MATHEMATICS PP1 2024 KCSE MOCK

TOP RANK KCSE PREDICTION MOCK 2024 SERIES

TOPLIGHT PUBLISHERS KENYA 2024 PANELKCSE PROJECTION WORKS
WE HAVE ALL SUBJECTS REACH US 0729125181 TO HAVE YOUR SUBJECT
TOPLIGHT PUBLISHERS KENYA PANEL WORK

- FOR QUESTIONS IN WORD AND MARKING SCHEME CALL SIR ABRAHAM 0729125181
- N/B;WE DON'T OFFER FREE MARKING SCHEME
- ALL PAYMENTS SHOULD BE PAID TO OUR TILL NO :8264076
- EMAIL US; toplightpublisherskenya@gmail.com

NAME:
INDEX NO \qquad
SCHOOL: \qquad ADM \qquad
\qquad
\qquad TARGET

121/1

MATHEMATICS Paper 1

FORM 4

Time: $\mathbf{2}^{1 / 2}$ Hours

SET 1 QUESTION PAPER

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

1. Write your name, stream, admission number and index number in the spaces provided above.
2. The paper contains two sections, Section I and II
3. Answer all questions in section I and ONLY any FIVE questions from section II.
4. All answers and working must be shown on the question paper in the spaces below each question
5. Show all steps in your calculations, giving answers at each stage
6. Marks may be given for each correct working even if the answer is wrong
7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

FOR EXAMINERS USE ONLY

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II
Grand Total

17	18	19	20	21	22	23	24	Total

This paper consists of 16 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.

SECTION I (50 MARKS)

Answer all questions in this Section

1. Evaluate:

$$
\frac{\sqrt{\frac{1}{9}} \text { of } 2 \frac{1}{3}+\frac{2}{3}\left(\frac{5}{3}-\frac{3}{2}\right)}{\frac{2}{5} \text { of } 3 \frac{1}{3} \div \frac{1}{3}}
$$

2. Simplify completely (3 mks)

$$
\frac{12 x^{2}-11 x y+2 y^{2}}{18 x^{3}-8 x y^{2}}
$$

3. Use the exchange rates below to answer this question.

	Buying	Selling
1 US dollar	63.00	63.20
1 UK $£$	125.30	125.95

Abwanja, a tourist arriving in Kenya from Britain had 9600 UK Sterling pounds ($£$). He converted the pounds to Kenya shillings at a commission of 5%. While in Kenya, he spent $3 / 4$ of this money. He changed the balance to US dollars after his stay. If he was not charged any commission for this last transaction, calculate to the nearest US dollars, the amount he received.
(3 mks)
4. Solve for x in the following equation.
$4^{x}\left(8^{x-1}\right)=\tan 45^{\circ}$
5. The sum of interior angles of two regular polygons of sides; n and $n+2$ are in the ratio 3:4. Calculate the sum of the interior angles of the polygon with n sides.
(3mks)
6. Use logarithms to evaluate the following correct to 4 decimal places.
$\sqrt[4]{\frac{2 \times 1.764^{-2} \times 0.324}{5.42}}$
(3mks)
7. By shading, show the region defined by the following linear inequalities
(3mks)

8. Find the equation of locus of points equidistant from points $A(6,5)$ and $B(-2,3)$ in the form

$$
\mathrm{y}=\mathrm{mx}+\mathrm{c}
$$

(3mks)
9. The GCD of three numbers is 6 and their LCM is 900 . If two of the numbers are 36 and 60, find the least possible thirdZnumber.
10. Use the tables of squares, cube roots and reciprocals to evaluate
11. Solve the following pair of simultaneous equations using substitution method(3mks) $4 x+3 y-475=0$
$2 x+5 y-325=0$
12. Given that $\operatorname{Sin} \theta=0.8$ and θ is an acute angle, find without using tables or calculators (a) $\operatorname{Tan} \theta$
(2mks)
(b) $\operatorname{Cos}(180-\theta)$
13. The figure below is a triangular prism of uniform cross-section in which $\mathrm{AF}=\mathrm{FB}$ $=3 \mathrm{~cm}$,

$$
\mathrm{AB}=4 \mathrm{~cm} \text { and } \mathrm{BC}=5 \mathrm{~cm} . \text { Draw a clearly labeled net of the prism. } \quad(3 \mathrm{mks})
$$

14. The mass of two similar cans is 960 g and 15000 g . If the total surface area of the smaller can is $144 \mathrm{~cm}^{2}$, determine the surface area of the larger can.
15. In the circle below, O is the centre, angle $\mathrm{DAB}=87^{\circ}$, minor Arc AB is twice minor $\operatorname{arc} \mathrm{AD} . \mathrm{CD}$ is a tangent to the circle at D .

(i) Angle AOB.
(2mks)
16. A sector of a circle of radius 42 cm subtends an angle of 120° at the centre of the circle. The sector is folded into an inverted right cone. Calculate
(i) The radius of the cone
(3mks)
(ii) To one decimal place the vertical height of the cone
(1mk)

SECTION II: 50 MARKS
Answer any FIVE questions in this section
17. A bus and a Nissan left Nairobi for Eldoret, a distance of 340 km at $7.00 \mathrm{a} . \mathrm{m}$. The bus travelled at $100 \mathrm{~km} / \mathrm{h}$ while the Nissan travelled at $120 \mathrm{~km} / \mathrm{h}$. After 30 minutes, the Nissan had a puncture which took 30 minutes to mend.
(a) Find how far from Nairobi did the Nissan caught up with the bus (5mks)
(b) At what time of the day did the Nissan catch up with the bus?
(c) Find the time at which the bus reached Eldoret
18. In the diagram below $\mathbf{O A}=\boldsymbol{a}, \mathbf{O B}=\boldsymbol{b}$ the points P and Q are such that $\mathbf{A P}=\frac{2}{3} \mathbf{A B}$,

(a) Express OP and BQ in terms of \boldsymbol{a} and \boldsymbol{b}
(b) If $\mathbf{O C}=h \mathbf{O P}$ and $\mathbf{B C}=k \mathbf{B} \mathbf{Q}$, Express OC in two different way and hence
(i) Deduce the value of h and k.
(ii) Express vector OC in terms of \boldsymbol{a} and \boldsymbol{b} only.
(iii) State the ratio in which C divides BQ
19. The table below shows the marks scored in a Mathematics examination.
(a) Calculate the mean mark

Marks	Frequency				
$5-14$	2				
$15-34$	22				
$35-54$	50				
$55-84$	24				
$85-94$	2				

(b) Draw a histogram to represent the above information (4mks)
COM
(c) Using the histogram, find the median mark
20. Given the quadratic function $y=3 x^{2}+4 x-2$
a) Complete the table below for values of x ranging $-4 \leq x \leq 3$. (2mks)

x	-4	-3	-2	-1	0	1	2	3
y								

b) Using the grid provided draw the graph of $y=3 x^{2}+4 x-2$ for $-4 \leq x \leq 3 \quad$ (3mks)

							-	-	0				
						-							
		,	-				,						
							-						
											(2nks		

ii) $\quad 3 x^{2}+7 x+2=0$
(3mks)
21. A triangle ABC has vertices $\mathrm{A}(2,1), \mathrm{B}(5,2)$ and $\mathrm{C}(0,4)$.
(a) On the grid provided plot the triangle ABC .
(2 mks)

(b) $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ is the image of ABC under a translation $\binom{2}{-5}$. Plot $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ and state its coordinates.
(c)Plot $A^{11} B^{11} C^{11}$ the image of $A^{1} B^{1} C^{1}$ under a rotation about the origin through a negative quarter turn. State its coordinates.
(d) $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111}$ is the image of $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ under a reflection on the line $\mathrm{y}=0$. $A^{111} B^{111} C^{111}$ and state its coordinates.
22. Two Airstrips P and Q are such that Q is 500 km due East of P. Two warplanes M and N

Leave from P and Q respectively at the same time. Warplane M moves at $360 \mathrm{~km} / \mathrm{h}$ on a bearing of 030°. Warplane N moves at a speed of $240 \mathrm{~km} / \mathrm{h}$ on a bearing of 315°. The two warplanes landed at Police camps A and B respectively after 90 minutes. Using a scale of 1 cm represent 100 km
a) Show the relative positions of the two police camps A and B (6mks)
(b) Find the shortest distance between the police camps A and B. (2mks)
(c) Find the true bearing of;
i) Police camp A from B
ii) Police camp B from A
23. The diagram below represents square based pyramid standing vertically. $\mathrm{AB}=12 \mathrm{~cm}$, $\mathrm{PQ}=4 \mathrm{~cm}$ and the height of pyramid PQSV is 10 cm .

(a) If PQRSV is a solid, find the volume of material used to make it.
(b) Find the
(i) height of the frustum ABCDPQRS
(ii) Volume of the frustum
(c) The liquid from a hemisphere is poured into PQRS. Find radius correct to 4 significant figures of the hemisphere if the liquid from hemisphere filled the solid completely.Use $\pi=\frac{22}{7}$
24. The displacement h metres of a particle moving along a straight line after t seconds is given by $h=-2 t^{3}+{ }^{3} / 2 t^{2}+3 t$
(a) Find the initial acceleration.
(b) Calculate
(i) The time when the particle was momentarily at rest.
(ii) Its displacement by the time it comes to rest momentarily.
(2mks)
(c) Calculate the maximum speed attained.
(2mks)

NAME: \qquad
\qquad ADM \qquad
\qquad
\qquad

Kenya Certificate of Secondary
 Education.(K.C.S.E

MATHEMA

TICS ALT. A
Paper 1

SET 2 OUESTION PAPER

INSTRUCTION CANDIDATES

a) Write your name and Admission number in the spaces provided above. b) Sign and write the date of examination in the spaces provided above. c) The paper consists of two sections. Section I and Section II.
d) Answer ALL the questions in Section I and any FIVE questions in Section II.
e) Show all the steps in your calculations, giving your answer at each stage in the spaces provided below each question.
f) Marks may be given for correct working even if the answer is wrong.
g) Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.
h) Candidates should answer the questions in English.
i) This paper consists of 15 printed pages.
j) Candidates must check the question paper to ascertain that all pages are printed as indicated and that no question(s) is/are missing

FOR EXAMINER'S USE

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Grand Total

SECTION I (50 MARKS)

Attempt All Questions in this section

1. Find the value of y given that
(3 marks)
$\frac{253935}{35 y 2 y 4} 1$
2. The length of a minute hand of a clock is 3.5 cm . What will be the time if from 10.15 am it sweeps through an area of $19.25 \mathrm{~cm}^{2}$?
(4marks)
3. Use reciprocal, square and square root table to evaluate to 4 significant figures, the expression

$\xrightarrow{1} 4.346^{2}$
4. Given that $\sin (90-x)^{0}=0.8$, where x is an acute angle, find without using mathematical table the value of $2 \tan x+\cos (90-x)$
5. Find the equation of the tangent and the normal to the y $2 x^{3} 3 x^{2} 6$ at the point $(2,10)$ curve
(4marks)
6. Simplify $\frac{2 y^{2} 3 x y 2 x^{2}}{x^{2} 4 y^{2}}$ (3marks)
7. Find greatest integral value of x which satisfies

$\underline{2 \times 3} \underline{83 x} \underline{5 \times 6}$

230
8. One of the roots of the equation
$x^{2} k 1 \times 280$ is 4 . Find the values of k and hence the second root
(4marks)
9. Solve for x in the following without using a calculator or mathematical table.
$9^{\times} 27^{\times 1} \tan 30^{\circ}$
10. A shear parallel to the x-axis maps point $(1,2)$ onto a point $(5,2)$. Determine the shear factors and hence state the shear matrix (invariant line is $\mathrm{y}=0$)
(3marks)
11. A solid is in the shape of a right pyramid on a square base on side 8 cm and height 15 cm . A frustum whose volume is a third of the pyramid is cut off. Determine the height of the
frustum. (3
marks)
12. The interior angle of a regular polygon is 20° more than three times the exterior angle.

