   (ii)

Sub (i)              1 – 3k    =  3/53/5k

5- 15k    =  3-3k

12k    =  2

k    =   1/6

h     =  ½

 

 

B1

 

M1

A1

M1

A1

 

 

M1

 

 

A1

B1

 
     

8

 
 

22.

 

P(ABC) =     0  – 1      1  4  3      =  -3  -1  -3

1    0      3  1  3            1   4   3

A1 (-3,1)B1 (-1,4)C1(-3,3)

Q(A1B1C1) =  a  b    -3 –1 -3    =        -6 –2 –6

c d       1   4  3                2   8   6

 

=> -3a + b =  -6                -3c + d = 2

-a + 4b   =  -2 x 3         -c + 4d = 8 x 3

– 3a  + 12b = -6              – 3c + 12d = 24

11b  = 0                     -11d  = -22

b = 0                           d = 2

a = 2                           d = 2

c  = 0

Q =    2     0

0       2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

A1

 

 

M1

 

 

M1

 

 

 

 

 

A1

 

 

 

B1

 

 

 

 

B1

 

 

 

B1

 

 

A1 B1 C1

 

 

 

 

 

 

 

 

 

 

 

L Q

 

 

 

A1 B1 C1 drawn

 

 

 

 

All BII CII

Ploted

 

 

 

 

Destruction

 

 

 

    8  
23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24.

R     = 2.2CM ± 0.1

Area = 22 x  2.2 x 2-2

7

= 15.21cm2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ef =40                        efd = -80

(ii) model class    = 351- 360

modern class  = 341 – 350

(iii) mean             = 355.5  – 80

40

=  355.5 – 2

=  353.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

B1

 

B1

 

B1

 

B1

 

B1

 

M1

 

 

 

1

1

 

 

8

 

B1

B1

 

M1

 

 

A1

 

B1

 

B1

B1

B1

 

 
    A1  
    8  

 

 

 

MATHEMATICS V

PART I

 

SECTION 1 (52 MARKS)

 

 

 

  1. Use logarithms to evaluate 6 Cos 40   0.25
    63.4                                                                                                                                                                                                       (4mks)
  2. Solve for x in the equation (x + 3) 2 – 5 (x + 3) = 0 (2mks)
  3. In the triangle ABC, AB = C cm. AC = bcm. ÐBAD = 30o and ÐACD = 25o. Express BC in terms of b and c.                                                                                                     (3mks)
  4. Find the equation of the normal to the curve y = 5 + 3x – x3 when x = 2 in the form
    ay + bx = c                                                                                                             (4mks)
  5. Quantity P is partly constant and partly varies inversely as the square of q. q= 10 and p = 5 ½  when q =20. Write down the law relating p and q hence find p when qs is 5.            (4mks)
  6. Solve the simultaneous equation below in the domain 0  £ x £  360 and O£  y £ 360
    2 Sin x + Cos y = 3
    3 Sin x – 2 Cos y = 1                                                                (4mks)
  7. Express as single factor 2     –     x + 2         +       1
    x + 2    x2 + 3x + 2         x + 1                                       (3mks)
  8. By use of binomial theorem, expand (2 – ½ x )5 up to the third term, hence evaluate (1.96)5
    correct to 4 sf.                                                                                                        (4mks)
  9. Points A(1,4) and B (3,0) form the diameter of a circle. Determine the equation of the circle and write it in the form ay2 + bx2 + cy + dy = p where a, b, c, d and p are constants.                                                                                                                              (4mks)
  10. The third term of a GP is 2 and the sixth term is 16. Find the sum of the first 5 terms of the GP. (4mks)
  11. Make T the subject of the formulae 1       –  3m   +  2
    T2         R         N                        (3mks)
  12. Vectors, a =   2     b =   2   and   c –   6
    2              0                   4
  13. By expressing a in terms of b and c show that the three vectors are linearly dependent.                                                                                                                              (3mks)
    A cylindrical tank of base radius 2.1 m and height is a quarter full. Water starts flowing into this tank at 8.30 a.m at the rate of 0.5 litres per second. When will the tank fill up? (3mks)
  14. A piece of wood of volume 90cm3 weighs 54g. Calculate the mass in kilograms of 1.2 m3 of the wood.      (2mks)
  15. The value of a plot is now Sh 200,000. It has been appreciating at 10% p.a. Find its value 4 years ago.
    (3mks)
  16. 12 men working 8 hours a day take 10 days to pack 25 cartons. For how many hours should 8 men be

working in a day to pack 20 cartons in 18 days?                                                     (2mks)

SECTION II (48MARKS)

  1. The tax slab given below was applicable in Kenya in 1990.
    Income in p.a.                           rate in sh
    1  – 1980                                  2
    1981 – 3960                              3
    3961 – 5940                              5
    5941 – 7920                              7
    Maina earns Sh. 8100 per month and a house allowance of Sh. 2400. He is entitled to a tax relief of Sh.

