

MATHEMATICS SCHEME OF WORK GRADE 4 TERM ONE

NAME	
TSC NO.	
SCHOOL	

MATHEMATICS SCHEME OF WORK GRADE 4 TERM ONE

Week	Lesson	Strand	Sub strand	Specific learning outcomes	Learning experiences	Key inquiry questions	Learning resources	Assessment	Remarks
1	1	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: use place value and total value of digits up to tens of thousands in daily life situations,	Learners in pairs/groups to identify place value of up to tens of thousands using place value apparatus	What do you consider when writing numbers in words?	KLB Visionary Mathematics pg 1-2 Place value apparatus, number charts, number cards, multiplication table		
	2	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: read and write numbers up to 10,000 in symbols in real life situations,	Learners in pairs/groups to identify total values of digits up to ten thousand Learners in pairs/groups/ individually to read numbers up to 10,000 in symbols in real life situations.	What do you consider when writing numbers in words?	KLB Visionary Mathematics pg 1-2 Place value apparatus, number charts, number cards, multiplication table		
	3	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: read and write numbers	Learners in pairs/groups/ individually to read numbers up to 10,000 in symbols	What do you consider when writing numbers	KLB Visionary Mathematics pg 1-2		

			up to 10,000 in symbols in real life situations,	in real life situations.	in words?	Place value apparatus, number charts, number cards, multiplication table
4	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: read and write numbers up to 1,000 in words in day to day activities,	Learners in pairs/groups/ individually to read numbers up to 10,000 in symbols in real life situations.	What do you consider when writing numbers in words?	KLB Visionary Mathematics pg 1-3 Place value apparatus, number charts, number cards, multiplication table
5	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to read and write numbers up to 1,000 in words in day to day activities,	Learners in Learners in pairs/groups/ individually to read and write numbers up to 1,000 in words from a number chart. Learners in pairs to arrange numbers up to 1,000 in order from smallest to largest and largest to smallest using number cards and share with other groups.	What do you consider when writing numbers in words?	KLB Visionary Mathematics pg 1-4 Place value apparatus, number charts, number cards, multiplication table

2	1	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: order numbers up to 1,000 in different situations,	Learners in pairs/groups to compare area of two Learners in pairs/groups/ individually to read and write numbers up to 1,000 in words from a number chart. Learners in pairs to arrange numbers up to 1,000 in order from smallest to largest and largest to smallest using number cards and share with other groups.	What do you consider when writing numbers in words?	KLB Visionary Mathematics pg 8-9 Place value apparatus, number charts, number cards, multiplication table	
	2	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: order numbers up to 1,000 in different situations,	Learners in pairs/groups/individ ually round of numbers up to 1,000 to the nearest ten and share with other groups. Learners in pairs/groups/individual ly to identify factors/divisors of numbers up to 50 and	How can you find the place value of a digit in a number?	KLB Visionary Mathematics pg 8-9 Place value apparatus, number charts, number cards, multiplication table	
					share with other groups			

3	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: round off numbers up to 1,000 to the nearest ten in different situations,	Learners in pairs/groups/individu ally round off numbers up to 1,000 to the nearest ten and share with other groups. Learners in pairs/groups/individual ly to identify factors/divisors of numbers up to 50 and share with other groups	How can you find the place value of a digit in a number?	KLB Visionary Mathematics pg 10-11Place value apparatus, number charts, number cards, multiplication table
4	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: round off numbers up to 1,000 to the nearest ten in different situations,	Learners in pairs/groups/individ ually round off numbers up to 1,000 to the nearest ten and share with other groups. Learners in pairs/groups/individ ually to identify factors/divisors of numbers up to 50 and share with other groups	How can you find the place value of a digit in a number?	KLB Visionary Mathematics pg 110-11 Place value apparatus, number charts, number cards, multiplication table
5	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: a) identify factors/divisors of numbers up to 50 in different contexts,	Learners in pairs/groups/individu ally round off numbers up to 1,000 to the nearest ten and share with other groups. Learners in	How can you find the place value of a digit in a number?	KLB VisionaryMathematics pg13Place valueapparatus,number charts,

