KAPSABET HIGH SCHOOL

232/2 -

PHYSICS

Paper 2

2 Hours

KA	APSA	BET
	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	in)
	The Co	\$ /
Total I	The work	A STATE OF THE PARTY OF THE PAR
SIM	VE TO	a.G

Name	Index Number
School	Class
Candidates Signature	Date

2022 TRIAL 2 JULY INTERNAL EXAMINATION

(Kenya Certificate of Secondary Education)

Kenya Certificate of Secondary Education (K.C.S.E)

The Kenya Certificate of Secondary Education Physics Paper 2

Instructions to candidates

- This paper consists of two sections A and B.
- Answer all the questions in the two sections in the spaces provided after each question
- All working must be clearly shown.
- Electronic calculators, mathematical tables may be used.
- All numerical answers should be expressed in the decimal notations.

SECTION	QUESTION	MAX	CANDIDATE'S
		MARKS	SCORE
A	1 – 12	25	

1 | Page KAPSABET BOYS HIGH SCHOOL

В	13	10	
	14	10	
	15	09	
	16	16	
TOTAL		80	

SECTION A (25 Marks)

Answer ALL questions in this section.

1) Figure 1 shows the V-I characteristic curve of a torch bulb.

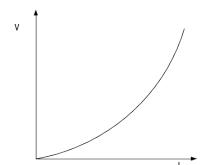


Fig.1

	Explain the shape of the graph.	(2 marks
		•••••
2)	The size of the pinhole camera is increased. State and explain what happens to the image.	
	(1 mark)
3)	Define the term sensitivity (1 mark	c)
4)	Why is concave mirrors used as a saloon mirror?	(1 mark)

5)	Figure 2 shows a	graph of mag	gnetisation aga	inst magn	etising currer	nt for two materia	als A and B.
	magnetisation			— В	A		
	Fig. 2	5	10 15 magnetising curre				
	a) State with magnetic fiel		material which	is more s	uitable for us	se in a transforme	er to concentrate the (2 marks)
	b) Determine a permanent		equired to obta	in saturati	on for the ma	aterial which is su	uitable for making (1 mark)
6)	A beaker of heighthen viewed from			-	-		of the beaker is e, if the refractive
	index of water is						(2 marks)
7)	An electric heate current flowing t			ne water t	o boiling poi	nt. How long wo	uld it take if the (2 marks)
8)	(a) State Ohm's	law			(1m	nark)	
				•••••	••••••		
			3 Page KAPS	ABET BOYS	S HIGH SCHOO	OL .	

(b) The figure 3 below shows part of the scale of a voltmeter, which is being used in an experiment to measure potential difference across a resistor.

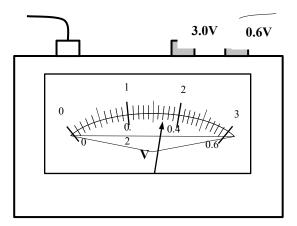
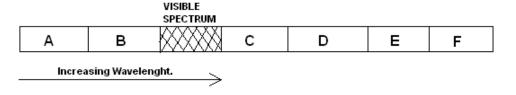
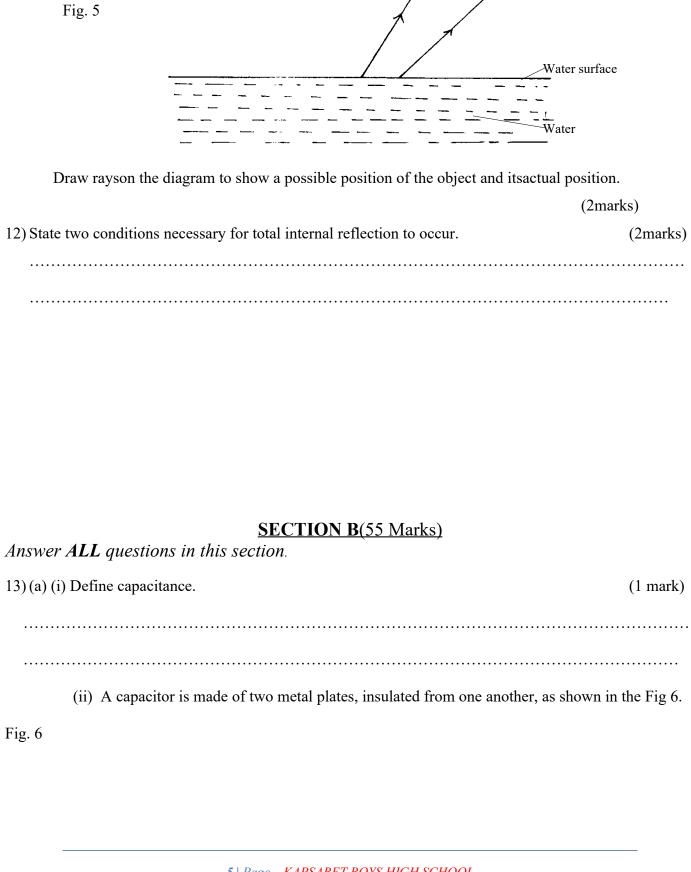