800 p.m. He pays service charge of Sh 150 and contributes Sh 730 to welfare. Calculate Mwangis net

salary per month.                                                                                                    (8mks)

  1. OAB is a triangle with OA = a , OB = b. R is a point of AB. 2AR = RB. P is on OB such that
    3OP = 2PB. OR and AP intersect at Y, OY = m OR and AY = nAP. Where m and n are scalars.    Express in terms of a and b.
    (i) OR                                                                                                                    (1mk)
    (ii)AP                                                                                                                    (1mk)

    (b) Find the ratio in which  Y divides AP                                                                (6mks)

  2. The table below gives related values of x and y for the equation y = axn where a and n are constants
X 0.5 1 2 3   10
Y 2 8 32   200 800

By plotting a suitable straight line graph on the graph provided, determine the values of a and n.

20.       Chalk box x has 2 red and 3 blue chalk pieces. Box Y has same number of red and blue

pieces. A teacher picks 2 pieces from each box. What is the probability that
(a)        They are of  the same colour.                                                                            (4mks)
(b)        At least one is blue                                                                                           (2mks)
(c)        At most 2 are red                                                                                              (2mks)

21.  Point P(50oN, 10oW) are on the earth’s surface. A plane flies from P due east on a parallel of

latitude for 6 hours at 300 knots to port Q.
(a) Determine the position of Q to the nearest degree.                                                    (3mks)
(b)  If the time at Q when the plane lands is 11.20am what time is it in P.                      (2mks)
(c) The plane leaves Q at the same speed and flies due north for 9 hours along a longitude to

airport R. Determine the position of R.                                                                       (3mks)
22.       Using a ruler a pair of compasses only, construct :
(a)        Triangle ABC in which AB = 6cm, AC = 4cm and Ð ABC = 37.5o.                                (3mks)
(b)        Construct a circle which passes through C and has line AB as tangent to the circle at A.             (3mks)
(c)        One side of AB opposite to C, construct the locus of point P such that  ÐAPB = 90o.              (2mks)
23.       A particle moves in a straight line and its distance is given by S = 10t2 – t3 + 8t where S is

distance in metres at time t in seconds.
Calculate:
(i) Maximum velocity of the motion.                                                                             (4mks)
(ii) The acceleration when t = 3 sec.                                                                              (2mks)
(iii) The time when acceleration is zero.                                                                                   (2mks)

 

 

 

  1. A rectangle ABCD has vertices A(1,1) B(3,1), C(3,2) and D(1,2). Under transformation

matrix M =   2  2   ABCD is mapped onto A1B1C1D1

1   3
under transformation M =   -1  0    A1B1C1D1 is mapped onto  A11B11C11D11. Draw on the given grid
0 –2

(a)       ABCD, A1B1C1D1 and A11B11C11D11                                                                  (4mks)
(b)        If area of ABCD is 8 square units, find area of A11B11C11D11.                              (3mks)
(c)        What single transformation matrix maps A11B11C11D11 onto A1B1C1D1               (1mk)

MATHEMATICS V

PART II

 

SECTION 1 (52 Marks)

 

  1. Evaluate without using mathematical tables (2.744 x 15 5/8)1/3                              (3mks)
  2. If 4 £ x £ 10 and 6 £ y £5, calculate the difference between highest and least
    (i) xy                                                                                                                    (2mks)
    (ii)  y/x                                                                                                                     (2mks)
  3. A 0.21 m pendulum bob swings in such a way that it is 4cm higher at the top of the swing than at the bottom. Find the length of the arc it forms.       (4mks)
  4. Matrix 1        2x   has on inverse, determine x                                                     (3mks)
    x +3      x2
  5. The school globe has radius of 28cm. An insect crawls along a latitude towards the east from A(50o, 155oE) to a point B 8cm away. Determine the position of B to the nearest degree.                                                                                                                                                 (4mks)
  6. The diagonals of triangle ABCD intersect at M. AM = BM and CM = DM. Prove that triangles ABM and CDM are Similar.       (3mks)
  7. Given that tan x = 5/12, find the value of 1  –   sinx
                                                                         Sin x + 2Cos x,   for 0 £ x £ 90           (3mks)