Determine the number of sides of the polygon
(2marks)
13. Three fifths of work is done on the first day. On the second day ${ }_{4}^{\underline{3}}$ of the remainder is completed.
$\underline{7}$ of what remained id done, what fraction of work still remain to be done. If the third day
14. A two-digit number is such that the sum of the digits is ten. If the digits are reversed, the new number formed is less than the original number by 18 . Find the number
15. In the figure bellow, CBD=2 CAD. Find the value of x

16. Two boys, Ababu and Chungwa, on the same side of a tall building are 100 m apart. The building and the two boys are in a straight line and the angles of elevation from the boys to the top of the building are 30° and 20° respectively calculate the height of the building.
(3marks)

SECTION II (50 MARKS)

Attempt only five Questions from this section

17. A business lady bought 100 quails and 80 rabbits for sh 25600 . If she had bought twice as many rabbits as half as many quails she would have paid sh7400 less. She sold each quail at a profit of
10% and each rabbit at a profit of 20%.
a) Form two equations to show how much she bought the quails and the rabbits.
(2marks)
b) Using matrix method, find the cost of each animal.
c) Calculate the total percentage profit she made from sale of the 100 quails and 80 rabbits.
(3marks)
18. $A(3,7) B(5,5), C(3,1), D(1,5)$ are vertices of a quadrilateral
a) On the grid provided below, plot ABCD on a Cartesian plan
b) $\quad A^{1} B^{1} C^{1} D^{1}$ is the image of $A B C D$ under a translation T plot $A^{1} B^{1} C^{1} D^{1}$ and state its 9
coordinates
(2marks)
c) Plot $A^{11} B^{11} C^{11} D^{11}$ the image of $A^{1} B^{1} C^{1} D^{1}$ after a rotation about $(-1,0)$ through a positive quarter turn. State its coordinates.
(3marks)
d) $\quad A^{111} B^{111} C^{111} D^{111}$ is the image of $A^{11} B^{11} C^{11} D^{11}$ after a reflection in the line $y=x+2$. Plot $A^{111} B^{111} C^{111} D^{111}$ and state its coordinates

																																T	T
																									-								
																									-								
														,																			
																									-								
																									-								
																		-							-								
																		-															
																		-						-	-								
																		-	,														
					-													-							-								
																									-								
																								-									

19. The figure below shows a velocity time graph of a journey of a car. The car start from rest and
```
accelerates at 2 }\mp@subsup{}{}{\frac{3}{4}}m/\mp@subsup{s}{}{2}\mathrm{ fort seconds until it is 22m/s
```


4

Brakes are applied bringing it uniformly to rest. The total journey is 847 m long. Find.
a) The value of t, the acceleration time
(2marks) b)

The distance travelled during the first t seconds.
(2marks) c) The
value of x, the deceleration time
d) The rate of deceleration
20. The diagram below shows a histogram representing the mass of some pupil in a school.

a) Prepare a frequency distribution table of the data
b) From the table above, estimate
i) The mean mass of the pupils to 3 s.f
ii) The median mass
21. In the figure below $\mathbf{O Y}: \mathbf{Y A}=1: 3 \mathrm{AX}: X B=1: 2 \mathrm{OA}=a$ and $\mathrm{OB}=b . \mathrm{N}$ is the point of intersection of $\mathbf{B Y}$ and $\mathbf{O X}$

a) Determine
i) $0 x$
(2marks)
ii) $B Y$
(1mark)
b) Give that $B N k B Y$ and $\mathbf{O N}=$ hOX, express $O N$ in two ways in terms of $a b$,hand k
22. Using a ruler and a pair of compass only, construct triangle $X Y Z$ where $X Y$ is 6 cm and $X Y Z$ is 135° and $Y Z=7 \mathrm{~cm}$
(2marks)
a) Measure XZ
(1mark)
b) Drop a perpendicular from Z to meet line $X Y$ at K, measure $Z K$.
(2marks)
c) Bisect line $X Y$ and let the bisector meet line $X Z$ at Q
d) Join Q to Y and measure angle $X Q Y$
23. Four towns are situated in such that a way that town Q is 500 km on a bearing of 120° from P. Town R is 240 km on a bearing of 210° from town P, while town S is due north of town Q and due east of town P
a) Draw a sketch diagram showing the relative position of P, Q, R and S (scale:1cm :100km)
(3mark
b) Find by calculation
i) The distance $Q R$
(1mark)
ii) The distance QS
(2marks)
iii) The angle PRSQ
(2marks)
iv) The area of triangle PQS
(2marks)
24. The figure below shows a sketch of the graph of $y x^{2} 6$.

a) Estimate the area bounded by the curve, the x-axis and the line $x=-4$ and $x=4$ using
i) The trapezium rule with 8 sides
(3marks)
ii) The mid- ordinates rule with and strips
(3marks)
b) What percentage error is caused by estimating the area of the curve using the mid ordinates rule as in a (ii) above
(4marks)

NAME:
INDEX NO \qquad
\qquad
\qquad
\qquad

CANDIDATE'S SIGN

DATE \qquad TARGET \qquad 121/1

MATHEMATICS PAPER 1

TIME: $2 ½$ HRS
Kenya Certificate of Secondary Education (KCSE)

SET 3 QUESTION PAPER

Instructions to candidates

a) Write your name and index number in the spaces provided above.
b) Sign and write the date of examination in the spaces provided.
c) This paper consists of TWO sections I and II.
d) Answer ALL questions in section I and any five from section II.
e) All answers and working must be done on the question paper in the spaces provided below each question.
f) Show all the steps in your calculations giving your answers at each stage in the spaces below each question.
g) Marks may be given for correct working even if the answer is wrong.
h) Non-programmable silent electronic calculation and KNEC Mathematical tables may be used.

For Examiner's use only
Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total

Grand Total

This paper consists of 15 printed pages. Candidates should check the question paper to Ensure that all the pages are printed as indicated and no questions are missing.

$$
\text { Page } \mathbf{2 5} \text { of } \mathbf{1 7 8} \quad \text { Mathematics Paper } 1
$$

SECTION I (50 Marks)

Answer all questions in this section in the spaces provided

1. Without using tables or calculator, evaluate the following.

$-8+(-13) \times 3-(-5)$

$-1+(6) \div 2 \times 2$
2. The straight line through the points $D(6,3)$ and $E(3,-2)$ meets the y - axis at point F. Find the co-ordinates of F.
3. The circle below whose area is $18.05 \mathrm{~cm}^{2}$ circumscribes a triangle $A B C$ where $A B=6.3 \mathrm{~cm}, B C=$ 5.7 cm and $A C=4.2 \mathrm{~cm}$. Find the area of the shaded part to 2 dp .

4. A number n is such that when it is divided by 27,30 , or 45 , the remainder is always 3 . Find the smallest value of n.
5. The actual area of an estate is 3510 hectares. The estate is represented by a rectangle measuring 2.6 cm by 1.5 cm on the map whose scale is $\mathrm{I}: \mathrm{n}$. Find the value of n . (give your answer in standard form)
6. Find the obtuse angle the line $y-2 x=7$ makes with the x-axis
7. Given the column vector $\underset{\sim}{p}=\binom{-5}{3}, \underset{\sim}{q}=\binom{4}{-8}$ and $\underset{\sim}{r}=\binom{6}{-9}$ and $\underset{\sim}{t}=2 \underset{\sim}{p}-\frac{1}{2} \underset{\sim}{q}+\frac{1}{3} \underset{\sim}{r}$
(i) Express ${ }_{\sim}^{t}$ as a column vector
(2mks)
(ii) Calculate the magnitude of vector $\underset{\sim}{t}$ in (i) above correct to two decimal places. (2mks)
8. Muthoni went to a shop and bought 50 packets of milk and 25 packets of salt all for Kshs.200.00. She sold the milk at a profit of 28% and the salt at a profit of 24% thereby making a net profit of Kshs.53.50. Find the cost price of a packet of milk and a packet of salt.
(3 mks)
9. The angles of elevation from two points A and B to the top of a storey building are 48° and 57° respectively. If $A B=50 \mathrm{~m}$ and the point A and B are opposite each other; Calculate;
a) The distance of point A to the building
b) The height of the building
11. Simplify as simple as possible $\frac{(4 x+2 y)^{2}-(2 y-4 x)^{2}}{(2 x+y)^{2}-(y-2 x)^{2}}$
12. The cost of a camera outside Kenya is US\$1000. James intends to buy one camera through an agent who deals in Japanese Yen. The agent charges him a commission of 5\% on the price of the camera and further 1260 Yen as importation tax. How much in Ksh. Will he need to send to the agent to obtain the camera, given that:-
1 US\$= 105.00 Yen.
1 US\$= Kshs. 63.00
13. State all the integral values of x which satisfy the inequality

$$
\begin{array}{r}
\frac{3 x+2}{4} \leq \frac{2 x+3}{5} \leq \frac{4 x+15}{6} \\
\text { Page } \mathbf{3 0} \text { of } \mathbf{1 7 8}
\end{array}
$$

[^0]15. Without using mathematical tables or calculators, find the volume of a container whose base is a regular hexagon of side $\sqrt{3} \mathrm{~cm}$ and height $2 \sqrt{3} \mathrm{~cm}$ (3 mks)
16. Below is a net of a model of a three dimensional figure. The lengths $A B=B C=A C=6.0 \mathrm{~cm}$ and lengths $A F=F B=B D=C D=C E=A E=8.0 \mathrm{~cm}$.

a) Draw the solid when the net is folded by taking $A B C$ as the base and the height 5 cm . (3 mks)
b) State the name of the figure drawn \qquad

SECTION II (50 Marks)

Answer only five questions in this section in the spaces provided.

17. The distance between towns A and B is 360 km . A minibus left A at 8.15 am and traveled towards B at an average speed of $90 \mathrm{~km} / \mathrm{hr}$. A matatu left B two and a third hours later on the same day and traveled towards A at an average speed of $110 \mathrm{~km} / \mathrm{hr}$.
a) i) At what time did the two vehicles meet?
ii) How far from A did the vehicles meet?
b) A motorist started from his home which is between A and B at 10.30am on the same day and travelled at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. He arrived at B at the same time as the minibus. Calculate the distance from A to his house.
18. Consider the vessel below

a) Calculate the volume of water in the vessel. (Take $\pi=3.142$)
b) When a metallic hemisphere is completely submerged in the water, the level of the water rose by 6 cm . Calculate:
i) the radius of the new water surface.
(2mks)
ii) the volume of the metallic hemisphere (to 2 d.p.)
19.The American government hired two planes to airlift football fans to Qatar for the World cup tournament. Each plane took $101 / 2$ hours to reach the destination.

Boeing 747 has carrying capacity of 300 people and consumes fuel at 120 litres per minute. It makes 5 trips at full capacity. Boeing 740 has carrying capacity of 140 people and consumes fuel at 200 liters per minute. It makes 8 trips at full capacity. If the government sponsored the fans one way at a cost of 800 dollars per fan, and the fans pays for the return ticket. Calculate:
(a) The total number of fans airlifted to Qatar.
(b) The total cost of fuel used if one litre costs 0.3 dollars.
(c) The total collection in dollars made by each plane.
(2mks)
(d) The net profit made by each plane.
20. The following data shows the length of trees grown in Mau Forest measured to the nearest cm by
a research team. Use the given data to answer the given questions.

