

Name Mr. Calving	e Adı	m NoStream	
School		Signature	
MATHEMATICS			
PAPER 2			
TIME: 2 ¹ / ₂ HOURS			
JULY 2023			

PINNACLE CLUSTER EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO THE CANDIDATES

- Write your name and Admission number in the spaces provided above
- This paper contains two sections; Section I and Section II.
- Answer all the questions in section I and only five questions from Section II
- All workings and answers must be written on the question paper in the spaces provided below each question.
- Marks may be given for correct working even if the answer is wrong.
- Non programmable silent electronic calculators and KNEC Mathematical tables may be used
 EXCEPT where stated otherwise
- Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.

FOR EXAMINERS'S USE ONLY

Section 1

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Marks	4		-	s.I													

Section	. T
Section	
Section	

TOTAL

Question	17	18	19	20	21	22	23	24	Total
Marks								-	

	_			
G	D	•	N.T	\mathbf{r}
١.	к	4	×	.,

SECTION I(50MARKS)

Answer all questions in this section

1. Find the value of x in the equation $\log_{10}(2x-1) + \log_{10} 3 = \log_{10}(8x-1)$

(2mks)

$$|ag|^{3(2x-1)} = |ag|^{8x-1} = |ag|^{6x-8x=-1+3}$$

$$-2x=2$$

$$|ag|^{3(2x-1)} = |ag|^{8x-1} = |ag|^{6x-8x=-1+3}$$

2. By correcting each number to the nearest one significant figure, approximates the value of 699 \times 0.003, hence calculate the percentage error arising for the approximation. (3marks)

Astron = $699 \times 0.003 = 2.097$ $\sqrt{2 \times 2.097} \times 2.097$ Approximated = $700 \times 0.003 = 2.1$ $\sqrt{2.097} \times 2.097$ = 0.143061516 g

 $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{6} - \sqrt{3}} = \frac{\sqrt{2} + \sqrt{3}}{\sqrt{6} - \sqrt{3}} = \frac{\sqrt{3} + \sqrt{6} + \sqrt{3}}{\sqrt{6} - \sqrt{3}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{3}}{\sqrt{6} - \sqrt{3}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6} - \sqrt{6}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6} - \sqrt{6}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6}} = \frac{\sqrt{6} + \sqrt{6}}{\sqrt{6}}$ 3. Simplify by rationalizing the denominator $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{6} - 2\sqrt{3}}$

- 4. The points with the coordinates (5,5) and (-3,1) are the ends of a diameter of a circle Centre A. determine:
- (a) The coordinate of A.

(5+2,54) = (1,3) B

(b) The equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ when a, b and c are constants.

8=15-13-46-33 $7(^{2}+y^{2}-2x-6y-10=0$

$$(x-1)^{2} + (y-3)^{2} = 20$$

$$x^{2} - 2x + 1 + y^{2} - 6y + 9 = 20$$

$$x^{2} + y^{2} - 2x - 6y + 10 = 20$$

5. a) Expand
$$(x+y)^4$$

$$x^{4}(y)^{6} + 4(x)^{3}(y)^{4} + 6(x)^{2}(y)^{2}$$

$$+ 4(x)^{3}(y)^{3} + y^{4}$$

$$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

(2mks)

b) Use your expansion to evaluate (1.99)⁴ correct to five significant figures.

$$\frac{(x+y)^{4} = (2-0.01)^{4}}{(x+y)^{4} = (2-0.01)^{4}} = (2-0.01)^{4} + 4(2)^{3}(-0.01) + 6(2)^{2}(-0.01)^{2} + 4(2)(-0.01)^{3} + (-0.01)^{4}$$

$$= 15.682$$

6. A quantity A is partly constant and partly varies inversely as a quantity B. Given that A = -10 when B = 2.5 and A = 10 when B = 1.25, find the value of A when B = 1.5.

$$A \propto C + \frac{1}{B}$$

$$A = C + \frac{1}{B}$$

$$-10 = C + \frac{1}{2.5}$$

Given that $S = \frac{a(1-r^n)}{1-r}$ make n the subject of the formula.