 

  1. Estimate by MID ORDINATE rule the area bounded by the curve y = x2 + 2, the x axis and the lines x = O and x = 5 taking intervals of 1 unit in the x. (3mks)
  2. MTX is tangent to the circle at T. AT is parallel to BC. Ð MTC = 55o and Ð XTA = 62o. Calculate Ð (3mks)
  3. Clothing index for the years 1994 to 1998 is given below.
Year 1994 1995 1996 1997 1998
Index 125 150 175 185 200

Calculate clothing index using 1995 as base year.                                                          (4mks)

  1. A2 digit number is such that the tens digit exceeds the unit by two . If the digits are reversed, the number formed is smaller than the original by 18. Find the original number. (4mks)
  2. Without using logarithm tables, evaluate log5 (2x-1) –2 + log5 4 = log5 20             (3mks)
  3. Mumia’s sugar costs Sh 52 per kg while imported sugar costs Sh. 40 per kg. In what ratio should I mix the sugar, so that a kilogram sold at Sh. 49.50 gives a profit of 10%. (4mks)
  4. The interior angles of a regular polygon are each 172o. Find the number of sides y lie polygon.                                                                                                                            (2mks)
  5. Evaluate 2x   =       2    +        3
    341       9.222                                                                           (2mks)
  6. A water current of 20 knots is flowing towards 060o. A ship captain from port A intends to go to port

B   at a final speed of 40 knots. If to achieve his own aim, he has to steer his ship at a course of 350o.

Find the bearing of A from B.                                                                                (3mks)

SECTION II  (48 MARKS)

  1. 3 taps, A, B and C can each fill a tank in 50 hrs, 25 hours and 20 hours respectively. The three taps are turned on at 7.30 a.m when the tank is empty for 6 hrs then C is turned off. Tap A is turned off after four hours and 10 minutes, later. When will tap B fill the tank? (8mks)
  2. In the domain –5 £ x £ 4, draw the graph of y = x2 + x – 8. On the same axis, draw the graph of y + 2x = -2. Write down the values of x where the two graphs intersect. Write down an equation in x whose roots are the points of intersection of the above graphs. Use your graph to solve. 2x2 + 3x – 6 = 0.                                                                                            (8mks)
  3. The average weight of school girls was tabulated as below:
Weight in Kg 30 – 34 35 – 39 40 – 44 45 – 49 50 – 54 55-59 60-64
No. of Girls 4 10 8 11 8 6 3

(a) State the modal class.                                                                                           (1mk)
(b) Using an assumed mean of 47,
(i) Estimate the mean weight                                                                                (3mks)
(ii) Calculate the standard deviation.                                                                      (4mks)

 

 

 

 

 

 

 

 

 

 

  1. The table below shows values of y = a Cos (x – 15) and y = b sin (x + 30)
X 0 15 30 45 60 75 90 105 120 135 150
a Cos(x-5) 0.97       0.71 0.5       -0.5 -0.71
b sin(x+3) 1.00       2.00       1.00   0.00

(a) Determine the values of a and b                                                                               (2mks)
(b) Complete the table                                                                                                  (2mks)
(c) On the same axes draw the graphs of y = across(x – 15) and y = b sin(x + 30)            (3mks)
(d) Use your graph to solve ½ cos (x – 15) = sin(x + 30)                                                 (1mk)

21.    The diagram below is a clothing workshop. Ð ECJ = 30o AD, BC, HE, GF are vertical

walls. ABHG is horizontal floor. AB = 50m, BH = 20m,  AD=3m

 

 

 

(a) Calculate DE                                                                                                           (3mks)
(b) The angle line BF makes with plane ABHG                                                              (2mks)
(c) If one person requires minimum 6m3 of air, how many people can fit in the workshop         (3mks)

  1. To transport 100 people and 3500 kg to a wedding a company has type A vehicles which take          10 people and 200kg each and type B which take 6 people and 300kg each. They must not use more

than 16 vehicles all together.
(a)     Write down 3 inequalities in A and B which are the number of vehicles used and plot them

in a graph.                                                                                                           (3mks)
(b)     What is the smallest number of vehicles he could use.                                          (2mks)

(c)     Hire charge for type A is Sh.1000 while hire for type B is Sh.1200 per vehicle. Find the cheapest

hire charge for the whole function                                                                        (3mks)

A circle centre A has radius 8cm and circle centre B has radius 3cm. The two centres are

12cm apart. A thin  tight string is tied all round the circles to form interior common tangent. The tangents CD and EF intersect at X.