230	240	250	253	260	253	274	238	263	260	231	284
257	260	275	271	257	267	255	265	241	256	256	257
260	262	234	259	263	244	254	248	281	240	247	236
256	282	242	246	277	238	250	279	252	269	284	271
249	273										

(a) Arrange the data in a frequency distribution table with a class interval of five and starting
with the class of $230-234, \ldots$
(6mks)
(b) Using the frequency distribution in (a) above and 257 as an assumed mean, find:-
(i) Mean of the data.
(ii) The standard deviation of the data.
21. Using a ruler and a pair of compasses only, draw a triangle $A B C$ such that $A B=5 \mathrm{~cm}$, $B C=8 \mathrm{~cm}$ and angle $A B C=60^{\circ}$. Measure $A C$ and angle $A C B$.
a) Locate point O in triangle $A B C$ such that $O A=O B=O C$. Using O as the center and radius OA draw a circle
b) Construct a perpendicular from A to $B C$ to meet $B C$ at D. Measure $A D$, hence find the area of triangle $A B C$.
22.Three brick layers have to lay a total of 5400 bricks. The average number of bricks they can lay in an hour are in the ratio 5:6:9.If the slowest man lays 60 brick in an hour. Calculate;
(a) How many bricks each of the other two men lay in an hour.
(4mks)
(b) How many of the bricks each man will lay to complete the work if they are all employed for the same number of hours.
23. Four towns P, Q, R and S are such that town Q is 120 km due east of town P. Town R is 160 km due North of town Q. Town S is on a bearing of 330° from P and on a bearing 300° from R. use a ruler and a pair of compasses only for all your constructions.
a. Using a scale of 1 cm to represent 50 km , construct a scale drawing showing the positions P, Q, R and S.
(6mks)
b. Use the scale to determine
i. The distance from town S to town P. (1mk)
ii. The distance from town S to town R. (1mk)
iii. The bearing of town S from town Q.(2mks)
24. A carpenter constructed a closed wooden box with internal measurements 1.5 m long 0.8 m wide and 0.4 m high. The wood used in constructing the box was 1.0 cm thick and had a density of $0.6 \mathrm{~g} / \mathrm{cm}^{3}$.
(a) Determine the:
(i) Volume in cm^{3} of the wood used in constructing the box.
(ii) Mass of the box in kg correct to 1 d.p
(b) Identical cylindrical tins of diameter 10 cm height 20 cm with a mass of 120 g each were packed in the box. Calculate the:
(i) Maximum number of tins that were packed
(ii) Total mass of the box with the tins in kg. (to 1d.p)

NAME:
INDEX NO \qquad
SCHOOL: \qquad ADM \qquad
\qquad
\qquad TARGET \qquad

SET 4 QUESTION PAPER

INSTRUCTIONS TO CANDIDATES

a) Write your name and indexnumberin the spaces provided above.
b) Sign and write date of examination in the spaces provided above.
c) This paper consists of two sections; SectionI and Section II.
d) Answer All questions in Section I andonly Fivequestions from section II
e) All answers and working must be written on the question paper in the spaces provided below each
f) question.
g) Show all the steps in your calculations giving answers at each stage in the spaces provided below each
h) question.
i) Marks may be given for correct working even if the answer is wrong.
j) Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.
k) This paper consists of 15 printed pages. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.
m)Candidates should answer questions in English.

For examiner's use only.

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total

SECTION 1 (50 MARKS)

1. Without using a calculator evaluate:-

$$
\frac{-2(5+3)-9 \div 3+5}{-3+-16 \div-8 \times 4}
$$

2. Wafulauses $1 / 6$ of his land for planting maize, $1 / 12$ for beans and $4 / 9$ of the remainder for grazing.

He still has 10 hectares of unused land. Find the size of Wafula's land. (4 mks)
3. A straight line passing through point $(-3,-4)$ is perpendicular to the line whose equation is
$2 y+3 x=11$ and intersects \mathbf{x} axis and \mathbf{y} axis at A and B respectively. Determine the equation of the
second line and hence write down the co-ordinates of A and B.
4. A bus left Kitale at 8.00 a.m. and travelled towards Lodwar at an average speed of 80 km / h. At 8.30
a.m a car left Lodwar towards Kitale at an average speed of $120 \mathrm{~km} / \mathrm{h}$. Given that the distance between Kitale and Lodwar is 400 km . Calculate the time the two vehicles met. (3 mks)
5. The sum of four consecutive odd integers is greater than 24 . Determine the first four such integers.
6. Wanyama on arrival in Kenya to play for Harambee Stars against Uganda Cranes converted 6000

Euros into Kenyan Shillings. During his stay in Kenya he spent Kshs. 260,000 and converted the
remaining amount into US Dollars before travelling back to England. Using the exchange rates
below, find how many US Dollars he got?
(4 mks)

Currency	Buying (Kshs.)	Selling (Kshs.)
1 US Dollar	96.20	96.90
1 Euro	112.32	112.83
	Page 44 of 178	Mathematics Paper 1

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181
7. In the diagram below, the position vector of points A and B with respect to point O are (-6 $)$ and 3 respectively. -2 0

Given that B is a point on $A C$ such that $A B=1 / 2 B C$. Use vector method to determine the coordinates
of C.
8. Simplify:-
$(8 y)^{2 / 3} \times y^{11 / 3}-6 \div 2 y^{-2}$
9. Complete the diagram below so as to make a net for a cuboid. Hence find the surface area of the
cuboid.

10. Using a ruler and a pair of compasses only, construct a rhombus $P Q R S$ such that $P Q$ $=6 \mathrm{~cm}$ and
angle $\mathrm{PQR}=135^{\circ}$ hence measure the shortest diagonal.
11. Janice, a fruit vendor obtained a total of Kshs. 6144 from her sales of oranges on Saturday at Kshs.
8.00 each. She had bought 560 more oranges to add to what had remained on Friday where she had

$$
\text { Page } \mathbf{4 6} \text { of } \mathbf{1 7 8} \quad \text { Mathematics Paper } \mathbf{1}
$$

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181
sold 240 more oranges than on Thursday. She had sold 750 oranges on Thursday.
Calculate the total
number of oranges Janice had bought on Thursday.
(4 mks)
12. Factorise Completely:-
$\mathbf{x}^{4}-2 \mathbf{x}^{2} \mathbf{y}^{2}+\mathbf{y}^{4}$
(2 mks)
13. Solve for \mathbf{y} given that \mathbf{y} is acute and $\sin \left(3 y-50^{\circ}\right)-\cos \left(2 y+10^{\circ}\right)=0 \quad(3 \mathrm{mks})$
14. A solid consists of a cone and a hemisphere. The common diameter of the cone and the hemisphere is 12 cm and the slanting height of the cone is 10 cm . Calculate correct to two decimal places, the
surface area ofthe solid.
15. The figure below shows two sectors in which $A B$ and $C D$ are arcs of concentric circles centre O . Angle $\mathrm{AOB}=2 / 5$ radians and $\mathrm{AD}=\mathrm{BC}=5 \mathrm{~cm}$.

Given that the perimeter of the shape ABCD is 24 cm , calculate the length of OA. (3 mks)
16. Find the inequalities that define the region R shown in the figure below. marks)

SECTION II

Answer only five questions from this section

17. Nyongesa is a sales executive earning a salary of Kshs. 120,000 and a commission of 8% for the
sales in excess of Kshs. 1,000,000. If in January he earned a total of Kshs. 480,000 in salaries and
commission.
(a) Determine the amount of sales he made in the month of January.
(b) If the total sales in the month of February increased by 18% and in the month of March dropped by 30% respectively; Calculate:-
(i) Nyongesa's commission in the month of February.
(ii) His total earning in the month of March.
18. A sector of angle 108° is cut from a circle of radius 20 cm . It is folded to form a cone. Calculate:
(a) The curved surface area of the cone.
(2 mks)
(b) The base radius of the cone.
(c) The vertical height of the cone.
(d) If 12 cm of the cone is chopped off to form a frustrum as shown below.

19. a) Find A^{-1}, the inverse of matrix $A=\left(\begin{array}{ll}6 & 5 \\ 4 & 7\end{array}\right)$ (2 mks)
b) Ibanda sells white and brown loaves of bread in his kiosk. On a certain day he sold 6 white loaves
of bread and 5 brown ones for a total of Kshs. 520. The next day he sold 4 white loaves and 7
brown ones for a total of Kshs. 530.
i. Form a matrix equation to represent the above information. (1 mk)
ii. Use matrix method to find the price of a white loaf of bread and that of a brown loaf of bread.
c) A school canteen bought 240 white loaves of bread and 100 brown loaves of bread.

A discount of
10% was allowed on each white loaf whereas a discount of 13% was allowed on each brown loaf
of bread. Calculate the percentage discount on the cost of all the loaves of bread bought. (4 mks)
20. A village Q is 7 km from village P on a bearing of 045°. Village R is 5 km from village Q on a
bearing of 120° and village S is 4 km from village R on a bearing of 270°.
a) Taking a scale of 1 m to represent 1 Km , locate the three villages. (3 mks)
b) Use the scale drawing to find the:
i. Distance and bearing of the village R from village P .
ii. Distance and bearing of village P from village S.
iii. Area of the polygon PQRS to the nearest 4 significant figures. (3 mks)
21. The figure below shows a rectangular sheet of metal whose length is twice its width.

An open rectangular tank is made by cutting equal squares of length 60 cm from each of its four corners and folding along the dotted lines shown in the figure above. Given
that the capacity of the tank so formed is 1920 litres and the width of the metal sheet used was x cm;
a) (i) Express the volume of the tank formed in terms of $\mathbf{x} \mathrm{cm}$.
(ii) Hence or otherwise obtain the length and width of the sheet of metal that was used. (3 mks)
b) If the cost of the metal sheet per m^{2} is Kshs 1000 and labour cost for making the tank is 300 per hour. Find the selling price of the tank in order to make a 30% profit if it took 6 hours to make the tank.
(4 mks)
22. (a) On the Cartesian plane below, draw the quadrilateral PQRS with vertices $\mathrm{P}(4,6), \mathrm{Q}(6,3), \mathrm{R}(4,4)$, and $\mathrm{S}(2,3)$ Page 54 of $178 \quad$ Mathematics Paper 1

(b) Draw $\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime} \mathrm{S}^{\prime}$ the image of PQRS under the transformation defined by the $\begin{aligned} & \text { translation vector } \\ & T=-7 \quad \text { Write down the coordinates of } \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime} \mathrm{S}^{\prime} .\end{aligned}$ -6
(c) $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} S^{\prime \prime}$ is the image of $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ when reflected in the line $\mathbf{y}=\mathbf{1}$. On the same plane, draw

$$
\begin{equation*}
P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} S^{\prime \prime} . \tag{2mks}
\end{equation*}
$$

(d) Draw $\mathrm{P}^{\prime \prime \prime} \mathrm{Q}^{\prime \prime \prime} \mathrm{R}^{\prime \prime \prime} \mathrm{S}^{\prime \prime \prime}$ the image $\mathrm{P}^{\prime \prime} \mathrm{Q}^{\prime \prime} \mathrm{R}^{\prime \prime} \mathrm{S}^{\prime \prime}$ when reflected in the line $\mathbf{y}-\mathbf{x}=\mathbf{0}$ (2 mks)
(e) Find by construction, the centre of the rotation that maps $P^{\prime \prime \prime} Q^{\prime \prime \prime} R^{\prime \prime \prime} S^{\prime \prime \prime}$ onto PQRS and hence determine the coordinates of the centre of the rotation and the angle of the rotation. (3 mks)
23. Andai recorded data on observation of time spent by a local university's first year bachelor of

Commerce students at library as follows;-

Time spent in minutes	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
Cumulative frequency	70	170	370	470	500

Calculate:
a) The mean
(6 mks)
b) The median
(4 mks)
24. (a) After t seconds, a particle moving along a straight line has a velocity of Vm / s and an acceleration of $(5-2 t) \mathrm{m} / \mathrm{s}^{2}$. the particles initial velocity is $2 \mathrm{~m} / \mathrm{s}$.
(i) Express V in terms of t .
(3 marks)
(ii) Determine the velocity of the particle at the beginning of the third second. (2 marks)
(b) Find the time taken by the particle to attain maximum velocity and the distance it covered to attain the maximum velocity.