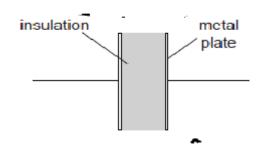
Fig.3

(i) State the accuracy of the upper and the lower scales of the voltmeter.	(2 marks)
(ii) Record the reading shown by the lower scale of the voltmeter. (1 mar	k)

9) The figure 4 shows region of electromagnetic spectrum.



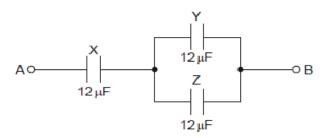

Fig.4


Name the region that represents and give one use of each.

(4marks)

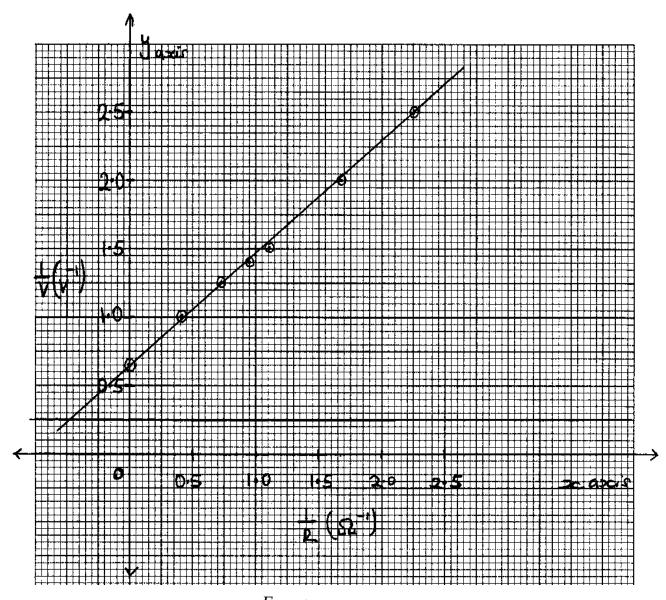
- (a) Ultraviolet
- (b) Infrared
- (c) X-ray
- (d) Radio wave
- 10) State one advantage of optical fibre cable over conventional copper cables as used in telecommunication. (1 mark)

11) Fig 5. below shows the paths of two rays which enter the eye from a small object immersed in water.



Explain why the capacitor is said to store energy but not charge.	(2 marks)
•••••••••••••••••••••••••••••••••••	• • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

(b) Three uncharged capacitor X, Y and Z, each of the capacitance 12 microfarads, are connected as shown in Fig 7s below


Fig. 7

A potential difference of 9.0V is applied between points A and B. Calculate the combined capacitance of the capacitors X,Y and Z. (3 miles)	arks)

V is applied, the charge on one p	(2 marks)
	• • • • • • • • • • • • • • • • • • • •
citor X,	(2 marks
r Y.	(2 marks)
	• • • • • • • • • • • • • • • • • • • •
the energy converted to heat was	s 30J when 20
s.	
(2marks)	
	• • • • • • • • • • • • • • • • • • • •
(2marks)	
	the energy converted to heat was s. (2marks)

(iii) the resistance of the wire.	(2marks)
(iv) the average power development in the wire.	(2marks)
The graph below shows results obtained in an experimen	t to determine the e.m.f.(E) and the internal
resistance, r, of a cell.	