Hinks)
$$A = C + \frac{1}{B}$$

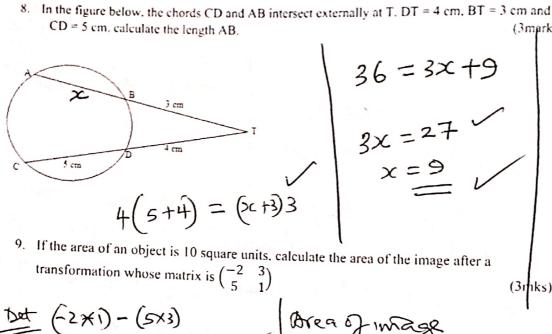
$$A =$$

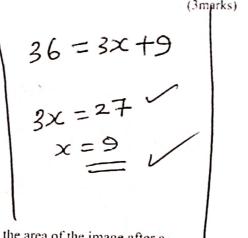
$$\frac{S(1-x)}{q} = \frac{A(1-x^7)}{q}$$

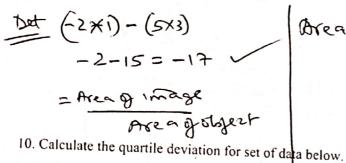
$$\frac{1-x^7}{q} = \frac{S-Sx}{q}$$

$$g^{n}=1-\frac{s-s_{k}}{q}\sqrt{\frac{s}{q}}$$

$$n = \log \left(\frac{a - s + s \times s}{a}\right)$$


$$\log \left(\frac{a - s + s \times s}{a}\right)$$


$$\log \left(\frac{a - s + s \times s}{a}\right)$$


$$\log \left(\frac{a + s \times s}{a}\right)$$

$$\log \left(\frac{a + s \times s}{a}\right)$$

$$\log \left(\frac{a + s \times s}{a}\right)$$

(3 marks)

(3mks)

6, 13, 16, 17, 18, 20, 24, 40 \ MI (Arange in as landing) desce Q_1 Q_2 Q_3 Q_4 Q_4 Q_5 Q_5

$$\frac{22-14.5}{2}=3.75$$

11. It would take 18 men 12 days to dig a piece of and, if they work for 8 hours a day. How long will it take 24 men if they work 12 hours a day to cultivate three quarters of the same land.

12. Solve the equation $2x^2 + 4x + 1 = 0$ using completing square method (3mks)

$$x^{2}+2x^{+2}-\frac{1}{2}+cq$$

$$2c^{2}+2x+1=-\frac{1}{2}+1 \quad M$$

$$(x+1)^{2}=\frac{1}{2}$$

12. Solve the equation
$$2x^{2} + 4x + 1 = 0$$
 using completing square method (3mks)

$$x^{2} + 2x^{2} = -\frac{1}{2} + C4$$

$$x = -\frac{1}{2} + C4$$

$$x = -\frac{1}{2} + \sqrt{0.5}$$

$$x = -\frac{1}{2} + \sqrt{0.5}$$

$$x = -\frac{1}{2} + \sqrt{0.7071}$$

$$= -1 \pm 0.7071$$

$$= -0.2929$$

$$= -0.2929$$

(4 marks)

13. Use logarithm tables to evaluate.

4
$$0.8465 \times 12.14$$

$\sqrt{\frac{0.8405}{214.5}}$	5÷9.067
No	live
0-8465	1. 92767+
12.14	1.0118
2145	2.33147
9.067	0. 9575
	7.6379
	i aivan l

14. The gradient function of a curve is given by the expression 2x + 1. If the curve passes through the point (-4, 6); find the equation of the curve

$$\frac{dy}{dx} = 2x+1$$

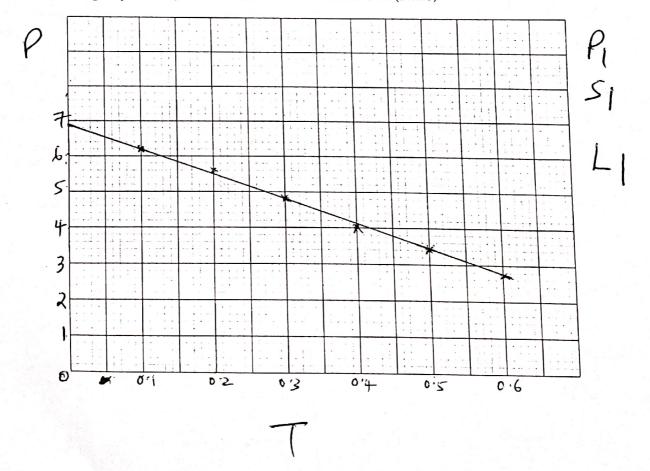
$$y = 2x^{2} + x + c$$

$$y = 2x^{2} + x + c$$
Page 5 of 14 $y = 2c^{2} + x + c$

$$6 = (-4)^{2} + (-4) + c$$

$$6 = 16 - 4 + C$$

 $6 = 16 - 4 + C$
 $6 - 12 = C = 2 = -6$
Equation 1
 $y = x^2 + 2C - 6$


15. Solve
$$8 \cos^2 x - 2 \cos x - 1 = 0$$
 for $0^0 \le x \le 360^0$ (3marks)

Let $\cos x = \pm 1$
 $8 \pm^2 - 2 \pm -1 = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$
 $4 \pm (2 \pm -1) + 1($

