Name \qquad index No \qquad
\qquad
\qquad
232/3 2018
PHYSICS
PRACTICAL
JUNE /JULY
TIME: 2HRS 30 MINUTES
GATUNDU SOUTH FORM FOUR JOINT EVALUATION EXAMINATION 2018

INSTRUCTIONS

- Write you name, index number in the space provided above.
- Use the first 15 minutes of $\mathbf{2 1 / 2} \mathbf{~ h r s}$ to study the questions properly.
- Marks are given for clear records of the observation accurately made, their suitability and the use made of them.

FOR EXAMINERS USE ONLY

QUESTION	MAX. SCORE	CAND. SCORE
$\mathbf{1}$	$\mathbf{2 0}$	
2	20	
Total	$\mathbf{4 0}$	

QUESTION ONE

You are provided with the following;
-a mounted wire gauge labelled N
-a voltmeter

- A ammeter
- A switch
- two dry cell and a cell holder
- At least six connecting wires two with crocodile clips.
- a micrometer screw gauge.

Procedure
a. Using the a micrometer screw gauge determine the diameter d of the wire at some three different points
$\mathrm{d}_{1}=$ \qquad $\mathrm{mm}, \quad \mathrm{d}_{2}=$ \qquad $\mathrm{mm}, \quad \mathrm{d}_{3}=$ \qquad .mm
$\operatorname{dav}=$ \qquad .m.
b. Calculate the cross sectional area A of the wire in m^{2}
c. Set up the circuit as shown below.

d. Vary the length by using the crocodile clip along the wire from $(\mathrm{L}=0)$ and record the voltmeter and the ammeter in the table below.

Length L (cm)	0	20	30	40	60
Current I (A)					
Voltage V (V)					

e. Plot the graph of voltage V against current I
(5mks)
f. Calculate the internal resistance of the cell
g. From the graph determine the EMF of the battery.

QUESTION TWO

This question has two parts A and B. answer both parts.
PART A
You are provided with the following:

- A meter rule
- Two identical 100 g masses
- About 200 ml of liquid Lin 250 ml beaker
- Three pieces of thread, each about half metre long.
- Stand with clamps
- Tissue paper.

Proceed as follows:
(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally.

Record the position of the centre of gravity. G.

$$
\mathrm{G}=\ldots \mathrm{mm}
$$

(1mk)

NOTE: The metre rule should remain suspended at this point through out the experiment.
(b) Set up the apparatus as in figure 2 below.

Suspend the mass A at a distance $\mathrm{x}=50 \mathrm{~mm}$. adjust the position of mass B until it balances mass A immersed in liquid L .

Record the distance d, of mass B from the pivot.
Repeat the same process for other values of x in table 2 below and complete the table. (3 mks)

$\mathrm{x}(\mathrm{mm})$	50	100	150	200	250	300
$\mathrm{x}(\mathrm{cm})$						
$\mathrm{d}(\mathrm{cm})$						

(c) Plot a graph of d (y axis) against $\mathrm{x}(\mathrm{cm})$.
d) Determine the slope, S of the graph.
(e) Given $S=\frac{F}{W}$, where F is the apparent weight of object A in the liquid L and W is the actual weight of A, find:-
(i) The value of F.
(ii) The upthrust, U

PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follow:
(f) Set up the apparatus as in figure 3 below.

(g) Put the object at a distance $\mathrm{u}=30 \mathrm{~cm}$ from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.
(h) Repeat procedure (b) above for the distance $u=40 \mathrm{~cm}$ and record the new distance V. complete the table 3 below.

$\mathrm{U}(\mathrm{cm})$	$\mathrm{V}(\mathrm{cm})$	$\mathrm{M}=\mathrm{v} / \mathrm{u}$	$(\mathrm{m}+1)$
30			
40			

(i) Given $f=\frac{V}{(m+1)}$, calculate the values of f hence determine the average value f_{av} :