Given that the equation of the graph is $\frac{E}{V} = \frac{r}{R} + 1$ Use the graph to determine the values of:-

(i) E	(2marks)
ii) r	(3marks)

	re8 belowshowstwographswhichrefertothesamewave. displacement
	4 mm - 2 4 6 8 10 12 1 16 18 20 22 time/ms
	£
	displacement
	4mm- 0·2 0·4 0·6 08 1·8 2·0 2·2 2·4 2·6
ig. 8	distance/m
i) (Calculatethespeedofthewave. (4marks)
ii) I	Distinguishbetweenprogressiveandstationarywaves. (2marks)
	Figure 9 belowshows a stationary wave on a string stretched between two points A and F which

т.	\sim
H_{10}	y
115.	_

DescribetheoscillationsofthepointsB,C,Dand E.Comparetheseoscillationsintermsof theirrelativephasesand amplitudes.	(3marks)	
iii) Whatisthewavelengthintermsof <i>L</i> .	(1mark)	
16) i)Statethecharacteristicsofimagesformedbya pinholecamera. (2marks)		
ii)Whatistheeffectsontheimage whenthecameraiselongated? (2mark)		

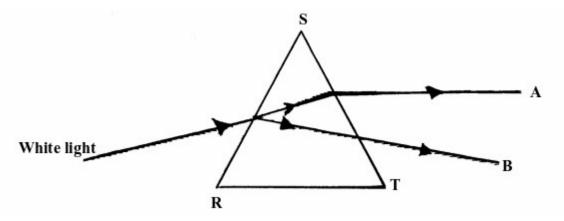
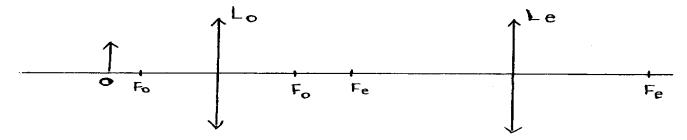


Fig. 10
iii) Explain why it split into different colours between A and B. (3 marks)

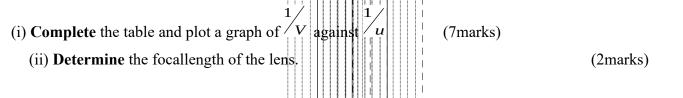

iv) Suppose the white light is incident on the face SR normally, State and explain the observation.

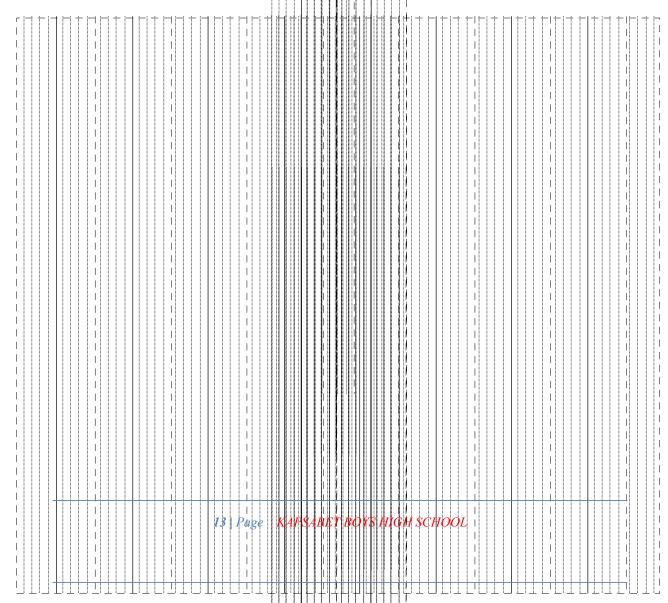
(3 marks)

17) (a) Define the term principal focus in relation to a thin convex lens (2marks)

(c) The Fig.11 below shows an arrangement of lenses, L_o and L_e used in a compound microscope F_o and F_e are principal foci of L_o and L_e respectively.

(b) **Distinguish** between a real and a virtual image.


(2marks)


Figure 11

Draw the rays to show how the final image is formed in the microscope (3marks)

(d) The table below shows the object distance, U and the corresponding image distance, V for an object placed

U (cm)	20	25		35	40	45
V (cm)	60.0	37.5	30.0	26.3	24.0	22.5
1/u(cm ⁻¹)						
1/V(cm ⁻¹)						