16. The table below represents a relationship between two variables P and T connected by the equation P = aT + b where a and b are constants

T	0.1	0.2	0.3	0.4	0.5	0.6
P	6.2	5.6	4.8	4.0	3.4	2.7

On the grid provided, draw the line of best fit for the data (3mks)

SECTION II (50MKS)

Attempt ANY five (5) questions ONLY

- 17. An arithmetic progression is such that the first term is -5, the last term is 135 and the sum of the progression is 975
- (a) Calculate

The number of terms in the series
$$S_n = \frac{n}{2} (a+1)$$

$$975 = \frac{n}{2} (-5+135)$$

$$65n = 975$$

$$n = 15$$

$$n = 15$$
(2 marks)

The common difference of the progression (11)

$$135 = -5 + (15 - 1)dV$$

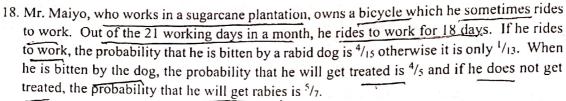
$$135 = -5 + 14d$$

$$140 = 14d$$

$$-2d = 10$$

(c) The sum of the first three terms of a geometric progression is 27 and first term is 36. Determine the common ratio and the value of the fourth term (4 marks)

$$a + ax + ax^{2} = 27$$


$$36 + 36x + 36x^{2} = 27$$

$$36x^{2} + 36x + 9 = 0$$

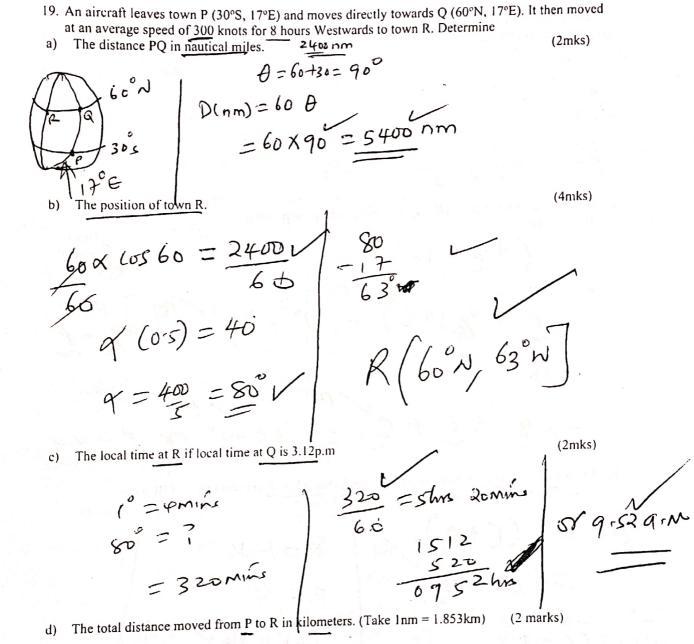
$$4x^{2} + 4x + 1 = 0$$

$$4x^{2} + 4x + 1 = 0$$

$$4x^{2} + 2x + 2x + 1 = 0$$

Maiyo will not be bitten by a rabid dog. i.

$$\frac{187 \times 11}{15} + \frac{3}{24} \times \frac{12}{13} = \frac{346}{455}$$
(2mks)

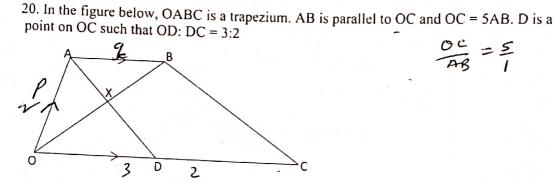

ii. He will get rabies.