(a) Calculate AX                                                                                                           (2mks)
(b) Calculate the length of the string which goes all round the circles and forms the tangent.
(6mks)

 

  1. Airport A is 600km away form airport B and on a bearing of 330o. Wind is blowing at a speed of

40km/h from 200o. A pilot navigates his plane at an air speed of 200km/h from B to A.
(a)     Calculate the actual speed of the plane.                                                                (3mks)
(b)     What course does the pilot take to reach B?                                                          (3mks)
(c)     How long does the whole journey take?                                                                (2mks)

 

MATHEMATICS V

PART I

MARKING SCHEME

 

1 SOLUTION MKS AWARDING
  No         Log

13.6        1.1335   +

Cos 40    1.8842

1.0177   –

63.4       1.8021

1. 2156

(4 + 3.2156) 1/4

1.8039

Antilog    0.6366

 

B1

 

M1

 

 

M1

 

A1

 

Log

 

+

 

 

divide by 4

 

C.A.O

    4  
2. (x + 3) (x + 3 – 5) = 0

(x +3)b (x – 2) = 0

x = -3 or x = 2

M1

 

A1

 

Factors

 

Both answers

3 BD = C Sin 30  = 0.05

CD = b Cos 25

= 0.9063b

‹ BC = 0.9063b + 0.5 C

B1

 

B1

B1

 

BD in ratio from

 

CD in ratio form

Addition

    3  
4  Dy  = 3 – 3x2
dx
x = 2, grad = 1
9
Point (2,3)
y – 3  = 1
x – 2     9

9y – 27  = x – 2
9y – x   =  25

B1

 

B1

 

M1

 

 

A1

 

Grad equ

 

Grad of normal

 

Eqn

 

 

Eqn

 

    4  
5   700 = 100 + n
2200 = 400 + n

1500 = 300m

m = 5

n = 200

P = 5 + 200
q2
When q = 5 P = 13

M1

 

 

A1

 

 

B1

B2

Equan

 

 

Both ans

 

 

Eqn (law)

Ans (P)

    4  
 

6

 

4 Sin x + 2 cos y = 6

3 Sin x – 2 Cos y = 1
7 sin x                  = 7

Sin x            = 1

X                = 90

Cos y          = 1

Y        = 0o

 

M1

M1

 

 

A1

 

B1

 

Elim

Sub

 

 

 

 

 

7 2(x +1) – 1(x + 2) + x + 2

(x+2) (x +1)
= 2x +2 – x – 2 + x = 2

(x +2) (x + 1)

=     2x + 2

(x + 2)  (x + 1)

=     2
x + 2

M1

M1

 

 

 

A1

Use of ccm

Substitution

 

 

 

Ans

8 (-2 – ½ x)5  = 25  – 5 (2)4 ( ½ x) + 10(2)3( ½ x)2

=  32 – 40x + 20x2

= 32 – 4 (0.08) + 20 (0.08)2

= 32 – 0.32 + 0.128
= 3

M1

A1

 

M1

A1

 

 

 

 

 

    4  
9. Circle centre C = (3 +1,   0 + 4)

2                 2

C( 2, 2)

R =Ö (2 – 0)2 + (2 – 3)2

=Ö 5

(y – 2)2 + (x – 2)2 = Ö5

y2 + x2 – 4y – 4x =  8 + Ö5

B1

 

B1

 

M1

 

A1

Centre

 

Radius

 

 

 

 

    4  
10  ar2 =2,  ar5 = 16

a  = 2  \ 2 r5 = 16

r2       r2

2r3 = 16

r3 = 8

r = 2, a = ½

 

S5= ½ (1 – ( ½ )5)

½

= 1 – 1/32

= 31/32

M1

 

 

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

Both

 

Sub

 

 

CAO

    4  
11 NR – 3MT2  = 2RT2

T2(2R + 3M) = NR

T2   =   NR

2R + 3m

T =  ! Ö  NR
2R + 3m

M1

 

M1

 

A1

X mult

 

