KAPSABET HIGH SCHOOL MARKING SCHEME

Kenya Certificate of Secondary Education (K.C.S.E) Paper 3(232/3) (Practical)

232/3 PHYSICS Paper 3 Time 2¹/₂ HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, index number, class, date and signature in the spaces provided above.
- 2. This paper consists of two questions 1 and 2.
- 3. Answer all questions in the spaces provided.
- 4. Non-programmable calculators and mathematical tables may be used.
- 5. Show all your workings.

QUESTION 1	c	g	h	i	j	k	l
Maximum score	1	8	5	2	1	2	1
Candidates score							

QUESTION 2	c	d	e	k	1	GRAND TOTAL
Maximum score	6	3	7	2	2	
Candidates score						

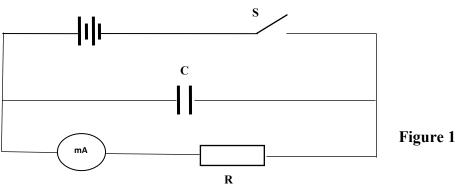
This paper consists of 7 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

QUESTION ONE You are provided with the following **2** new dry cell size **D** A cell holder

A switch

A milliameter of range 0 - 1mA

A capacitor labelled C


8 connecting wires at least four with crocodile clips on one end

A stop watch

A carbon resistor labelled **R**

Proceed as follows

a) Connecting the circuit as shown in the **figure 1** below, where **P** and **Q** are crocodile clips

b) Close the switch **S**

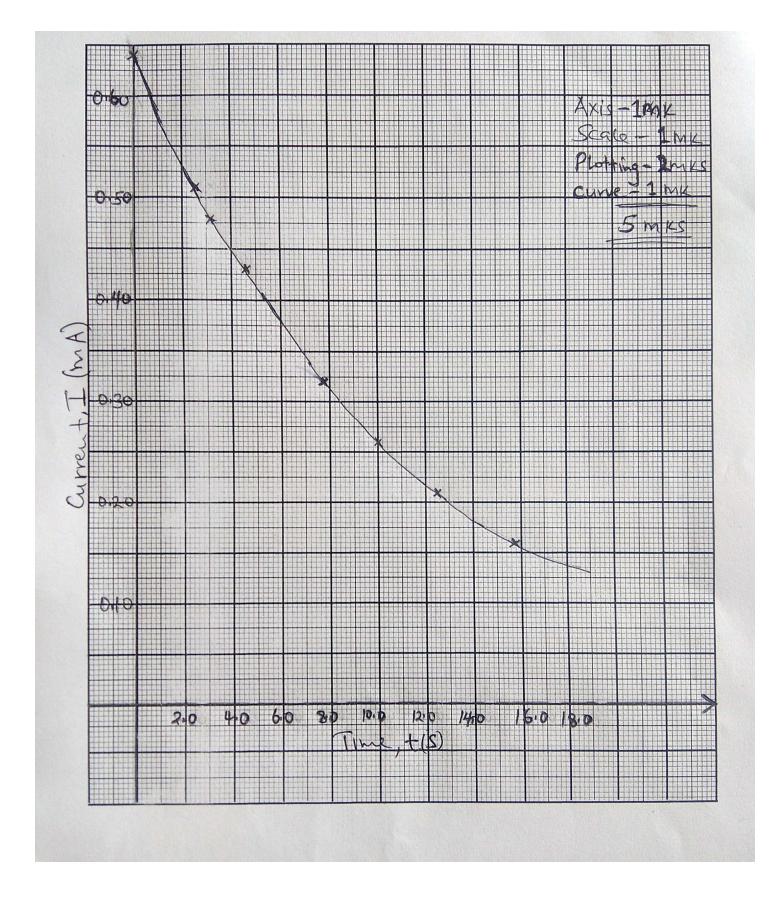
c) Record the highest reading of the milliammeter I_0 and then open the switch.

 $I_0 = 0.64 \ mA \pm 0.05 \ mA$

(1mark)

d) Use I_0 above to calculate $\frac{4}{5}I_0$, $\frac{3}{4}I_0$, $\frac{2}{3}I_0$, $\frac{1}{2}I_0$, $\frac{2}{5}I_0$, $\frac{1}{3}I_0$ and $\frac{1}{4}I_0$. Record in the **table 1** below.

e) Close switch **S** for a second time and observe the deflection in the milliammeter (*the pointer should rise back to the same initial value* $I_{o.}$)


f) Open switch S and at the same time start the stop watch to measure the time taken for the current to decrease to four fifth the value of I_0 . i.e. $\frac{4}{5}I_0$. Record your value in the **table 1** below.

g) Repeat steps **e** and **f** for other values of current as shown on the **table 1** below

Current I (mA)	Io	4/5I0	³ / ₄ I ₀	$^{2}/_{3}I_{0}$	$^{1}/_{2}I_{0}$	² / ₅ I ₀	¹ / ₃ I ₀	¹ / ₄ I ₀	
Your calculated fraction of I _o (mA)	0.64	0.51	0.48	0.43	0.32	0.26	0.21	0.16	Each ¹ / ₂ mk (use student value of Io) (Max 4mks)
Time t (s)	0.00	2.57	3.34	4.72	7.87	10.0 9	12.5 5	15.8 8	$\begin{array}{c} \pm 1.00 \ sec \\ Each \frac{1}{2} \ mk \ (2d.p \ must) \\ \textbf{(Max 4mks)} \end{array}$
								(8marl	(s) Table 1

h) Plot a graph of current I (y-axis) (mA) against time t (s)

(5marks)

i) From your graph, find W the value of I when t = 7.00s in SI units.