					pairs/groups/individ ually to identify factors/divisors of numbers up to 50 and share with other groups.		number cards, multiplication table	
3	1	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: identify multiples of numbers up to 100 in different situations,	Learners in pairs/groups/individu ally round off numbers up to 1,000 to the nearest ten and share with other groups. Learners in pairs/groups/individual ly to identify factors/divisors of numbers up to 50 and share with other groups	How can you find the place value of a digit in a number? ?	KLB Visionary Mathematics pg 14 Place value apparatus, number charts, number cards, multiplication table	
	2	NUMBERS	WHOLE NUMBERS	By the end of the sub strand, the learner should be able to: use even and odd numbers up to 100 in different situations,	Learners in pairs/groups play digital games involving area of rectangles and squares	How can you find the place value of a digit in a number?	KLB Visionary Mathematics pg 15-22 Place value apparatus, number charts, number cards, multiplication table	
	3	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: add up to two 4-digit	Learners in pairs/groups to add up to two 4-digit numbers with single regrouping up to a sum of 10,000	When do you use addition in real life?	KLB Visionary Mathematics pg 23-26	

				numbers with single regrouping up to a sum of 10,000 in different situations,	in different situations		Place value chart, Abacus
	4	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: add up to two 4-digit numbers with single regrouping up to a sum of 10,000 in different situations,	Learners in pairs/groups to add up to two 4-digit numbers with single regrouping up to a sum of 10,000 in different situations	When do you use addition in real life? ?	KLB Visionary Mathematics pg 27Place value chart, Abacus
	5	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: add up to two 4-digit numbers with double regrouping up to a sum of 10,000 in real life situations	Learners in pairs/groups to add up to two 4-digit numbers with single regrouping up to a sum of 10,000	What do you consider when estimating answer in addition?	KLB Visionary Mathematics pg 27Place value chart, Abacus
4	1	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: estimate sum by rounding off numbers to the nearest ten in different situations,	Learners in pairs/groups add up to two 4-digit numbers with double regrouping up to a sum of 10,000 in real life situations.	What do you consider when estimating answer in addition? ?	KLB VisionaryMathematics pg28Place valuechart, Abacus
	2	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: estimate sum by rounding off numbers to the nearest ten in different situations,	Learners in pairs/groups add up to two 4-digit numbers with double regrouping up to a sum of 10,000 in real life situations.	How do you form number patterns in addition?	KLB VisionaryMathematics pg29Place value

						chart, Abacus	
3	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: create patterns involving addition up to a sum of 10,000 in real life situations, use IT devices for learning and enjoyment	Learners in pairs/groups add up to two 4-digit numbers with double regrouping up to a sum of 10,000 in real life situations. kilograms (kg) in real life situations	How do you form number patterns in addition??	KLB Visionary Mathematics pg 29 Place value chart, Abacus	
4	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: create patterns involving addition up to a sum of 10,000 in real life situations, use IT devices for learning and enjoyment	Learners in pairs/groups add mass involving kilograms (kg) in real life situations Learners in pairs/groups subtract mass involving kilograms (kg) in real life situations	How do you form number patterns in addition?	KLB Visionary Mathematics pg 29 Place value chart, Abacus	
5	NUMBERS	ADDITIO N	By the end of the sub strand, the learner should be able to: create patterns involving addition up to a sum of 10,000 in real life situations, use IT devices for learning and enjoyment	Learners in pairs/groups to estimate sum by rounding off numbers to be added to the nearest ten in different situations	How do you form number patterns in addition?	KLB Visionary Mathematics pg 29 value chart, Abacus	

5	1	NUMBER S	SUBTRA CTION	By the end of the sub strand, the learner should be able to: subtract up to 4-digit numbers without regrouping in real life situations	When do you use subtraction in real life?	Learners in pairs/groups to subtract numbers up to 4-digit numbers without regrouping in real life situations	KLBVisionaryMathematicspg 31Place valuechart, Abacus
	2	NUMBER S	SUBTRA CTION	By the end of the sub strand, the learner should be able to: subtract up to 4-digit numbers without regrouping in real life situations	When do you use subtraction in real life?	Learners in pairs/groups to subtract numbers up to 4-digit numbers without regrouping in real life situations	KLBVisionaryMathematicspg 31Place valuechart, Abacus
	3	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to subtract up to 4-digit numbers with regrouping in real life situations,	When do you use subtraction in real life?	Learners in pairs/groups/ individually to subtract up to 4- digit numbers with regrouping in real life situations	KLBVisionaryMathematicspg 32-33Place valuechart, Abacus
	4	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to: subtract up to 4-digit numbers with regrouping in real life situations,	How do you estimate the difference of given numbers?	Learners in pairs/groups/ individually to subtract up to 4- digit numbers with regrouping in real life situations	KLBVisionaryMathematicspg 32-35Place value