72

 

ans

    3  
12  2  = m   2   + n    6

2            0           4

2 = 2m + 6n

2 = 0 + 4n

n = ½

m = – ½

\a = – ½ b + ½ c

\a b c are linearly dep

M1

 

 

 

 

A1

 

B1

 
    3  
13 Volume = 22 x 2.1 x 2.1 x 2 x ¾ m3

7

Time = 11 x 0.3 x 2.1 x 3 x 1,000,000

500 x 3600

= 11.55

= 11.33 hrs

time to fill = 8.03 pm

M1

 

 

M1

 

 

 

A1

 
    3  
14 Mass = 54   x  1.2 x 1,000,000

90              1000

= 720kg

M1

 

A1

 
    2  
15 V3 = P

P(0.9)3     = 200,000

P = 200,000

0.93

= 200,000

0.729

= Sh 274,348

M1

 

M1

 

 

 

A3

 
    3  
16 No of hours = 8 x 12 x10 x 20

8 x 18 x 25

= 19200

3600

= 5hrs, 20 min

M1

 

 

 

A1

 
    2  
17  Taxable income = 8100 + 2400

= sh. 10,500

=   ₤6300

Tax dues      = Sh 1980 x 2 + 1980 x 3 + 1980 x 5 + 3670 x 7

12

= 22320

12

= Sh 1860

net tax = 1860 – 800 p.m.

= Sh 1060

Total deduction = 1060 + 150 + 730

= 1940

Net salary = 10,500 – 1940

= Sh 8560 p.m.

B1

 

 

M1

M1

 

A1

 

B1

 

B1

 

M1

A1

Tax inc

 

 

2

2

 

 

 

net tax

 

total dedu.

    8  
18 OR = 2/3 a + 1/3b or (1/3 (2a + b)

AP = 2/5 b – a

OY = m OR = A + n (2/5b – a)

2/5m b + ma = (1 – n)a + 2/5 n b

2/5m = 2/5n
m = n

\m = 1 – m

2m = 1

m  = ½ = n

½ AP = Ay

AY:AP = 1:1

B1

B1

 

B1

M1

M1

A1

A1

 

 

B1

 

 

 

EXP, OY

Eqn

M = n

Sub

CAO

 

 

Ratio

    8  
 

19

 

 

 

 

Log y = n log x + log a

Log a = 0.9031

A = 8

Grad = 1.75 – 0.5

0.4 + 0.2

= 1.25
0.6

= 2.08

n = 2

\y = 8x2

x = 3  y = 8 x 32   = 72

y = 200           x = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

B1

 

B1

B1

S1

P1

L1

 

 

 

 

Log x

Log y

 

 

 

A

 

N

Missing x and y

Scale

Points

Line

    8  
 

 

 

20

 

 

 

P (same colour) = P (XRRrr orXBB or YXX or YBB)

= ½ (2/5 x ¼ + 3/5 x 2/4)  x 2

2  +  6
20     20

=    8
20

2/5

(b) P(at least 1B) = 1 – P(non blue)

= 1 – P (XRR or YRR)

= 1 – ½ (2/5 x ¼) x 2

= 1 – 1/10

= 9/10

(c) P(at most 2 Red) = 1 – P (BB)

= 1 – ½ (3/5 x 2/4)2

= 1 – 6/20

= 14/20 or 7/10

 

 

 

M1

M1

 

M1

 

A1

 

 

M1

 

A1

M1

 

 

A1

 

 

 

Any 2

Any 2

 

Fraction

 

 

    8  
21 (a) PQ  = 1800nm

q     =     1800

60 x 0.6428

= 46.67

= 47o

Q (50oN, 37oE)

 

(b) Time diff = 47 x 4
60

= 3.08

Time at P = 9.12am

(c) QR = 2700 nm

x o   = 2700

60

= 45o

R (85oN, 133oW)

M1

 

 

 

A1

 

 

M1

 

A1

 

M1

 

 

A1

B1

 
    8  
 

 

22

   

 

 

 

B1

B1

 

B1

B1

B1

B1

B1

B1

 

 

 

 

 

Bisector of 150

Bisector 75

 

AB  AC

^ at A

Bisector AC

Circle

Ð AB

Locus P with A  B excluded

    8  
24                           A1B1 C1D1

2  2  1 3 3 1   =  4  8 10 6

1  3  1 1 2 2       4  6  9  7

 

A11 B11 C11  D11

-1   0     4  8 10  6       =   -4  –8   -10   -6

0 –2     4  6  9   7            -8   -12  -18  -14

 

