4.4.3 Physics Paper 3 (232/3)

Question 1

You are provided with the following:

- A stirrer
- A stand, a boss and a clamp
- A thermometer
- An ammeter
- A voltmeter
- A beaker
- A source of boiling water
- Two dry cells in a cell holder
- A switch
- Seven connecting wires
- A component labelled X

Proceed as follows:

(a) Set up the circuit as shown in figure 1.

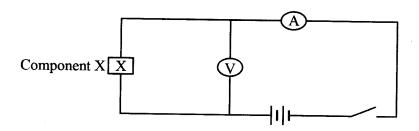


Figure 1

(i) Close the switch, read and record the current I through component X and the potential difference V across it. (1 mark)

Open the switch.

(ii) Determine the resistance R of component X given that: $R = \frac{V}{I}$ (1 mark)

(b) Pour hot water into the beaker and set up the apparatus as in **figure 2**, so that component X and the thermometer bulb are fully immersed.

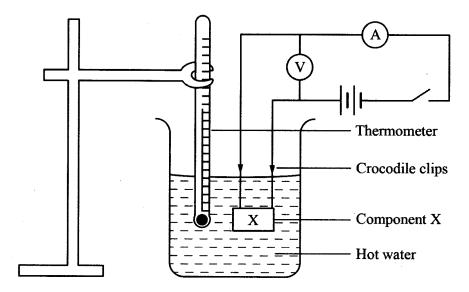
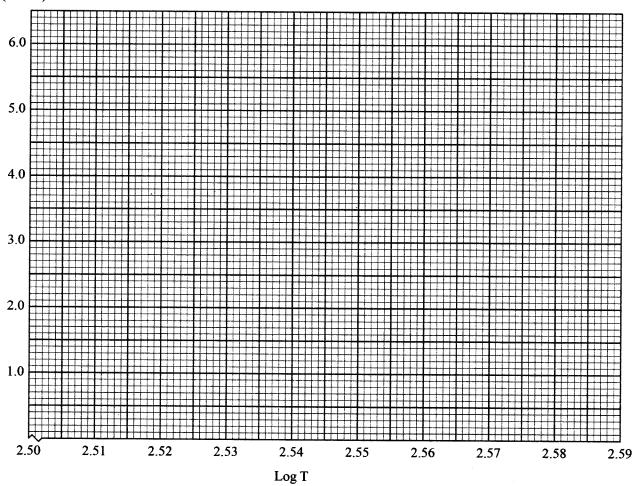


Figure 2

- (c) Stir the water from time to time, when the temperature falls to 80°, switch on the circuit, read and record the current I and the potential difference V in table 1. Then open the switch.
- (d) Repeat (c) as the temperature falls to the other values shown in table 1. Complete the table.


Table 1 (8 marks)

Temperature of hot water (°)	80	75	70	65	60	55
T (K)						
Current I (A)						
Potential difference V (V)						
Resistance R = $\frac{V}{I}$ (Ω)		, ,				
Log R (3 decimal places)						
Log T (3 decimal places)						

(e) (i) On the axis provided, plot a graph of Log R against log T.

(4 marks)

 $\log R \\
(x 10^{-1})$

(ii) Determine the slope S of the graph.

(3 marks)

- (f) Given that R and T are related by the equation Log R = Log K + n Log T, determine the value of;
 - (i) n

(1 mark)

(ii) K

(2 marks)

Question 2

You are provided with the following:

- A metre rule
- A stand, boss and clamp
- A piece of string
- A 20 g mass
- A 50 g mass
- A measuring cylinder containing water
- A concave mirror
- A screen
- A candle
- Pieces of sewing threads
- A mirror holder (Lens holder)

Proceed as follows:

PART A

(a) Using a string, suspend the metre rule on the stand so that it balances horizontally at its center of gravity. Record the centimetre mark at which the metre rule balances.

Centimetre mark = cm (1 mark)

(b) With the metre rule balanced at its centre of gravity, suspend a 20 g mass at a distance of 30 cm from the centre of gravity. Suspend the 50 g mass on the other side of the centre of gravity and adjust its position until the rule is balanced. See figure 3.

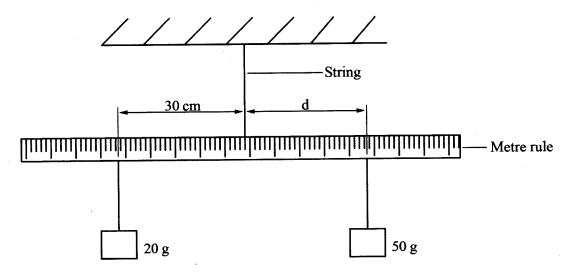


Figure 3

Record the distance d of the 50 g mass from the centre of gravity.

d = cm

 $d = \dots m$ (1 mark)

(c)	(i)	Record the volume of the water in the measuring cylinder provided.					
		V =	(1 mark)				
	(ii)	Immerse the 20 g mass fully into the water and adjust the position of the mass so that the rule balances horizontally. Record the volume V_1 of the water plus 20 g mass and the distance d_1 of mass from the centre of gravity.	_				
		$V_1 = \dots$	(1 mark)				
		d ₁ =	(1 mark)				
	(iii)	(I) Determine the volume of the water displaced	(1 mark)				
		(II) Determine the weight of the water displaced. $(density \ of \ water = 1 \ gcm^{-3})$	(3 marks)				
(c) (i)	Use the principle of moments to determine the apparent weight of the when fully immersed in water. $(g = 10 \text{ Nkg}^{-1})$	e 20 g mass (2 marks				
	(ii)	Calculate the weight of the 20 g mass in air $(g = 10 \text{ Nkg}^{-1})$	(1 mark)				
	(iii)	Determine the apparent loss in weight of the 20 g mass	(1 mark)				

PART B

(e) Light the candle and place it at distance u = 20 cm in front of the concave mirror. Adjust the position of the screen until a sharp image of the candle flame is obtained. See figure 4.

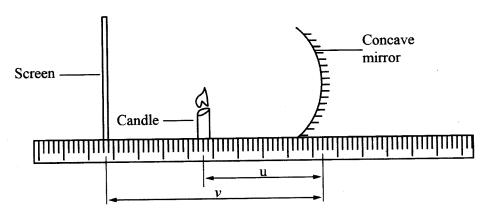


Figure 4

(i) Read and record the distance v between the screen and the mirror.

$$v =$$
 (1 mark)

(ii) Determine:

I. the magnification
$$m$$
 of the mirror given that: $m = \frac{v}{u}$, (1 mark)

II. the value
$$f_1$$
 given that: $f_1 = \frac{mu}{m+1}$ (1 mark)

(f) Repeat part (e) for distance $u_1 = 18 \text{ cm}$

(i) Read and record the distance v_1 between the screen and the mirror.

$$v =$$
 (1 mark)

- (ii) Determine the magnification m_1 of the mirror. (1 mark)
- (iii) Hence determine f_2 . (1 mark)
- (g) Determine the average value of f. (1 mark)