NAME:
INDEX NO \qquad
\qquad ADM \qquad STREAM: \qquad
\qquad TARGET \qquad

121/1 - MATHEMATICS ALT A - PAPER 1

SET 5 OUESTION PAPER

Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO CANDIDATES

a) Write your name, index number and date in the spaces provided at the top of this page.
b) Write name, admission number and class in the spaces provided above.
c) This paper contains TWO sections: section I and section II
d) Answer ALL the questions in Section I and only five questions from section II.
e) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
f) Marks may be given for correct working even if the answer is wrong.
g) Non-programmable silent electronic scientific calculators and KNEC mathematical tables may be used except where stated otherwise.
h) This paper consists of $\mathbf{1 6}$ printed pages.
i) Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

FOR EXAMINER'S USE ONLY:

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL

SECTION 1 (50 marks)

Answer all the questions in this section in the space provided

$$
\text { Page } 58 \text { of } \mathbf{1 7 8} \quad \text { Mathematics Paper } \mathbf{1}
$$

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181

> 1. Evaluated:
> $\frac{2 \frac{1}{2} \text { of } 1 \frac{3}{4}-5 \frac{1}{4}}{1 \frac{2}{5}+2\left(1 \frac{1}{4}-2 \frac{3}{4}\right)}$
2. Use logarithms to evaluate the following to 4 significant figures to:
(4mks)
$\left(\frac{95.75 \times 0.85}{4.524+1.234}\right)^{\frac{2}{3}}$
3. An electrician made a loss of 30% by selling a multi plug at sh. 1400 .what percentage profit would he has made if he sold the multi plug at sh. 2300 .
4. In the triangle ABC below, $\mathrm{BC}=9 \mathrm{~cm}$, angle $\mathrm{ABC}=80^{\circ}$. and angle $\mathrm{ACB}=30^{\circ}$.

Calculate, correct to 4 significant figures, the area of the triangle.
(3mks)
5.) Given that the exterior angle of a regular hexagon is $2 x$. Find the value of x. Hence find the size of each interior angle of the hexagon.
(3mks)
6. Two numbers t and s are such that $t^{4} \mathrm{X} s^{2}=5625$. Find t and s
7. Find the obtuse angle the line with equation $2 y+5 x+2=0$ makes with the x-axis. (3mks)
8. Simplify the expression
9. A plot is in the shape of a right angled triangle. The length of the shorter side is 15 m and the area is $456.8 \mathrm{~m}^{2}$. Calculate the length of the longest side of the garden.
(3mks)
10.) The diagram below shows a region R bounded by three lines L_{1}, L_{2} and L_{3}. Form the three inequalities that satisfies the given region R

11. A bus travelled at an average speed of $63 \mathrm{~km} / \mathrm{h}$ left the station at 9.15 am . A car later left the same station at 10.00 am and caught up with bus at 11.45 am . Find the average speed of the car.
12. A tourist came in Kenya and exchanged 1250 US dollars into Kenyan shillings at the rate shown below.

Buying (Kshs)	selling (Kshs)
1US dollar 105.5	110.8
Page 62 of 178	Mathematics Paper 1

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181

He spent Ksh. 85400 after which he converted the remaining balance to US dollars. How much US dollars did he get back to the nearest dollar.
(3mks)
13.a) Complete the table below for $y=x^{2}+5$ (1mk)

X	0	1	2	3	4	5	6
$\mathrm{Y}=\mathrm{x}^{2}+5$	5						

b) Use the trapezoidal rule with7 ordinates to estimate the area bounded by the curve $y=x^{2}+5$, x -axis, y -axis and $\mathrm{x}=6$
14. Given that $\mathbf{a}=\binom{\mathbf{6}}{2}, \mathbf{b}=\binom{-2}{-4}$ and $3 \mathbf{a}-2 \mathbf{b}+2 \mathbf{c}=\binom{32}{20}$, find \mathbf{c}
15). A triangle T with vertices $A(2,4), B(6,2)$ and $C(4,8)$ is mapped onto triangle T ' with vertices $A^{\prime}(10,0), B^{\prime}(8,-4)$ and $C^{\prime}(14,-2)$ by a rotation .
a) on the grid provided draw triangle T and its image T '

b) Determine the centre and the angle of rotation that maps T onto T ,
16. A small cone of height 8 cm is cut off from a bigger cone leaving a frustum of height the 16 cm . If the volume of the smaller cone is $160 \mathrm{~cm}^{3}$, find the volume of the frustum. (3mks)

Section II (50MKS)

Answer any five questions in this section in the space provided
17. Three businessmen, Hassan, Mutua and Wanyonyi decided to start a business. The initial capital which was needed was Ksh. 4,000,000 of which they were able to raise 30% by making contributions in the ratio 3:3:2 respectively. The rest of the amount was obtained from a bank and was to be paid back within one year with an interest of 25% in the same ratio 3:3:2. The three men were to share the profit of the business in the ratio of their contribution. During the year, the business realized a profit of ksh.4, 800,000.
a) How much of the initial amount did Wanyonyi raise?
b) How much did Hassan pay to the bank at the end of the year?
C) After paying the bank at the end of the year, how much was Mutua left with?
18. The marks scored by 50 students in a geography examination are as follows:

60	54	40	67	53	73	37	55	62	43
44	69	39	32	45	58	48	67	39	51
46	59	40	52	61	48	23	60	59	47
65	58	74	47	40	59	68	51	50	50
71	51	26	30	38	70	46	40	51	42

a) Prepare a frequency distribution table using a class interval of 10 starting from 21-30
(3mks)
b) Draw a histogram to represent the distribution
(4mks)

c) Use your histogram to estimate the modal class
d) Using the histogram estimate the mean of the distribution of the data.
19. A petrol tanker has a cross-section in the shape shown below. It is used to transport petrol. Its internal length is 7 m while its internal radius is 3.5 m . Obtuse angle $\mathrm{POQ}=$ 144^{0}. On one of its trips, it was filled to capacity. Taking $\pi=22 / 7$

(a) Calculate the volume of petrol in the tanker in
(i) m^{3}
(ii) litres
(b) In the parking lot at night, a third of the petrol was stolen.
i) How many litres of petrol was the owner left with?
ii) What was the mass of the remaining petrol given that one cubic metre of petrol has a mass of 700 kg ?
(3 marks)
(iii) At the weigh bridge, any vehicle carrying excess of $50,000 \mathrm{Kg}$ was charged Sh .12 .50 for every extra kilogram. How much fine did the owner of the tanker pay? (2 marks)
20. The figure below represents a quadrilateral piece of land $A B C D$ divided into three triangular plots. The lengths BE and CD are 100 m and 80 m respectively. Angle $\mathrm{ABE}=$ $30^{\circ}, \mathrm{ACE}=45^{\circ}$ and $\mathrm{ACD}=100^{\circ}$.

(a) Find to four significant figures:
(i) The length of AE.
(ii) The length of AD.
(iii) The perimeter of the piece of land.
(b) The plots are to be fenced with five strands of barbed wire leaving an entrance of 2.8 m wide to each plot. The type of barbed wire to be used is sold in rolls of lengths 480 m . Calculate the number of rolls of barbed wire that must be bought to complete the fencing of the plots.
21. A straight line \mathbf{L}_{1} has a gradient $-1 / 2$ and passes through point $\mathbf{P}(-\mathbf{1}, \mathbf{3})$. Another line \mathbf{L}_{2} passes through the points $\mathbf{Q}(\mathbf{1}, \mathbf{- 3})$ and $\mathbf{R}(\mathbf{4}, \mathbf{5})$.
Find:
(a) The equation of $\mathbf{L}_{\mathbf{1}}$ (2 marks)
(b) The equation of \mathbf{L}_{2} in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
(3 marks)
(c) The equation of a line passing through a point $\mathbf{S}(\mathbf{0}, \mathbf{5})$ and is perpendicular to \mathbf{L}_{2}.
(3 marks)
(d) The equation of a line through \mathbf{R} parallel to \mathbf{L}_{1}.
22. a) A port B is on a bearing 080° from a port A and a distance of 95 km . A Submarine is stationed at a port D , which is on a bearing of 200° from A , and a distance of 124 km
from B. A ship leaves B and moves directly Southwards to an Island P, which is on a bearing of 140° from A . The Submarine at D on realizing that the ship was heading to the Island P , decides to head straight for the Island to intercept the ship. Using a scale of 1 cm to represent 10 km , make a scale drawing showing the relative positions of A, B, D and P.

Hence find:
b) The distance from A to D.
c) The bearing of the Submarine from the ship when the ship was setting off from B. (1 mark)
d) The bearing of the Island P from D.
e) The distance the Submarine had to cover to reach the Island P.
marks)
23. (a) Find the inverse of the matrix:

$$
\mathrm{A}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)
$$

b) Amina bought 20 bags of oranges and 15 bags of mangoes for a total of sh. 9,500. Nafula bought 30 bags of oranges and 20 bags of mangoes for a total of sh. 13,500. If he price of a bag of oranges is X and that of mangoes is y :
j) Form two equations to represent the information above.
ii) Hence use the matrix A^{-1} above to find the price of one bag of each item.
(c) The price of each bag of oranges was increased by 10% and that of mangoes reduced by 10%. The businesswomen (Amina and Nafula) bought as many oranges and as many mangoes as they bought earlier. Find the total cost of oranges and mangoes that each businesswomen bought after the percentage change.
(3mks)
24. The displacement, s metres, of a moving particle from a point O , after t seconds is given by, $s=t^{3}-5 t^{2}+3 t+10$
a) Find s when $\mathrm{t}=2$
b) Determine:
i) the velocity of the particle when $t=5$ seconds;
ii) the value of t when the particle is momentarily at rest
c) find the time, when the velocity of the particle is maximum

NAME: \qquad
\qquad ADM \qquad
\qquad
\qquad
\qquad

121/1

MATHEMATICS
PAPER 1
2112 HOURS

- Kenya Certificate of Secondary Education
 SET 6 QUESTION PAPER

Instructions to Candidates

1. Write your name, Admission number and class in the spaces provided.
2. Sign and write date of the examination in the spaces provided.
3. The paper contains TWO sections: Section I and II
4. Answer ALL questions in section I and STRICTLY ANY FIVE questions from section II.
5. All working and answers must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be awarded for correct working even if the answer is wrong.
8. This paper consists $\mathbf{1 6}$ printed pages. The candidates should check to ascertain that all the pages are
printed as indicated and no question is missing.
9. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.

For Examiner's use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

GRAND TOTAL

17	18	19	20	21	22	23	24	TOTAL

SECTION I(50marks)

Answer all the questions in this section

1. The sum of four consecutive odd integers is less than 64 . Determine the first four such integers.
2. Solve the equation

$$
\frac{2}{t-1}-\frac{1}{t+2}=\frac{1}{t}
$$

3. Moses has twenty shillings more than Jane. After he spends a quarter of his money and Jane $1 / 5$ of hers, they find that Jane has 10 shillings more than Moses. How much money did both have?
4. The sum of interior angles of two regular polygons of side $n-1$ and n are in the ratio 4:5. Calculate;
(i) The size of interior angle of the polygon with side ($\mathrm{n}-1$) (2 marks)
(ii) The size of exterior angle of the polygon with side ($\mathrm{n}-1$)
5. The figure below is a rhombus ABCD of sides 4 cm . BD is an arc of circle center C . Given that $\angle A B C=138^{\circ}$. Find the area of shaded region correct to 3 significant figures.
(Take $\pi=\frac{22}{7}$)

6. Find the greatest common factor of $x^{3} y^{2}$ and $4 x y^{4}$. Hence factorise completely the expression $x^{3} y^{2}-4 x y^{4}$
7. The figure below is a part of the sketch of a triangular prism ABCDEF.