							chart, Abacus	
	5	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to: estimate difference by rounding off numbers to the nearest ten in real life situations,	How do you estimate the difference of given numbers?	Learners in pairs/groups to estimate and work out difference by rounding off the numbers to the nearest ten in real life situations.	KLB Visionary Mathematics pg 36 Place value chart, Abacus	
6	1	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to create patterns involving subtraction from up to 10,000	How do you estimate the difference of given numbers?	Learners in pairs/groups to estimate and work out difference by rounding off the numbers to the nearest ten in real life situations.	KLB Visionary Mathematics pg 37-39 Place value chart, Abacus	
	2	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to create patterns involving subtraction from up to 10,000,	How do you estimate the difference of given numbers?	Learners in pairs/groups to create patterns involving subtraction of numbers from up to 10,000	KLB Visionary Mathematics pg 37-39 Place value chart, Abacus	
	3	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to use IT devices for learning and enjoyment,	How do you estimate the difference of given numbers?	Learners in pairs/groups/ individually to play digital games involving subtraction	KLB Visionary Mathematics pg 37-39 Place value	

	4	NUMBER S	Subtractio n	appreciate application of subtraction of numbers in real life situations By the end of the sub strand, the learner should be able to use IT devices for learning and enjoyment, appreciate application of subtraction of numbers in real life situations	How do you create patterns involving subtraction?	Learners in pairs/groups/ individually to play digital games involving subtraction	chart, Abacus KLB Visionary Mathematics pg 37-39 Place value chart, Abacus	
	5	NUMBER S	Subtractio n	By the end of the sub strand, the learner should be able to use IT devices for learning and enjoyment, appreciate application of subtraction of numbers in real life situations	How do you create patterns involving subtraction?	Learners in pairs/groups to subtract capacity involving litres in real life situations. Learner in pairs/groups to play digital games involving capacity.	KLB Visionary Mathematics pg 37-39 Place value chart, Abacus	
7	1	NUMBER S	Multiplica tion	By the end of the sub strand, the learner should be able to: multiply up to a 2-digit number by multiples of 10 in different situations,	How do you create patterns involving multiplicatio n?	Learners in pairs/groups to multiply up to a 2-digit number by multiples of 10 in	KLB Visionary Mathematics pg 40-41 Multiplication tables	
	2	NUMBER S	Multiplica tion	By the end of the sub strand, the learner should be able to multiply up to a 2- digit number by multiples	When do you use multiplicatio n in real	Leaners in pairs/groups to multiply up to a 2- digit numbers by a 2- digit number without and	KLB Visionary Mathematics	

				of 10 in different situations,	life?	with regrouping in real life situations	pg 40-41 Multiplication tables	
	3	NUMBER S	Multiplica tion	By the end of the sub strand, the learner should be able to multiply up to a 2-digit number by a 2- digit number without and with regrouping in real life situations,	When do you use multiplicatio n in real life?	Leaners in pairs/groups to multiply up to a 2- digit numbers by a 2- digit number without and with regrouping in real life situations	KLB Visionary Mathematics pg 41-42 Multiplication tables	
	4	NUMBER S	Multiplica tion	By the end of the sub strand, the learner should be able to multiply up to a 2-digit number by a 2- digit number without and with regrouping in real life situations,	When do you use multiplicatio n in real life?	Leaners in pairs/groups to multiply up to a 2- digit numbers by a 2- digit number without and with regrouping in real life situations hours to days and days	KLB Visionary Mathematics pg 41-42 Multiplication tables	
	5	NUMBER S	Multiplica tion	By the end of the sub strand, the learner should be able to estimate products by rounding off numbers to the nearest ten in real life situations,	How do you create patterns involving multiplicatio n?	Learners pairs/groups/ individually to estimate and work out answers by rounding off numbers to the nearest ten with product not exceeding 1,000 in real life situations.	KLB Visionary Mathematics pg 41-42 Multiplication tables	
8	1	NUMBER S	MULTIP LICATIO N	By the end of the sub strand, the learner should be able to record time durations in hours and minutes in real life	How do you create patterns involving	Learners in pairs/groups to Learners pairs/groups/ individually to estimate and work out answers	KLB Visionary Mathematics	

		situations,	multiplicatio n?	by rounding off numbers to the nearest ten with product not exceeding 1,000 in real life situations.	pg 44-45 Multiplication tables	
2 NUMBEI S	R MULTIP LICATIO N	By the end of the sub strand, the learner should be able to Create patterns involving multiplication with product not exceeding 100 in real life situations	How do you create patterns involving multiplicatio n?	Learners pairs/groups/ individually to estimate and work out answers by rounding off numbers to the nearest ten with product not exceeding 1,000 in real life situations.	KLB Visionary Mathematics pg 45-48 Multiplication tables	
3 NUMBEI S	R MULTIP LICATIO N	By the end of the sub strand, the learner should be able to use IT devices for learning and enjoyment, appreciate application of multiplication of numbers in real life.	How do you create patterns involving multiplicatio n?	Learners in pairs/groups to create patterns involving multiplication with product not exceeding 100.Learners pairs/groups/ individually to play digital games on multiplication.	KLB Visionary Mathematics pg 45-48 Multiplication tables	
4 NUMBEI S	R DIVISIO N	By the end of the sub strand, the learner should be able to: divide up to a 2-digit number by a 1-digit number without remainder in different situations,	When do you use division in real life	Learners in pairs/ groups to divide up to a 2-digit number by 1-digit number without remainder using counters	KLB Visionary Mathematics pg 52-54 Multiplication tables	
5 NUMBEI S	R DIVISIO N	By the end of the sub strand, the learner should be able to divide up to a	When do you use division in	Learners in pairs/groups to divide a 2-digit number by a	KLB Visionary	