NM =   -1  0        2  2

0 –2       1  3

 

=  -2  -2

-2   -6

 

 

(b)      det  = Asf  =  12 – 4    = 8

Area A11 B11 C11 D11  = 8 x 8

= 64  U2

(c) Single matrix = Inv N
= ½    -2 –  0

0       –1

 

=     -1     0

0       – ½

 

 

B1

 

 

B1

 

 

 

 

 

 

 

 

 

 

B1

M1

A1

 

 

 

 

B1

 

 

Product

 

 

Product

 

 

 

 

 

 

 

 

 

 

Det

 

 

 

 

 

 

Inverse

    6  
23  

Ds  = 20t  – 3t2 + 8 =0

Dt     3t2 – 20t – 8 = 0

T =  20 !  Ö400 + 4 x 3 x 8

6

t = 7.045 sec

max vel          = 148.9 – 140.9 – 8

= 0.9 m/s


d2 s
  = 6t – 20

dt2

when t = 3   a = -2m/s2

6t – 20 = 0

6t  = 20

t = 3 2/3 sec

 

 

M1

 

A1

M1

A1

M1

 

A1

M1

 

A1

 
    8  
       

 

 

 

 

 

 

 

 

MATHEMATICS V

PART II

MARKING SCHEME

 

No Solution Mks Awarding
1  2744 x 125   1/3

1000            8

 

2744  1/3  x   53     1/3

1000            23

 

23 x 73  1/3  x   5

103                         2

 

2 x 75   = 3.5

10      2

 

 

 

M1

 

 

 

 

M1

A1

 

 

 

Factor

 

 

 

 

Cube root

 

    3  
2 (i) Highest – 10 x 7.5 = 75

Lowest  – 6 x 4 =  24

51

(ii) Highest = 7.5 = 1.875

4

Lowest = 6   = 0.600

10   1.275

M1

A1

 

M1

 

A1

Highest

 

 

Fraction

 

 

    4  
3 Cos q  =  17  = 0.8095

21

 

q = Cos 0.8095

= 36.03o

 

Arc length = 72. 06 x 2 x 22 x 21

360                       7

= 26.422cm

M1

 

 

A1

 

 

M1

 

A1

 

 

 

q

    4  
4  x2 – 2x(x +3) = 0

x2 – 2x2 – 6x = 0

-x2 – 6x = 0

either x = 0

or  x = 6

M1

 

M1

 

A1

Equ

 

Factor

 

Both A

    3  
 

 

5

 

8  = x  x 2 x 22 x 28 Cos 60o

360            7

 

8 =  x    x 44 x 28 x 0.5

360         7

x =   8 x 360 x 7
        44 x 28 x 0.5

= 32.73o

= 33o

 

 

M1

 

 

 

 

M1

 

A1

B1

 

 

 

 

 

 

 

x exp

 

 

 

6

 

 

 

ÐDMC = Ð AMB vert. Opp = q

ÐMAB  = Ð MDC = 180 – q BASE Ls of an isosc. <

2
Ð MBA = Ð MAC   180 – q base angles of isos <

2

<’s AMC and < CDM are equiangle

 

\ Similar proved

 

 

 

 

B1

 

 

 

 

 

B1

 

B1

 
    3  
7 Tan x = 5/12

h = Ö b2 + 122

= Ö25 + 144

= Ö169

= 13

 

1 – Sinx               =       1 – 5

sin x + 2 Cos x      5/13 + 2 x 12/13

 

12/13      = 12 x 13  =  12

29/13          13   29      29

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

M1

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypo

Sub

 

    3  
8 Y = x 2 + 2

 

 

 

 

 

Area = h (y1, = y2 +……..yn)

= 1(2.225 + 4.25 + 8.25 +14.25 + 22.25)

= 51.25 sq units

 

 

 

B1

 

 

M1

 

A1

 

 

 

Ordinals

    3  
 

9

ÐCBA = 117o

Ð ACD = 55

Ð BAC = 180 – (117 + 55) = 8o

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

B1

 

3

 
10  

 

 

 

B1

B1

B1

B1

1994

1996

1997

1998

    4  
11. Xy = 35

y = 35/x

9x – 9y = -18

Sub x2 + 2x – 35 = 0

x2 + 7x – 5x – 35 = 0

x (x + 7) – 5(x + 7) = 0

(x – 5) (x + 7) = 0

x  = -7

x = +5

y = 7

Smaller No.