Complete the sketch by drawing the hidden edges using broken lines. (3 marks)
8. Without using calculator, solve for n in the equation $1-\left(\frac{1}{3}\right)^{n}=\frac{242}{243}$
9. Given that $O A=\binom{-2}{10}$ and $O B=\binom{x}{-2}$ and that the magnitude of $A B$ is 13 units, find the possible values of x .
10. Ali travelled a distance of 5 km from village A to village B in direction of $\mathrm{N} 60^{\circ} \mathrm{E}$. He then
changed direction and travelled a distance of 4 km in the direction of 135° to village C.
a) Using a scale of 1 cm to represent 1.0 km represent the information on an accurate diagram.
(2marks)
b) Using scale drawing in (a) above determine
(i) The distance between A and C
(ii) The bearing of A from C
11. Three numbers p, q and r are such that $p^{3} \times q^{2} \times r=2250$. Find p, q and r.
(3 marks)
12. A bus starts off from Kitale at 9.00 a.m and travels towards Kakamega at a speed of $60 \mathrm{~km} / \mathrm{hr}$. At 9.50 a.m, a matatu leaves Kakamega and travels towards Kitale at a speed of $60 \mathrm{Km} / \mathrm{h}$. If the distance between the two towns is 150 km , how far from Kitale will the two vehicles meet?
3marks)
13. Find the inequalities that satisfy the region R shown in the figure below. marks)

14. A dealer sells a certain spare part for Kshs 650 , making a profit of 30%. The manufacturer reduces the price to the dealer by Kshs 50 and the dealer reduces his selling price by the same amount. Find the dealer's new percentage profit.
15. A taxi travelling at $20 \mathrm{~m} / \mathrm{s}$ accelerates uniformly and in 4 seconds, its velocity is $30 \mathrm{~m} / \mathrm{s}$. it maintains this velocity for another 5 seconds before decelerating uniformly to rest after 3 seconds. Calculate the total distance travelled by the taxi
during the journey.
(3marks)
16. The length of a rectangle is $(x+3) \mathrm{cm}$. If the width of the rectangle is two thirds its length and the perimeter is 40 cm , find its width.
(3 marks)

SECTION II

Answer only five questions in this section

17. A sales agents earns a basic salary of Kshs. 20,000 per month. In addition, he is entitled for a commission for sales in excess of Kshs. 200,000 as follows:

Sales	Commission
$0-200,000$	0%
$200,001-300,000$	1.5%
$300,001-400,000$	3.0%
Page $\mathbf{8 0}$ of $\mathbf{1 7 8}$	

$400,001-500,000$	4.5%
Above 500,000	6.0%

(a) On the month of April 2019, her total sales were Kshs. 558,200. Determine his total earnings that month.
(b) On the month of May 2020, his sales increase in the ratio 6:5, Calculate his total earnings on May 2020 to the nearest shilling.
(3marks)
(c) On the month of June 2020 his total earnings were Kshs. 39,800. Calculate the difference in his total sales in months of May and June.
18. (a)A man standing 20 m away from a building notices that the angles of elevation of the top and bottom of a flagpole mounted at the top of the building are 64° and 62° respectively. Calculate to 1d.p. the height of the flagpole.
b) The angles of elevation of the top of a tree from P and Q which are 30 m apart are 22° and
32^{0} respectively. Given that the two points are on the same side of the tree and on a Straight line, determine the height of the tree.
19. Two security personnel were together at a road junction. Each had a walkie talkie. The maximum distance at which one could communicate with the other was 2.5 km . One of the personnel walked due East at $3.2 \mathrm{~km} / \mathrm{h}$ while the other walked due North at $2.4 \mathrm{~km} / \mathrm{h}$. The personnel who headed east travelled for x km while the one who headed North travelled for y km before they were unable to communicate.
(a) Draw a sketch to represent the relative positions of the policemen.
(b) (i) From the information above form two simultaneous equations in form of x and y.
(2 marks)
(ii) Find the value of x and y.
(5 marks)
(iii)Calculate the time in minutes taken before the security personnel were unable
to communicate.
20. ABCD is a rectangle with A as the point $(-3,1)$.
(a) If AB is parallel to the line $3 y-x=4$, find the equation of line AB .
(b) Find the equation of line AD.
(d) If C has coordinates $(2,6)$, find the equations of the line BC and CD in the form $\frac{x}{a}+\frac{y}{b}=1$
(e) Find the coordinates of B
21. The figure below shows a rectangular sheet of metal whose length is twice its width.

An open rectangular tank is made by cutting equal squares of length 60 cm from each of its four corners and folding along the dotted lines shown in the figure above. Given that
the capacity of the tank so formed is 1920 litres and the width of the metal sheet used was xcm ;
c) (i) Express the volume of the tank formed in terms of $\mathbf{x ~ c m}$.
(ii) Hence or otherwise obtain the length and width of the sheet of metal that was used.
(3 marks)
d) If the cost of the metal sheet per m^{2} is Kshs 1000 and labour cost for making the tank is 300 per hour. Find the selling price of the tank in order to make a 30% profit if it took 6 hours to make the tank.
22. a) The ratio of Juma's and Akinyi's earnings was 5: 3. Juma's earnings rose to Ksh 8400 after an increase of 12%. Calculate the percentage increase in Akinyi's earnings given that the sum of their earnings was Ksh. 14100
(b) Juma and Akinyi contributed all the new earnings to buy maize at Ksh 1175 per bag. The maize was then sold at ksh 1762.50 per bag. The two shared all the money from the sales of the maize in the ratio of their contributions. Calculate the amount that Akinyi got. (4 marks)
23. a) Given that $\mathbf{A}=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right) \quad$ find inverse of \mathbf{A}
(1mark)
b) Two colleges, Utalii and Huduma purchased beans and rice. Utalii bought 90 bags of beans and 120 bags of rice for a total of sh 360000 . Huduma bought 200 bags of beans and 300 bags of rice for a total of sh 850000 . Use the inverse of \mathbf{A} obtained
in (a) above to find the price of one bag of each item. (6marks)
c) The price of beans later decreased in the ratio $4: 5$ while that of rice increased by 20%. A businessman bought 20 bags of beans and 30 bags 0 f rice. How much did he pay?
24. The figure below shows a model of a solid in the shape of a frustum of a cone with a hemispherical top.

The diameter of the hemispherical top is 70 cm and is equal to the diameter of the top of the frustum. The frustum has a base diameter of 28 cm and a slant height of 60 cm .
(a) Calculate the area of the hemispherical surface.
(1mark)
(b) Calculate the slant height of the cone from which the frustum was cut. (4marks)
(c) Calculate the total surface area of the model.

NAME:
INDEX NO \qquad
SCHOOL: \qquad ADM \qquad
\qquad
\qquad
\qquad
121/1
MATHEMATICS PAPER 1

$21 / 2$ HOURS

SET 7 QUESTION PAPER

- Kenya Certificate of Secondary Education

Instructions to Candidates

1. Write your name, Admission number and class in the spaces provided.
2. Sign and write date of the examination in the spaces provided.
3. The paper contains TWO sections: Section I and II
4. Answer ALL questions in section I and STRICTLY ANY FIVE questions from section II.
5. All working and answers must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
7. Marks may be awarded for correct working even if the answer is wrong.
8. This paper consists $\mathbf{1 5}$ printed pages. The candidates should check to ascertain that all the pages are
printed as indicated and no question is missing.
9. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used except where stated otherwise.

For Examiner's use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

Section II

GRAND TOTAL

17	18	19	20	21	22	23	24	TOTAL

SECTION I(50marks)

Answer all the questions in this section

1. Without using a calculator evaluate.

$$
\frac{2 \frac{1}{3}-1 \frac{1}{5} \text { of } 4}{\frac{1}{4}-\left(-\frac{1}{3}\right)^{2}}
$$

2. A piece of rectangular plot measuring 27 m by 16 m is to be divided into smaller rectangular units leaving no remainder. Calculate the highest number of smaller units whose dimensions are each greater than 1 m that can be obtained from the plot.
(3marks)
3. Given that $x=1 . \dot{1} 1 \dot{3}$, find the exact value of .
4. Using the grid provided below, solve the simultaneous equation (3 marks)
$3 x-4 y=10$
$5 x+7 y=3$

5. Write the following ratios in ascending order $2: 3,15: 16,7: 6,13: 15$ (3 marks)
6. Under an enlargement, the image of the points $A(3,1)$ and $B(1,2)$ are $A^{\prime}(3,7)$ and $B^{\prime}(7,5)$. Find the centre and scale factor of enlargement. (4 marks)
7. A Kenyan businessman intended to buy goods worth US dollar 20,000 from South Africa. Calculate the value of the goods to the nearest south Africa (S.A) Rand given that 1 US dollar $=$ Ksh 101.9378 and 1 S.A Rand $=$ Ksh 7.6326.
8. Solve for x in the following equation.

$$
4^{\mathrm{x}}\left(8^{\mathrm{x}-1}\right)=\frac{\sin 45^{0}}{\cos 45^{\circ}}
$$

9. From a viewing tower 40 metres above the ground, the angle of depression of an object on the ground is 36° and the angle of elevation of an aircraft vertically above the object is 48°. Calculate the height of the aircraft above the objet on the ground.
10. Solve the equation $2 x^{2}+3 x=5$ by completing the square method.
11. The mean of five numbers is 20 . The mean of the first three numbers is 16 . The fifth number is greater than the fourth by 8 . Find the fifth number.
12. Simplify:

$$
\left[\frac{x^{3}-x y^{2}}{x^{4}-y^{4}}\right]^{-1}
$$

13. The figure below ABCDE is a cross-section of a solid ABCDEPDRST. The solid has a uniform cross-section. Given that AP is an edge of the solid, complete the sketch showing the hidden edges with a broken line.

14. In the circle below, O is the centre, angle $D A B=87^{0}$ and acute angle $A 0 D=62^{\circ} . C D$ is a tangent to the circle at D .

Calculate the size of;
i) Angle ABD.
(ii) Angle ADC
(iii) Angle ADB
15. Given that $\log \mathrm{a}=0.30$ and $\log \mathrm{b}=0.48$ find the value of $\log \frac{b^{2}}{a}$.
16. The area of a rhombus is $60 \mathrm{~cm}^{2}$. Given that one of its diagonal is 15 cm long. Calculate the perimeter of the rhombus.