				2-digit number by a 1-digit number without remainder in different situations,	real life	1-digit number with remainder using counters. Learners in pairs/groups to divide a 2-digit number by a 1- digit number	Mathematics pg 52-54 Multiplication tables	
9	1	NUMBER S	DIVISIO N	By the end of the sub strand, the learner should be able to divide up to a 2-digit number by a 1-digit number with remainder in real life situations	How can you estimate quotient?	Learners in pairs/groups to divide a 2-digit number by a 1-digit number using own strategies. Learners in pairs/groups to use relationship between multiplication and division in working out problems	KLB Visionary Mathematics pg 52-54 Multiplication tables	
	2	NUMBER S	DIVISIO N	By the end of the sub strand, the learner should be able to: use IT devices for learning and leisure, appreciate application of division of numbers in real life situations.	How can you estimate quotient?	Learners in pairs/groups to divide a 2-digit number by a 1-digit number using own strategies. Learners in pairs/groups to use relationship between multiplication and division in working out problems	KLB Visionary Mathematics pg 56 Multiplication tables	
	3	NUMBER S	DIVISIO N	By the end of the sub strand, the learner should be able to: use IT devices for learning and leisure, appreciate application of division of numbers in real life situations.	How can you estimate quotient?	Learners in pairs/groups to divide a 2-digit number by a 1-digit number using own strategies. Learners in pairs/groups to use relationship between multiplication and division in working out	KLB Visionary Mathematics pg 56 Multiplication tables	

						problems .	
	4	NUMBER S	FRACTI ONS	By the end of the sub strand, the learner should be	When do you use	Learners in pairs/groups to represent fractions as	KLB Visionary
				able to: represent a fraction with denominators not exceeding 12 as part of a whole and as part of a group in real life situations	fractions in real life?	part of a whole and as part of a group using concrete objects	Mathematics pg 57-58 Equivalent fraction board, Circular and rectangular cut outs, counters, clock face
	5	NUMBER S	FRACTI ONS	By the end of the sub strand, the learner should be able to represent and write fractions whose denominators do not exceed 12 in real life situations,	How can you represent fractions?	Learners in pairs/groups to discuss the top and bottom numbers in a fraction and share with other groups	KLBVisionaryMathematicspg 60-61Equivalentfractionboard,Circular andrectangularcut outs,counters,clock face
10	1	NUMBER S	FRACTI ONS	By the end of the sub strand, the learner should be able to identify different types of fractions in real life, convert improper fractions	When do you use fractions in real life?	Learners in pairs/groups to discuss the top and bottom numbers in a fraction and share with other groups	KLB Visionary Mathematics pg 61-62

			to mixed fractions in different situations			Equivalent fraction board, Circular and rectangular cut outs, counters, clock face	
2	NUMBER S	FRACTI ONS	By the end of the sub strand, the learner should be able to identify different types of fractions in real life, convert improper fractions to mixed fractions in different situations	How can you represent fractions?	Learners in pairs/groups to represent fractions as part of a whole or part of a group using cut outs, counters or clock face. Learners in pairs/groups/ individually to represent proper, improper and mixed fractions as part of a whole or as part of a group using paper cut outs or counters	KLB Visionary Mathematics pg 63-64 Equivalent fraction board, Circular and rectangular cut outs, counters, clock face	
3	NUMBER S	FRACTI ONS	By the end of the sub strand, the learner should be able to convert mixed fractions to improper fractions in different contexts use IT devices for learning and enjoyment, appreciate application of fractions in real life	When do you use fractions in real life?	Learners in pairs/groups to convert improper fractions to mixed fractions. Learners in pairs/groups to convert mixed fractions to improper fractions	KLBVisionaryMathematicspg 63-64Equivalentfractionboard,Circular and	

				situations.			rectangular		
							cut outs,		
							counters,		
							clock face		
CONTINOUS ASSESSMENT TEST									