= 57

= 75

B1

 

M1

 

 

 

 

A1

 

 

 

B1

 

 
    3  
12 Log5 (2x – 1 )4  = log552

20

4(2x – 1)  = 52

20

2x – 1 = 25

5

2x – 1 = 125

2x = 126

x = 63

M1

 

M1

 

 

 

 

 

A1

 
    3  
13 C.P = 100 x 49.50

110

= 45/-

52x + 40y = 45

x + y

45x + 45y  = 52x + 40

-7x  = -54

x/y  = 5/7

x : y = 5 : 7

 

 

B1

M1

 

 

M1

 

A1

 
    4  
14  

2n – 4 it angle = 172

n

(2n – 4) x 90 = 172n

n

90 (2n – 4) x 90 = 172

n

180 n – 360 = 172n

 

180n – 172n = 360

8n = 360

n = 45

 

M1

 

A1

 

M1

 
    2  
15 2 x = 2.    1    +    3.    1

6.341                  9.22

2x = 2 x 0. 1578 + 3 x 0.1085

= 0.3154 + 0.3254

= 0.6408

x = 0.3204

 

 

B1

 

 

A1

 

 

Tables

    2  
16 Bearing 140o

Sin q = 20 Sin 110

40

= 0.4698

= 228.02

Bearing of A from B = 198.42

 

M1

 

 

A1

B1

 
    3  
17 Points that each tap fills in one hour

 

A =  1   B  = 1       C – 1
          50         25            20

In one hour all taps can fill = 1  +  1   +  1   =  11

50    25      20     100

In 6hrs all can fill =  11  x 6 = 33 parts

100                 50

taps A and B can fill =  = 1  +  1  = 3 part in 1 hr

50    25    50

In 4 1 hrs, A and B =  25 x 3  +  1

6                           6     50     4

Parts remaining for B to fill = 1 – 33  +  = 1  – 91   = 9 parts

50         4           100    100

Time  taken =  9  x  25  hrs = 2 ¼ hrs

100          1

7.30 am

6.     hrs

13.30

  4.10

5.40pm

  2.15

  7.55 pm

 

 

 

M1

 

 

 

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

M1

 

A1

 

 
 

 

18

 

 

 

 

 

 

 

 

 

x2 + x – 8 = -2 – 2x

y = x2 + 3x – 6

Points of intersection (-4, 1.4)

y = x2 + x – 8 = 2x2 + 3x – 6

x2 + 2x + 2

y = x2 + x – 8 x 2

2y = 2x2 + 2x – 16

0 = 2x2 + 3x – 6

2y = -x  – 10

y = – 2.6

Ny = 1.2

 

8

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

 

 

 

 

 

Eqn

Point of inter

 

 

 

 

 

Line eqn

 

Both

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)    Modal class = 45 – 49

(i)               Mean = 47 + -55

50

= 47 – 1.1

= 45.9

 

(ii) Standard deviation = Ö 3575 –  –55 2
50         50

=  Ö71.5   – 1.21

=Ö 70.29

= 8.3839

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fd

fd2

    8  
20  

 

 

 

 

 

 

 

 

(a)    a =   1
b = 2

½ cos (x – 15) = Sin (x + 30)

has no solution in the domain

 

 

 

 

 

 

 

 

B1

B1

B1

 

B1

 

 

 

 

 

 

 

 

All

All

A & b

 

 

    8  
21 (a)       O Cos 30 = 20

X

X =  20

0.866

= 23.09

 

DE = Ö 502   + 23.092

= Ö 2500 + 533.36

= Ö 3033.36

= 55.076m

 

(b)       GB =  Ö 202  + 502

= 53.85

Tan q = 14.55
53.85

=  0.27019

q    = 15.12o

 

 

 

 

B1

 

M1

 

 

 

A1

 

 

M1

 

 

A1

 
  8  
  (c)       Volume of air = 50 x 20 x 3 + ½ x 20 x 11.55 x 50

= 3000 + 5775

= 8775

No. of people  =   8775
                               6

= 1462.5

j 1462

 

M1

 

M1

 

 

A1

 
    8  
22 (a)    A + B [ 16

5A + 3B ³ 50

2A + 3B [ 35

 

 

(b)   14 vehicles

 

(c)    A – 6 vehicles

B –  8

Cost = 6 x 1000 + 8 x 1200

= 6000 + 9600

= 15,600/=

 

 

B1

 

 

B1

 

B1

 