SECTION II (50marks)

Answer 5 questions only in this section

17. Three business partners Abila, Bwire and Chirchir contributed Ksh120,000, Ksh 180,000 and Ksh 240,000 respectively to boost their business. They agreed to put 20% of the profit accrued back into the business and to use 35% of the profits for

$$
\text { Page } \mathbf{9 4} \text { of } \mathbf{1 7 8} \quad \text { Mathematics Paper } \mathbf{1}
$$

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181
running the business. The remainder was to be shared among the business partners in the ratio of their contribution. At the end of the year, a gross profit of Ksh225,000 was realised.
a. Calculate the amount.
(i) Put back into the business.
(ii) Used for official operations.
(1mar
b. Calculate the amount of profit each partner got.
c. If the amount put back into the business was added to individual's shares proportionately of their initial contributions, find the amount of Chirchir's new shares.
18. One day Mr. Makori bought some oranges worth Ksh 45, on another day of the same week his wife Mrs.Makori spent the same amount of Money but bought the oranges at a discount of 75 cents per orange
a) If Mr.Makori bought an orange at Kshs x , write down and simplify an expression for the total number of oranges bought by the two in the week.
(3marks)
b) If Mrs.Makori bought 2 oranges more than her husband, find how much each spent on an orange.
c) Find the number of oranges bought by the two.
(2 marks)
19. Two lines $\mathrm{L}_{1}: 2 \mathrm{y}-3 \mathrm{x}-6=0$ and $\mathrm{L}_{2}=3 \mathrm{y}+\mathrm{x}-20=0$ intersect at a point A .
a) Find the coordinates of A
b) A third line L_{4} is perpendicular to L_{2} at point A . Find the equation of L_{3} in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where m and c are constants.
c) Another line L 4 is parallel to L_{1} and passes through ($-2,3$). Find the x and y intercepts of L_{4}
20. The mases to the nearest kilogram of some student were recorded in table below

Mass (kg)	$41-50$	$51-55$	$56-65$	$66-70$	$71-85$
Frequency	8	12	16	10	6
Height of rectangle					0.2

a). Complete the table above to 1 decimal (2 marks)
b) On the grid provided below, draw a histogram to represent the above information

c) Use the histogram to
i) State the class in which the median mark lies.
ii) Estimate the median mark
iii) The percentage number of students with masses of at least 74 kg .
(2marks)
21. Use a ruler and compass only for all the constructions in this question.
a) Construct a triangle XYZ in which $\mathrm{XY}=6 \mathrm{~cm}, \mathrm{YZ}=5 \mathrm{~cm}$ and angle $\mathrm{XYZ}=120^{\circ}$. (2marks)
b) Measure XZ and angle YXZ.
c) Construct the perpendicular bisector of XZ and let it meet XZ at M .
d) Locate a point W on the opposite of XZ as Y and that $\mathrm{XW}=\mathrm{ZW}$ and $\mathrm{YW}=9 \mathrm{~cm}$ and hence complete triangle XZW.
e) Measure WM and hence calculate the area of triangle XZW.
22. The diagram below shows the speed time graph for a bus travelling between two stations, the bus starts from rest and accelerates uniformly for 75 seconds. It then travels at constant speed for 150 seconds and finally decelerates uniformly for 100 seconds.

(a) Given that the distance between the two stations is 5225 m . Calculate

> (i) maximum speed in km / h attained by the bus. marks)

> (ii) the acceleration of the bus marks)
(b) A van left Nairobi at 8.00 a.m and travelled towards Mombasa at an average speed of $80 \mathrm{~km} / \mathrm{h}$. At 8.30 am a car left Nairobi and travelled along the same road at an average speed of $120 \mathrm{~km} / \mathrm{h}$.
(i) Calculate the distance covered by the car to catch up with the van.
(ii) Find the time of the day when the car caught up with van.
23. While designing the water circulation system, planners of an estate used assumption that each housing unit in the estate will require at least $0.32 \mathrm{~m}^{3}$ of water per day. To

```
Page 99 of 178 Mathematics Paper 1
```

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181
satisfy this need, they are to use a water pipe of radius 8 cm to distribute the water. The water will be flowing in the pipe for only 14 hours a day at the rate of $24 \mathrm{~cm} / \mathrm{s}$.
a) Determine the amount of water to the nearest litres, supplied in one hour.
(3marks)
b) What is the maximum number of housing units that can be supported by the water circulation system? (Assume that a housing unit requires at most $0.32 \mathrm{~m}^{3}$ of water per day).
(2marks)
c) Each housing unit will pay a flat rate of sh. 280 per month for the supply of water. If the number of housing units in the estate is to be maximum and all end up being occupied, calculate the amount of money that will be collected in a month.
d) The maximum number of housing units were constructed and all got occupied. The estate ended up using on average $0.35 \mathrm{~m}^{3}$ of water per housing unit per day. How much longer was the water pumped per day to satisfy the estate's water demand?
24. The equation of the curve is $y=x^{3}-2 x^{2}-1$
(a) Determine

[^1](ii) the nature of the stationary points in (a) (i) above (2 marks)
(b) Determine
(i) the equation of the tangent to the curve at $x=1 \quad$ (2marks)
(ii) the equation of the normal to the curve at $x=1 \quad$ (2marks)

NAME: \qquad
\qquad ADM \qquad
\qquad
\qquad TARGET

Kenya Certificate of Secondary Education

MATHEMATICS PAPER 1
TIME: $\mathbf{2 T}^{1 ⁄ 2}$ HOURS
SET 8 QUESTION PAPER

INSTRUCTIONS TO CANDIDATES:

1. Write your name, index number and school in the spaces provided above.
2. Sign and Write the date of examination in the spaces provided above.
3. This paper consists of two Sections; Section I and Section II.
4. Answer all the questions in Section I and any FIVE questions from Section II.
5. All answers and working must be written on the question paper in the spaces provided below each question.
6. Show all the steps in your calculation, giving your answer at each stage in the spaces provided
below each question.
7. Non-programmable silent electronic calculators and KNEC Mathematical tables may be used
unless stated otherwise.

FOR EXAMINER'S USE ONLY:

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL

SECTION I (50 MARKS)

Answer ALL questions in this section in the spaces provided

1. Without using mathematical tables or calculator evaluate;
```
Page 102 of 178 Mathematics Paper 1
```

FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181
2. Simplify completely $\frac{9 a^{2} y-16 b^{2} y^{3}}{4 b y^{2}-3 a y}$
(3mks)
3. A water tank has a capacity of 50 litres. A similar model tank has a capacity of 0.25 litres. if the larger tank has a height of 100 cm . calculate the height of the model tank. (3mks)
4. Simplify $\sqrt{\frac{12 x^{4} y^{-1} z^{5}}{3 x^{-2} y^{-3} z^{3}}}$
5. One interior angle of a certain polygon is 84°. If each of the other angles is 147^{0}, how many sides does this polygon have?
6. During a certain period the exchange rates at a Pesa point were;

Buying shs Selling shs
Riyal
19.68
19.78

A tourist arrived with 5480 Riyal which he changed to Kshs. He spend $\frac{2}{3}$ of the total in visiting various sites. As he was leaving he changed all he had to Riyal. How much did he leave with? Answer to 1 d.p.
7. Find the area of the triangle below given that lines $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}, \mathrm{BD}$

$$
\begin{equation*}
=28 \mathrm{~cm} \text { and } \square C B D=32^{\circ} \tag{4mks}
\end{equation*}
$$

8. A shear parallel to the x-axis maps point $(1,2)$ onto a point $(7,2)$. Determine the shear factors and hence state the shear matrix (invariant line is $y=0$)
9. The diagram below shows a circle ABCDE . The line FEG is a tangent to the circle at point E. Line DE is parallel to CG,

Calculate
(a) AEG
(2mks)
(b) ABC
10. Wasike and Wanjala live 40km apart. Wasike starts cycling from his home at $8.00 \mathrm{a} . \mathrm{m}$ toward's Wanjala's house at $16 \mathrm{~km} / \mathrm{h}$. Wanjala stars cycling towards Wasike's house 30 minutes later at $8 \mathrm{~km} / \mathrm{h}$. what time did they meet.
11. The line which joins the point $A(3, K)$ and $B(-2,5)$ is parallel to the line whose equation is $5 y+2 x-7=0$. Find the value of K.
(3mks)
12. Given that $\operatorname{Cos} \mathrm{A}=\frac{5}{13}$ and angle A is acute, without using tables or calculator, find the value of
$2 \tan \mathrm{~A}+3 \sin \mathrm{~A}$.
13. Find the greatest integral value of x which satisfies. $\frac{2 x+3}{2}<\frac{8-3 x}{5}<\frac{5 x+6}{3}$ (3mks)
14. The figure below (not drawn to scale) is a right pyramid with slant height of 5 cm and square base of 3 cm .

(a) Draw its net and label it.
(b) Calculate the total surface area.
15. A plane leaves town P to town Q on a bearing of 130° and a distance of 350 km . it then flies

500 km on a bearing of 060° to town R. Find, by scale drawing the distance between town R and
town P .
16. The following data was obtained from the mass of a certain animal. Complete the table and the histogram below.

$\operatorname{Mass}(\mathrm{kg})$	frequency
$41-50$	20
$51-55$	
$56-65$	40

SECTION II: (50 MARKS)

Answer only FIVE question from this section.

17. The ends of the roof of a workshop are segment of a circle of radius 10 m . The roof is 20 m long. The angle at the centre is 120° as shown in the figure below.

(a) Calculate:
(i) The area of one end of the roof.
(ii) The area of the curve surface of the roof.
(b) What would be cost to the nearest shilling of covering the two ends and the curved surface with galvanized iron sheet costing sh. 80 per square meter.
18. A rectangular tank whose internal dimensions are 1.7 m by 1.4 m by 2.2 m is three quarters full of milk.
a) Calculate the volume of milk in litres.
b) The milk is packed in small packets in a shape of a right pyramid with an equilateral base triangle of side 16 cn . The height of each packet is 13.6 cm . Full packets obtained are sold at ksh. 25 per packet.
i) The volume in cm^{3} of each packet to the nearest whole number.
iii) The amount of money realized from the sell of milk.
19. (a) On the grid provided below, plot the polygon $\mathrm{A}(3,7), \mathrm{B}(5,5), \mathrm{C}(3,1), \mathrm{D}(1,5)$ on a cartesian plane
(2mks)
(b) $A^{1} B^{1} C^{1} D^{1}$ is the image of $A B C D$ under a translational $T\binom{-6}{-9}$. Plot $A^{1} B^{1} C^{1} D^{1}$ and state its coordinates.
(2mks)
(c) Plot $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$, the image of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ after a rotation about $(-1,0)$ through a positive quarter turn. State its coordinates.
(3mks)
(d) $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$ is the image of $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ after a reflection in the line $\mathrm{Y}=\mathrm{x}+2$. Plot $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$ and state its coordinates (3mks)

20. A straight line passes through the points $(8,-2)$ and $(4,-4)$.
a) Write its equation in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, where a, b and c are integers. (3 Marks)
b) If the line in (a) above cuts the x -axis at point P , determine the coordinates of P . (2 Marks)
c) Another line, which is perpendicular to the line in (a) above passes through point P and cuts the y axis at the point Q. Determine the coordinates of point Q.
(3 Marks)
d) Find the length of QP
(2 Marks)
21. Matrix P is given by
$\left(\begin{array}{ll}4 & 7 \\ 5 & 8\end{array}\right)$
(a) Find p^{-1}
(3mks)
(b) Two institutes regions and Alphax purchased beans at sh.B per bag and maize at sh.M per bags. Regions purchased 8 bags of beans and 14 bags of maize for sh. 47,600. Alphax purchased 10 bags of beans and 16 bags of maize for sh. 57,400.
(i) Form a matrix equation to represent the information above
(ii) Use the matrix p -1 to find the prices of one bag of each item
(c)The price of bean later went up by 5% and that of maize remain constant. Regions bought the same quality of beans but spent the same total amount of money as before on the two items. State the new ratio of beans and maize.
(2mks)
22. In the diagram below, the coordinates of points A and B are $(1,6)$ and $(15,6)$
respectively. Point N is on OB and that $3 \mathrm{ON}=2 \mathrm{OB}$.ne OA is produced to L such that $\mathrm{OL}=3 \mathrm{OA}$

