GATUNDU SOUTH COUNTY EVALUATION EXAMINATION MARKING SCHEME JULY/AUGUST 2018 PHYSICS PAPER 2 (232/2)

SECTION A (25 MARKS) 1).

$$P = \frac{V^2}{R} \checkmark 1$$

$$P_A R_A = P_B R_B$$

$$1000 R_A = 2500 R_B \checkmark 1$$

$$= 240^2$$

$$\frac{R_A}{R_B} = \frac{2500}{1000} = 2.5 \checkmark 1$$

2).

3).
 The distance between the plates ✓1
 Presence of dielectric material between the plates ✓

4).

5).

To reduce energy (power) losses during transmission $\sqrt{1}$

The image should appear as shown:

Infrared X – rays

8). The diagram should appear as follows:

9). a) Zinc

b) The bulb goes off due to polarization effect.

c) Polarization is minimized by using a depolarizer e.g. manganese IV oxide.

10). a) The work function of the surface

b). Energy/frequency of radiation

11). High concentration of positive charges at the sharp point causes ionization to provide electrons and positive ions, \checkmark^1 electrons are attracted to the wire while positive ions drift towards the flame forming an electric wind \checkmark^1 which deflects the flame

6).

Correct circuit connection by closing the switch current flow as shown and AB becomes magnetised

SECTION B (55 MARKS)

13). a) i) A: Tungsten or molybdenum target

B: Lead shield

ii) X – rays tube requires very high accelerating voltage. \checkmark^1 The C steps up voltage to the required potential.

iii) Current is allowed to flow through the filament in the cathode heating it and boiling off electrons (through thermionic emission) \checkmark^1 the high potential difference between the cathode and the target (anode) accelerates the electrons to hit the target \checkmark^1 the X – rays are produced when the electrons hit the target. \checkmark^1

 (b) (i) To avoid/ prevent ionization ✓1 To reduce energy losses (Any one)
 (ii) Increasing the cathode currents ✓1

c)

$$K.e = \frac{hc}{\lambda}; \qquad \checkmark^1$$

$$1.989 \times 10^{-14} = 6.6 \times 10^{-34} \times \frac{3.0 \times 10^{-8}}{\lambda}; \quad \checkmark^{1}$$

$$\lambda = 9.955 \times 10^{-12} m \quad \checkmark^1$$

14). a) i) To be easily ionized by the radiations.

ii) The radiation is transparent to the window; They collide with argon gas causing ionization; more electrons are produced (Avalanche/electrons). A pulse of current; is produced which is passed through the counter as clicks

iii) Quenching agent /absorbing kinetic energy of the positive ions

b) Amount of A – remaining $= \left(\frac{1}{2}\right)^4 \times 32 \checkmark^1$ = 2 g; \checkmark^1 Amount of B (mass of y) = 32-2 = 30 g \checkmark^1 c) a = 226; b = 288

15). a) i) The e.m.f of 12 v is split into three equal parts across each resister. Or $\frac{12}{3} = 4$

Therefore, voltmeter reads 4v. Reasoning $\checkmark 1$ Answer $\checkmark 1$

ii)
$$\frac{1}{R_p} = \frac{1}{R} + \frac{1}{R} = \frac{2}{R}$$
$$= Rp = \frac{R}{2} \checkmark \frac{1}{2}$$
$$R_s = R + R + \frac{R}{2} = \frac{5}{2} R \checkmark \frac{1}{2}$$
$$I = \frac{v}{R} = \frac{12}{\left(\frac{5}{2}\right)R} \checkmark \frac{1}{2}$$
P.d across Qs = I R \leftarrow \frac{1}{2}
Hence $\frac{12}{\left(\frac{5}{2}\right)R} \ge \frac{12 \times 2}{5} = 4.8 \text{ V} \checkmark 1$

b) i). In semi-conductor conduction is by holes and electrons while in conductors it is by electrons only $\sqrt{1}$

ii) Semi-conductors – silicone/ Germanium

Conductors - copper, tin e.t.c

- iii) Is an impurity which when introduced into a semi-conductor (during doping) provides extra electrons for conduction.
- iv)

- v) There is conduction because the diode is forward biased $\checkmark 1$
- 16). (a) Mechanical waves are waves which require a material for their transmission while ✓1 electromagnetic waves do not require a material medium

(b) The sound source exerts varying pressure on the air creating compressions and rarefactions in the air which move along the air column. $\checkmark 1$

- (c) (i) Sound becomes less audible until it finally disappears $\checkmark 1$
 - (ii) The steam condenses creating a vacuum in the region above the water ✓1 A vacuum cannot transmit sound ✓1

(d)
$$v = \frac{2x}{t} \checkmark 1$$

Distance to first wall x₁

$$x_{1} = \frac{vt}{2} = \frac{330 \times 0.7}{2} = 115.5m \checkmark 1$$

Distance to the second wall x 2
$$X_{2} = \frac{V_{t}}{2} = \frac{330 \times 0.9}{2} = 148.5m \checkmark 1$$

S = X₁ + X₂ = 148.5 + 115.5 = 264m

17). a) i) P - Carbon Brush *Not brushes

- Q Slip ring
- ii) Increasing the speed of the rotating coil
 - Inserting a soft Iron core
- b)

i) output voltage	(2marks)
Ns = $\sqrt{2}$	
NP VP	VS = 240×60 = 12V/1
60 = VS	120
1200 240 1	2-
ii) output current when the primary coil has a energy losses.	current of 0.5A.Assume there are no (2marks)
VIS = IPVPV -2	
12×IS = 0.5 ×240 1/1	
Is = 10A 1/2	

c). So as to create a North pole which opposes the approaching North Pole according to Lenz's Law.

- d). Hyste
- Hysteresis - Eddy currents
 - Resistance of wire
 - Loss of magnetic flux linkage
- Any two (2mks)