M1

 

A1

 

 

 

In equation 3

 

 

Vehicles

    8  

23

 

 

 

 

 

 

 

 

 

 

 

 

 

x        =      8

12 – x           3

 

= 8.727

FBX =    3    =  0.9166   = 23.57
3.273

 

3FBX = 47.13

 

Reflex  Ð FBD = 312.87

 

Reflex arc FD = 312.87   x 22  x 6
360           7

 

= 16.39cm

Reflex Arc CE = 312.87 x 22 x 16
360         7

 

=  43.7cm

 

FE (tangent) =  Ö144 – 121

= Ö 23

= 4.796cm

2 FE            =  9.592

 

Total length = 9.592 + 4.796 + 43.7 + 16.39

= 74.48 cm2

 

 

 

 

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

M1

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

 

M1

A1

 
    8  

24

 

 

 

 

 

 

 

 

 

 

 

 

(b)         200      =    40

Sin 50       Sin q

 

Sin q =  40Sin 50
                200
= 0.7660
5
=0.1532

q         = 8.81o

Ð ACB = 180 – (50 + 8.81)o

= 121.19o

    x             =   200
Sin 121.19     Sin 50

 

= 200 x Sin 121.19
Sin 50

= 200 x 0.855645
0.7660

= 223.36Km/h

 

(b)  Course = 330o – 8.81o

= 321.19o

 

(c) Time  =    600
321.19o

 

= 2.686 hrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

 

 

 

 

A1

 

 

 

M1

 

 

M1

 

 

A1

 

B1

 

 

 

M1

 

A1

 

 

8

 

 

 

Schemes of work grade 2 term 1 to 3

Looking for grade two free schemes of work? Get all these schemes here at no cost. Do not fail to try our free education resources (notes, exams and revision materials) for both learners and teachers in this website.

FREE AND UPDATED SCHEMES OF WORK- GRADE 2

GRADE 2 TERM 2 SCHEMES

GRADE 2 MOVEMENT SCHEMES OF WORK

MATHEMATICS GRADE 2 SCHEMES OF WORK

KISWAHILI GRADE 2 SCHEMES OF WORK

GRADE TWO HYGIENE AND NUTRITION FREE SCHEMES OF WORK

MATHS GRADE TWO FREE SCHEMES OF WORK

CRE GRADE 2 FREE SCHEMES OF WORK

GRADE 2 ART AND CRAFT FREE SCHEMES OF WORK

ENGLISH GRADE TWO FREE SCHEMES OF WORK

KISWAHILI GRADE 2 FREE SCHEMES OF WORK

HYGIENE AND NUTRITION GRADE TWO FREE SCHEMES OF WORK

KISWAHILI GRADE 2 TERM ONE FREE SCHEMES OF WORK

MATHS GRADE 2 TERM ONE FREE SCHEMES OF WORK

ENVIRONMENTAL GRADE 2 TERM ONE FREE SCHEMES OF WORK

MOVEMENT ACTIVITIES SCHEME OF WORK TERM ONE GRADE TWO

GRADE TWO ENGLISH SCHEME OF WORK TERM TWO

CRE SCHEME OF WORK FOR GRADE 2 TERM 3

SCHEMES OF WORK CHRISTIAN RELIGIOUS EDUCATION GRADE TWO

SCHEME OF WORK CRAFT GRADE 2

GRADE TWO MUSIC SCHEME OF WORK TERM THREE

RIBE GIRLS HIGH School 2021/2022 KCSE Results Analysis, Grade Count

RIBE GIRLS HIGH School 2021/2022 KCSE Results Analysis, Grade Count

RIBE GIRLS HIGH School recorded a fair result in the 2021 KCSE exams.

Below is the full analysis of the school’s KCSE 2021/2022 performance. Get to see the school’s mean grade, grade count analysis and number of students who qualified for university degree courses.

HERE IS THE SCHOOL’S 2021/2022 KCSE RESULTS ANALYSIS IN FULL

GRADE ENTRY A A- B+ B B- C+ C C- D+ D D- E X 2021 MSS 2020 MSS Dev
NO OF CANDIDATES 256 2 0 0 0 2 8 29 49 91 47 23 5 0 2 5.122 5.591 -0.469
SCHOOL MEAN GRADE C- (minus)                               . .
UNIVERSITY DIRECT ENTRY 41                               . .
TOTAL CANDIDATES 258                               . .
% DIRECT ENTRY 15.89147                               . .