(a) Vector LN.
(3 marks)
(b) Given that a point M is on LN such that $\mathrm{LM}: \mathrm{MN}=3: 4$, find the coordinate of M . (2 marks)
(c) If line OM is produced to T such that $\mathrm{OM}: \mathrm{MT}=6: 1$
(i) Find the position vector of T .
(ii) Show that points L, T and B are collinear.
23. Complete the table below for the functions $y=2 x^{2}-3 x-5$ for $-2 \leq x \leq 3 \quad$ (2 mks)

x	-2	-1	0	1	2	3
y						

(b) Draw the graph of $y=2 x^{2}-3 x-5$ from the table above. (2 mks)

Page 114 of $178 \quad$ Mathematics Paper 1
FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181
(c) Use your graph to solve the equation $y=2 x^{2}-3 x-5=0$

$$
\mathrm{mk})
$$

(e) From your graph, find the value of X which satisfy the simultaneous equations.

$$
\mathrm{mk})
$$

$$
\begin{aligned}
& y=2 x^{2}-3 x-5 \\
& y=2 x-2
\end{aligned}
$$

(d) Write down the equation which is satisfied by the values of x in (e) above in the form

$$
a x^{2}+b x+c=0
$$

(2 mks)
24. The diagram below shows a circle ABC with $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$, and $\mathrm{AC}=14 \mathrm{~cm}$

Calculate to 4 significance figures:
(a) The angle ACB
(b) The radius of the circle.
(c) The area of the shaded region

NAME:
INDEX NO \qquad
SCHOOL: \qquad ADM \qquad STREAM: \qquad
\qquad TARGET \qquad

Mathematics

Time 2 ½ hours

SET 9 QUESTION PAPER

INSTRUCTIONS TO CANDIDATES

1. Write your name, index number and class in the spaces provided above.
2. The paper contains two sections: Section I and Section II.
3. This paper contains 14 PRINTED pages make sure all PAGES ARE PRINTED and NON IS MISSING
4. Answer ALL the questions in Section I and ANY FIVE questions from Section II.
5. All working and answers must be written on the question paper in the spaces provided below each question.
6. Marks may be awarded for correct working even if the answer is wrong.
7. Negligent and slovenly work will be penalized.
8. Non-programmable silent electronic calculators and mathematical tables are allowed for use.

For examiners use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Grand |
| :---: |
| Total |\quad

This is an educational empowerment program sponsored by His Excellency Dr. Kiarie Badilisha:-Governor of Nyandarua County

SECTION A (50 marks)

Answer all questions in this section in the spaces provided.

1. Without using a calculator evaluate

$$
\frac{5 \times 6+(-76) \div 4+27 \div 3}{(-5) \div 3 \times(-4)}
$$

(3marks)
2. (a) Express 2268 in terms of its prime factors
(1mark)
(b) Hence determine the smallest positive number x such that 2268 x is a perfect square.

```
(2marks)
```

3. Elvis arrived in Kenya with 5000 sterling pound, he exchanged it to Kenya Shilling and spent sh. 267 100. Before jetting out of the country, he exchanged the balance into Euros. Using the exchange rates below, calculate the amount he obtained in Euros in Kenya shillings. (3marks)

Currency	Buying	Selling
1 Sterling pound	114.20	114.50
1Euro	101.20	101.30

4. Simplify the expression

$$
\frac{2 x^{2}+3 x-2}{x^{3}-4 x}
$$

5. When two wires of length 179 m and 234 m are divided into pieces of equal lengths a remainder of 3 m is left in each case. Find the least number of pieces that can be obtained.
(3marks)
6. Without using calculator, solve for n in the equation

$$
1-\left(\frac{1}{3}\right)^{n}=\frac{242}{243}
$$

(3marks)
7. Solve for y in the equation

$$
\begin{equation*}
\frac{7-y}{4}-\frac{9-2 y}{3}=\frac{1}{2} \tag{3marks}
\end{equation*}
$$

8. Two similar solids have surface area of $48 \mathrm{~cm}^{2}$ and $108 \mathrm{~cm}^{2}$ respectively. Find the volume of the smaller solid if the bigger solid has a volume of $162 \mathrm{~cm}^{3}$
(3 marks)
9. Use reciprocal table only to evaluate $\frac{1}{0.325}$ (3marks)

Hence, evaluate $\frac{\sqrt{ } 0.25}{0.325}$ to 1.d.p
10. A plot measuring 1.2 m by 19.1 m is surrounded by a path 0.5 m wide. Find the area of the path in square metres.
11. The interior angle of a regular polygon is 60° more than its exterior angle, find the number of sides of the polygon.
(3marks)
12. In the figure below ABCDE is a cross-section of a solid. The solid has a uniform crosssection. Given that AP is an edge of the solid, complete the sketch showing the hidden edges with a broken lines.

13. If $\tan x=\frac{1}{\sqrt{3}}$ find without using tables or calculator the value of Sin $(90-x)+\cos (90-x)$ leaving your answer in simplified surd form (3marks)
14. A line perpendicular to the line $3 y-2 x=2$ passes through the point $(-3,2)$. Determine the equation of the line and write it in the form $\mathrm{ax}+\mathrm{by}=\mathrm{c}$ where a, b, and c are constant.
(3marks)
15. The circle below whose area is $18.05 \mathrm{~cm}^{2}$ circumscribes triangle ABC where $\mathrm{AB}=6.3 \mathrm{~cm}$, $B C=5.7 \mathrm{~cm}$ and $\mathrm{AC}=4.2 \mathrm{~cm}$. Find the area of the shaded part. Marks)

16. In a book store, books packed in cartons are arranged in rows such that there are 50 cartons in the first row, 48 cartons in the next row, 46 in the next and so on.
(a) How many cartons will there be in the $8^{\text {th }}$ row?
(b) If there are 20 rows in total, find the total number of cartons in the book store.(2 Marks)

SECTION II (50 Marks)

Answer any five questions from this section in the spaces provided.
17. The figure below represents a sector of a circle radius r units. The area of the sector is $61.6 \mathrm{~cm}^{2}$ and the length of the arc AB is one tenth of the circumference of the circle from which the sector was obtained. (Take $\pi=\frac{22}{7}$)

a) Calculate;
i) the angle θ subtended by the sector at the centre. marks)
ii) The radius r of the circle. marks)
b) If the sector above is folded to form a cone;
i) Calculate the base radius of the cone. marks)
ii) The volume of the cone.
marks)
18. Two factories A and B produce both chocolate bars and eclairs. In factory A, it costs Kshs x and Kshs y to produce 1 kg of chocolate bars and 1 kg of eclares respectively. The cost of producing 1 kg of chocolate bars and 1 kg of eclairs in factory B increases by the ratio $6: 5$ and reduce by the ratio $4: 5$ respectively.
a) Given that it costs Kshs 460000 to produce 1 tonne of chocolate bars and 800 kg of eclares in factory A and Kshs 534000 to produce the same quantities in factory B, form two simplified simultaneous equations representing this information.
(3 marks)
b) Use matrix method to find the cost of producing 1 kg of chocolate bars and 1 kg of eclaires in factory A .
marks)
c) Find the cost of producing 100 kg of chocolate bars and 50 kg of eclaires in factory B.
(2 marks)
19. The following measurements were recorded in a field book of a farm in metres ($\mathrm{xy}=$ 400m)

	\mathbf{Y}	
C60	400	
	340	120 D
	300	100 E
B100	240	160 F
A120	220	
	140	

(a) Using a scale of 1 cm representing 4000 cm , draw an accurate map of the farm.(3 Marks)
(b) If the farm is on sale at Kshs. 80,000.00 per hectare, find how much it costs.(7 Marks)
20. The figure below shows a velocity-time graph of an object a which accelerates from rest to a velocity of $\mathrm{V} \mathrm{ms}{ }^{-1}$ then decelerated to rest in a total time of 54 seconds.

a) If it covered a distance of 810 metres;
i) Find the value of V.
(2 marks)
ii) Calculate its deceleration, given that its initial acceleration was $1 \frac{2}{3} m s^{-2}$
b) A bus left town X at 10.45 am and travelled toward town Y at an average speed of $60 \mathrm{~km} / \mathrm{h}$. A car left town X at 11.45 am on the same day and travelled along the same road toward Y at an average speed of $100 \mathrm{~km} / \mathrm{h}$. The distance between town X and town Y is 500 km .
i) Determine the time of the day when the car overtook the bus. (3 marks)
ii) Both vehicles continued towards town Y at their original speeds. Find how long the car had to wait in town Y before the bus arrived. (3 marks)
21. In the diagram below, two circles, centres A and C and radii 7 cm and 24 cm respectively intersect at B and D . $\mathrm{AC}=25 \mathrm{~cm}$.

(a) Show that angle $\mathrm{ABC}=90^{\circ}$.
(b) Calculate
(i) the size of obtuse angle BAD
(3 Marks)
(ii) the area of the shaded part
(4 Marks)
22. (a) a straight line L_{1} whose equation is $9 y-6 x=-6$ meets the x -axis at Z .

Determine the coordinates of Z .
(2 marks)
(b) A second line L_{2} is perpendicular to L_{1} at Z. Find the equation of L_{2} in the form $a x+b y=c$, where, b and c are integers.
(3 marks)
(c) a third line L_{3} passes through the point $(2,5)$ and is parallel to L_{1}. Find:
i) The equation of L_{3} in the form $a x+b y=c$, where a, b and c are integers.
(2 marks)
ii) The coordinate of point R at which L_{2} intersects L_{3}.
(3marks)
23. In the diagram below, the coordinates of points O, P and Q are $(0,0),(2,8)$ and $(12,8)$ respectively. A is a point on $O Q$ such that $4 O A=30 Q$. Line $O P$ produced to R is such as $\mathbf{O R}=5 \mathbf{O P}$.

a) Find vector RA. marks)

b) Given that point \mathbf{L} is on $\mathbf{P Q}$ such that $\mathbf{P L}: \mathbf{L Q}=12: 5$, find vector $\mathbf{R L}$. marks)

c) Show that R, L and A are collinear. marks)
d) Find the ratio of RL:LA. marks)
24. Five points, $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{V}$ and T lie on the same plane. Point Q is 53 km on the bearing of 055° of P. Point R lies 162° of Q at a distance of 58 km . Given that point T is west of P and 114 km from R and V is directly south of P and $\mathrm{S} 40^{\circ} \mathrm{E}$ from T .
a) Using a scale of 1:1,000,000, show the above information in a scale drawing.
b) From the scale drawing determine:

> i) The distance in km of point V from R . marks)
ii) The bearing of V from Q. marks)
iii) Calculate the area enclosed by the points PQRVT in squares kilometers.

THIS IS THE LAST PRINTED PAGE

NAME: INDEX NO \qquad
\qquad ADM \qquad STREAM: \qquad
\qquad TARGET \qquad

121/1

Paper 1

Mathematics

Time 2 ½ hours

SET 10 QUESTION PAPER

INSTRUCTIONS TO CANDIDATES

9. Write your name, index number and class in the spaces provided above.
10. The paper contains two sections: Section I and Section II.
11. This paper contains 14 PRINTED pages make sure all PAGES ARE PRINTED and NON IS MISSING
12. Answer ALL the questions in Section I and ANY FIVE questions from Section II.
13. All working and answers must be written on the question paper in the spaces provided below each question.
14. Marks may be awarded for correct working even if the answer is wrong.
15. Negligent and slovenly work will be penalized.
16. Non-programmable silent electronic calculators and mathematical tables are allowed for use.

For examiners use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total

Grand
Total \square

SECTION I

Attempt ALL questions in this section.