$$(18) \times \frac{4}{15} \times \frac{1}{5} \times 57 + (\frac{3}{21} \times \frac{1}{15} \times 57) + (\frac{3}{21} \times \frac{1}{15} \times 57)$$

$$\frac{8}{245} + \frac{1}{637} = \frac{109}{31835}$$

iii. He will not get rabies.

$$(8/2) \times \frac{4}{15} \times \frac{1}{5} \times \frac{2}{7} + (3/2) \times \frac{1}{13} \times \frac{1}{5} \times \frac{2}{7} \times \frac{2}{7$$


$$\frac{20}{1000} = \frac{780000}{1000} = \frac{780000}{1000}$$

$$\frac{1000}{1000} = \frac{7800000}{1000}$$

$$\frac{1000}{1000} = \frac{7800000}{1000}$$

$$\frac{1000}{1000} = \frac{7800000}{1000}$$

$$\frac{1000}{1000} = \frac{7800000}{1000}$$

OC = 5

- a) Given that OA = p and AB = q, express in terms of p and q

- (lmk)
- AD -P + 3/5 (59) = -P + 32 -P + 3/5 (59) = -P + 32
- iii) **CB** -52 + P + 2 = -42+P 08 P-42
- b) Lines OB and AD intersect at point X such that AX = kAD and OX = rOB where k and r are scalars. Determine the values of k and r. (5) (5mks)

$$\begin{array}{c|c}
\hline
OX = & (l+2) \\
\hline
Fill & | & & & \\
\hline
Fill & | & & \\
\hline
OX = & (l+2) \\
\hline
Fill & | & & \\
\hline
Frage 10 of 14
\\
\hline
OX = & & & \\
\hline
OX = & & & \\
\hline
Cl + & & \\
\hline
Cl + & & \\
\hline
Cl + & & \\
\hline
Frage 10 of 14

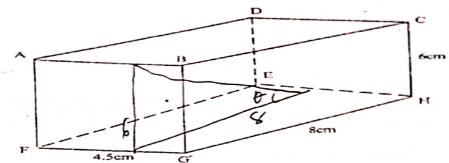
Frage 10 of 14$$

$$8 = 1 - K$$

$$8 = 3K$$

$$1 - K = 3KVM$$

$$4K = 1$$


$$K = \frac{1}{4}VA1$$

$$8 = 3(\frac{1}{4})$$

$$= 3(\frac{1}{4})$$

$$= 3(\frac{1}{4})$$

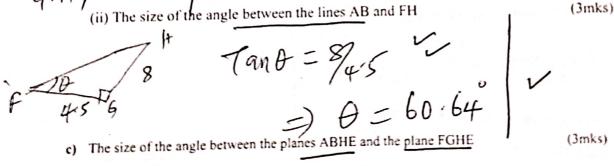
21. The diagram below represents a cuboid ABCDEFGH in which FG= 4.5 cm. GH=8cm and HC=6

Calculate:

a) The length of FC

a) The length of FC

$$FC = \sqrt{9.179^2 + 6^2}$$


$$= 10.97$$

b) (i) The size of the angle between the lines FC and FH

b) (i) The size of the angle between the lines
$$TC$$
 and TC

$$\begin{array}{c|c}
\hline
G & & \\
G & & \\
\hline
G & & \\
G & & \\
\hline
G & & \\
G & & \\
\hline
G & & \\
G &$$

(ii) The size of the angle between the lines AB and FH

$$\frac{1}{8} = \frac{1}{8}$$

$$\frac{1}{8} = \frac{1}{8}$$

$$\frac{1}{8} = \frac{36.87}{87}$$

(2mks)