(2marks)

$$W = 0.35mA;$$

= 3.5 × 10⁻⁴ A;

j) Given that $\mathbf{A} = \mathbf{10W}$, determine the value of \mathbf{A} . (1mark)

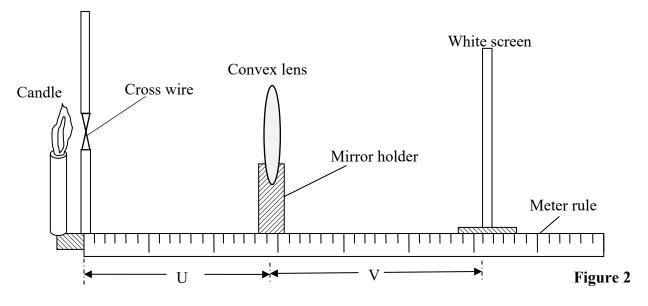
$$A = 10 \times 3.5 \times 10^{-4}$$
$$= 3.5 \times 10^{-3} A;$$

k) Determine the voltage across **R** at t = 7.00s given that $\mathbf{R} = 4.7 \text{ K}\Omega$ (2marks)

$$V = IR$$

= 3.5×10⁻³ × 4.7×10³
= 16.45V

1) State the quantity represented by the area under the graph (1mark)


Quantity of charge in the capacitor;

QUESTION TWO PART A

You are provided with the following

- A convex lens
- A lens holder
- A candle
- A white screen
- A screen with cross wire
- A meter rule

a) Set up the apparatus as shown in the figure 2 below

b) Starting with U = 22.5cm, adjust the position of the screen to obtain a sharp image of the cross wire being illuminated by the candle. Record the value of V in the table 2 below.

U (cm)	V (cm)	$m = \frac{V}{U}$	$f = \frac{V}{m+1}$
22.5	18.0 ± 0.5	$\boldsymbol{0.8\pm0.02}$	10.0
35.0	14.0 ± 0.5	0.4 ± 0.02	10.0
40.0	13.0±0.5	0.325 ± 0.02	9.811
	Each 1mk (1d.p must) (Max 3mks)	Each $1/_2$ mk (Max $1^1/_2$ mks)	Each ¹ / ₂ mk (Max 1 ¹ / ₂ mks)
			(6marks)

c) Repeat the procedure in (b) for $U = 35.0$ cm and 40.0 cm.	complete the table 2
---	-----------------------------

rks) **Table 2**

(3marks)

d) Determine the average value of **f** the focal length of the lens

 $f = \frac{10.0 + 10.0 + 9.811}{3};$ = $\frac{29.811}{3};$ = 9.937cm;

PART B

You are provided with the following: A meter rule A half meter rule One stand, one clamp and one boss Lump of Plasticine A stop watch Two pieces of thread

Proceed as follows

e) Suspend the half meter rule by the threads such that the distance between the meter rule and the half meter rule is **30cm** as shown in the **figure 3** below.

f) Stick the plasticine at the center of the half meter rule. See the figure 3 above. This plasticine should remain there throughout the experiment.

g) Set the distance between the threads X = 6cm and ensure that the half meter rule lies horizontally.

h) Displace the rule slightly as shown in the figure 3 above so that it performs oscillations in a horizontal plane about a vertical axis.

i) Measure and record in the table provide the time, t, for 10 oscillations. Determine the period T.

j) Repeat (b), (c), and (d) above for other values of **X** shown on the table. Complete the table.

X (cm)	6.0	8.0	10.0	
X (m)	0.060	0.080	0.100	All correct 1mk
Time t, for 10 oscillations	37.75 ± 2.00	27.68 ± 2.00	22.38 ± 2.00	Each 1mk (2d.p must) (Max 3mks)
Periodic time T (s)	3.775	2.768	2.238	All correct 1mk
$T^{2}(s^{2})$	14.25	7.662	5.009	All correct 1mk (4d.p)
$\mathbf{S} = \frac{\mathbf{T}^2\left(\mathbf{s}^2\right)}{\mathbf{X}(\mathbf{m})}$	237.5	95.775	50.09	All correct 1mk (4d.p)
			(7marks)	Table 3

k) Find the average value of S

(2marks)

 $=\frac{237.5+95.775+50.09}{3}$ $= 127.79s^2 / m$

I) Given that average value $S = \frac{4\pi^2}{0.03C}$ determine the value of constant C. (2marks)

$$C = \frac{4\pi^2}{0.038}$$
$$= \frac{4\pi^2}{0.03 \times 127.79}$$
$$= 10.30 \text{ m/s}^2$$