1. A certain fraction given as $\frac{31250}{11907}$ is multiplied by another fraction $\frac{a}{b}$ such that the final result gives a perfect cube. Determine the values of a and b if they represent the least possible integers.
(3 marks)
2. Simplify the expression given by marks $\}$

$$
\frac{6 v u^{2}-6 v u}{3 v^{2} u^{2}-3 v^{2} u^{3}}
$$

3. Given that $\cos 2\left(\theta-\frac{7}{5}\right)^{0}=\sin \frac{1}{3}(\theta+25)^{0}$ calculate the exact value of θ (3 marks)
4. Solve the inequality and represent the solution on a number line. marks)

$$
6-4 \mathrm{x} \leq \mathrm{x}<\frac{4 x+10}{3}
$$

5. A straight line L_{1} passes through a point M which is the mid - point of $A B$ where $A(-1,-3)$ and
$B(-3,5) . L_{1}$ is perpendicular to the line L_{2} whose equation is $y+5 x=0$. Calculate the distance of point M from the line L_{2}.
(3 marks)
6. Use logarithms tables to evaluate: \{3
marks $\}$
\qquad
$(4.261)^{2}+0.00869$
7. Find the values of RT given that the triangles RPQ and RST are similar.

8. Calculate the values of x and a in the equation given below (4 marks)

$$
24^{x-1} \times 243^{x-1}=2^{a} \times 3^{3 a-6}
$$

9. Mr. Kirui earns a basic salary of sh. 12,000 per month. In addition he is also paid a commission of $2 \frac{1}{2}$ $\%$ for sales above sh. 15,000. In a certain month, he sold goods worth sh. 140,000 at a discount of 5\%.

Page 138 of 178

Mathematics Paper 1

Calculate his total earning that month. (3marks)
10. Using a pair of compasses and ruler only construct a triangle $A B C$ in which $A B=6 \mathrm{~cm}, \angle$ $C A B=75^{\circ}$ and $B C=8 \mathrm{~cm}$.
(2 marks)
Without any measurement, divide the line $A B$ into 7 equal parts and hence locate a point X such that $A X: X B=4: 3$
(2 marks)
11. Water flowing at a rate of $2 \mathrm{~m} / \mathrm{sec}$ through two pipes of diameter 3 cm and 5 cm respectively deliver water to a 6 cm diameter pipe. Calculate the speed of flow in the 6 cm pipe if all are kept full. Give your answer in $\mathrm{m} / \mathrm{sec}$
(3 marks)
12. In the circle O is the centre, angle $D A B=88^{\circ}$. Arc $A B$ is twice arc $A D$.

Calculate angle AOB.

13. Without using a calculator, determine the perimeter of a rhombus whose diagonals are 6.624 cm and 10.52 cm . (Mathematical tables can be used)
(3 marks)
14. A line $A B, 8 m$ long is divided into 2 parts, $A C$ and $C B$ such that $A C: C B=3: 5$. A further point D divides $C B$ in the ratio $n: 1$. If $A D: D B=19: 5$, find the value of n. marks)
15. A train 88 m long moving at $x \mathrm{~km} / \mathrm{h}$ overtakes a second train moving at $56 \mathrm{~km} / \mathrm{h}$ in the same direction.
a. Given that the first train takes 13.2 seconds to pass a passenger in the second train Calculate the speed of the first train.
(2 marks)
b. Calculate the length of the second train if it passes the other one completely in $22 \frac{1}{2}$ seconds.
(2 marks)
16. The graph of $y=a x^{2}+b x+c$ passes through the origin. The gradient of the tangent when $x=1$ is 4 and when $x=2$ is 5 . Find the values of a, b and c.
(3 marks)

(50 marks)

17. A triangular piece of land $A B C$ has sides $A B=100 \mathrm{~m}, B C=150 \mathrm{~m}$ and $A C=190 \mathrm{~m}$.

a) Calculate the area of the triangular piece of land ABC marks)
b) Calculate the value of angle ACB. (3 marks)
c) A new piece of land ABCD is a trapezium with $\mathrm{AD} / / \mathrm{BC}$ whose area is three times that of triangle $A B C$, calculate the perimeter of $A B C D$.
marks)
18. From the top A of a building 125 m above a street, the angle of elevation of the top B of a second building on the opposite side is $18^{0} 36$ 'and the angle of depression of the base of the second building from A is $39^{\circ} 48^{\prime}$
a. Calculate the width of the street
marks
b. Calculate the height of the wall on the opposite side marks)
c. A taut extension string connects points A and B. A bird spots an insect sitting at a point X on the string. X is three quarter way from A. The bird's landing at X causes vertical sag of 50 cm on X . Calculate the angle depression of X from B after the sag. marks)
19. A school with n students planned to purchase a van costing Ksh. 2,000,000. It was decided that each student had to contribute an equal amount to meet the cost of the van. Forty students left the school before contributing. Then, each of the remaining students had to contribute Ksh 2500 more.
a) Form an equation in n and hence find the number of students who were in the school at the beginning.
marks)
b) Before the students made their contribution, the area MP agreed to pay for 30% of the cost
of the bus. Calculate the amount each student contributed. marks)
c) The students' contribution consisted of the amount they received from members of the public and from their parents. These amounts were in the ratio 5:17. Calculate the total amount the students received from their parents.
20. In the figure below, O is the centre of the circle. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are points on the circumference of the circle. $\mathrm{A} ; \mathrm{O}, \mathrm{X}$ and C are points on a straight line. DE is a tangent to the circle at D .
Angle $\mathrm{BOC}=48^{\circ}$ and angle $\mathrm{CAD}=36^{\circ}$.

a. Giving reasons in each case, find the value of the following angles:
a) Angle CBA.

> (2marks)
b) Angle $B D E$

> (2marks)
c) Angle CED
(2marks)
b. It is also given that $A X=12 \mathrm{~cm}, X C=4 \mathrm{~cm}$ and $D B=14 \mathrm{~cm}$ and $D E=15 \mathrm{~cm}$. Calculate
a) DX
(2marks)
b) AE
(2marks)
21. The number of passengers on a certain regular weekday train service of 50 occasions was

165	141	163	153	130	158	119	187	185	209
177	147	166	154	159	178	187	139	180	143
160	185	153	168	189	173	127	179	163	182
171	146	174	149	126	156	155	174	154	150
210	162	138	117	198	164	125	142	182	218

a. Reduce this data to a grouped frequency table with a class intervals of 10 passengers starting with 110 - \qquad .etc
(3 marks)

Use the data in your frequency table to
b. Estimate the mean number of passengers on a particular occasion (3 marks
c. Estimate the range of marks of the middle 80% of the class.
(4 marks)
22. Three variables \mathbf{p}, \mathbf{q} and \mathbf{r} are such that \mathbf{p} varies directly as \mathbf{q} and inversely as the square of \mathbf{r}.
a. When $p=18, q=24$ and $r=4$.

Find p when $q=30$ and $r=10$.
(4marks)
b. Express q in terms of p and r.
(1mark)
c. If p is increased by 20% and r is decreased by 10% find:
i) A simplified expression for the change in q in terms of p and r. (3marks)
ii) The percentage change in q. (2 marks)
23. a) Using construction, locate the centre of rotation that will map triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$ in the figure below. Fully describe this transformation

b)Draw is a triangle with vertices at $\mathrm{A}(-2,6), B(2,3)$ and $C(-2,2)$ on the grid provided

$$
\begin{aligned}
\text { (1 mark) } & \\
\text { Page } \mathbf{1 5 2} \text { of } \mathbf{1 7 8} & \text { Mathematics Paper } 1
\end{aligned}
$$

On the same axes draw the following images:
i) $\quad A^{\prime} B^{\prime} C^{\prime}$ the image of $A B C$ under a reflection in the line $x=-1$ mark)
ii) $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ the image of $A^{\prime} B^{\prime} C^{\prime}$ under an enlargement with centre at $(1,1)$ and a scale factor of -1
(1 mark)
i) $A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$ is the image $A " B " C$ " of under 180° rotation about $B^{\prime \prime}$ mark)
24.(a) The equation of a curve is given by $y=x^{3}+x^{2}-6 x$.

Show that the value of x at the minimum turning point is $\frac{-1+\sqrt{19}}{3}$ (3marks)
(b) The displacement x metres of a particle moving along a straight line after t seconds is given by $x=4 \mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$
(i) Find its initial acceleration
(ii) Calculate the time when the particle was momentarily at rest.
(2marks)
(c) (i) Find the values of x where the curve $\mathrm{y}=x^{2}(\mathrm{x}-2)$ crosses the x -axis.
(1mark)
(ii) Hence find the area enclosed by the curve $\mathrm{y}=x^{2}(\mathrm{x}-2)$, the lines $\mathrm{x}=0, x=2 \frac{2}{3}$ and
the x-axis.
(2marks)

THIS IS THE LAST PRINTED PAGE

WE HAVE ALSO THE FOLLOWING

1. MATHEMATICS

- FORM 1 - FORM 4 TOPICAL QUESTIONS AND ANSWERS
- FORM 1 - FORM 4 OPENER,MID-TERM AND ENDTERM EXAMS
- TOP RANK PREDICTION MOCK SERIES EVERY YEAR
- FORM 1- FORM 4 NOTES
- SCHEMES OF WORH EVERY YEAR

2. ENGLISH

- FORM 1 - FORM 4 TOPICAL QUESTIONS AND ANSWERS
- FORM 1 - FORM 4 OPENER, MID-TERM AND ENDTERM EXAMS
- TOP RANK PREDICTION MOCK SERIES EVERY YEAR
- FORM 1- FORM 4 NOTES
- SCHEMES OF WORH EVERY YEAR
- POETRY QUESTIONS AND ANSWERS

Page 155 of $178 \quad$ Mathematics Paper 1
FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181

- POETRY NOTES
- PARLIAMENT OF OWIS,ARTIST OF THE FLOATING WORLD ,THE SAMARITAN, SILENT SONGS,FATHERS OF NATIONS (EXERPT QUESTIONS, GUIDES, ESSAYS AND MARKING SCHEMES, VIDEOS AVAILABLE).

3. KISWAHILI

- FORM 1 - FORM 4 TOPICAL QUESTIONS AND ANSWERS
- FORM 1 - FORM 4 OPENER, MID-TERM AND ENDTERM EXAMS
- TOP RANK PREDICTION MOCK SERIES EVERY YEAR
- FORM 1- FORM 4 NOTES
- SCHEMES OF WORH EVERY YEAR
- USHAIRI QUESTIONS AND ANSWERS
- USHAIRI NOTES
- ALL SETBOOK QUESTIONS, VIDEOS,GUIDES AND ASNSWER AVAILABLE

4. BIO,CHEM,PHY,AGRIC,BST,COMP,HMSC,GEO,HIST,CRE We have the following for the above 10 SUBJECTS

- FORM 1 - FORM 4 TOPICAL QUESTIONS AND ANSWERS
- FORM 1 - FORM 4 OPENER,MID-TERM AND ENDTERM EXAMS
- TOP RANK PREDICTION MOCK SERIES EVERY YEAR
- FORM 1- FORM 4 NOTES
- SCHEMES OF WORH EVERY YEAR
- WE HAVE : TOP SCHOOLS PRE-MOCKS,MOCKS,PREDICTIONS,POST MOCKS,TERMLY EXAMS,AND ALL OTHER LEVELS EXAMS INCLUDIND CBC
- FOR QUESTIONS IN WORD AND MARKING SCHEME CALL SIR ABRAHAM 0729125181
- N/B;WE DON'T OFFER FREE MARKING SCHEME
- ALL PAYMENTS SHOULD BE PAID TO OUR TILL NO :8264076
- EMAIL US; toplightpublisherskenya@gmail.com
- FOR MARKING SCHEME CALL SIR ABRAHAM 0729125181

[^0]: 14 Without using a protractor, construct a triangle $A B C$ such that angle $A B C=135^{\circ}, A B=4.6 \mathrm{~cm}$ and $B C=6.1 \mathrm{~cm}$. Measure $A C$ and angle ACB

[^1]: (i) the stationary points