Page 11 of 14

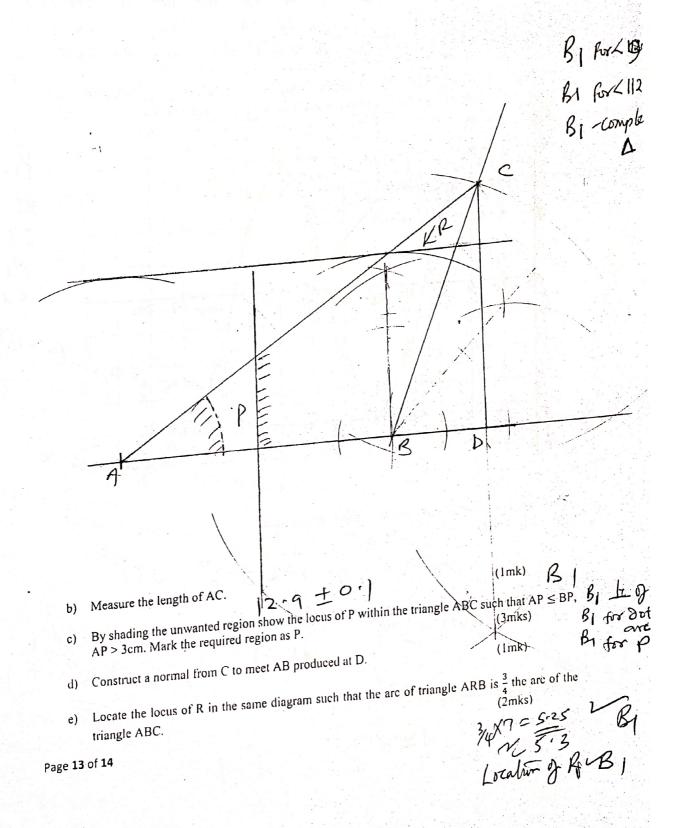
22. The table below shows the rates of taxation in the year 2004

Income in K£ pa	Rate in Ksh per K£
1 – 3900	2
3901 - 7800	3
7801 - 11700	4
11701 - 15600	5
15601 - 19500	7
Above 19500	9

In that period, Juma was earning a basic salary of sh. 21,000 per month. In addition, he was entitled to a house allowance of sh. 9000 per month, and a personal relief of ksh. 1056 per month. He also has an insurance scheme for which he pays a monthly premium of sh. 2000. He was also entitled to a tax relief of 15% of the premium paid.

a) Calculate how much income tax Juma paid per month.

Taxable income
$$Pa = (21000 + 9000)12$$

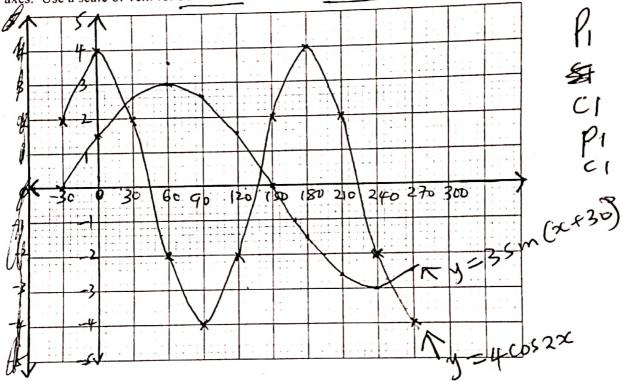

= $KF 18000$

pt slab = $3900 \times 2 = kgh, 7800$
 $2^{10} \text{ slab} = 3900 \times 3 = kgh, 11700$

b) Juma's other deductions per month were cooperative society contributions of sh. 2000 and a loan repayment of sh. 2500. Calculate his net salary per month. (3 mks)

23. Use a ruler and compasses only for all construction in this question.

Construct a triangle ABC in which AB = 8cm, BC = 7.5cm and \angle ABC = $112\frac{1}{2}^{\circ}$. (3 marks)



24. (a) Complete the table below for the functions $y = 4 \cos 2x$ and $y = 3 \sin (2x + 30^{\circ})$

(2mks)

giving the value	es to 1	decim			0.00	120°	150°	180°	210°	240°	270°
х	-30°	00	30°	60°	70			4.0	2.0	- 7.0	-4.0
y= 4 Cos 2x	2.0	4.0	2.0	-2.0	-4.0	-2.0	2.0	4.0	2.6		-2.6
$y=3 \sin(x+30^{\circ})$	0.0	1.5	2.6	3.0	2.6	1.5	0	-1.2	-2.6	-3.0	

(b) Draw the graphs of y = 4 Cos $2x^0$ and y = 3 Sin $(x + 30^0)$ for $-30^0 \le x \le 270^0$ on the same axes. Use a scale of 1cm for 300 on x-axis and 1cm for 1 unit on the y-axis.

(c) Use your graphs in (b) above to solve the equation:

(i)
$$3 \sin (x + 30^{\circ}) - 4 \cos 2x = 0$$
. (2mks)

(ii)
$$3 \sin (2x + 30^0) + 1 = 0$$

$$3 \sin (2x + 30^0) + 1 = 0$$

$$7 = 16 \times 10^{-10}$$
Determine the period of the function $y = 4 \cos 2x$.

(d) Determine the period of the function $y = 4 \cos 2x$.

Page 14 of 14