| Name Mr. Calving | e Adı | m NoStream | | |---|-------|------------|--| | School | | Signature | | | MATHEMATICS | | | | | PAPER 2 | | | | | TIME: 2 ¹ / ₂ HOURS | | | | | JULY 2023 | | | | # PINNACLE CLUSTER EXAMINATION Kenya Certificate of Secondary Education (K.C.S.E) ## **INSTRUCTIONS TO THE CANDIDATES** - Write your name and Admission number in the spaces provided above - This paper contains two sections; Section I and Section II. - Answer all the questions in section I and only five questions from Section II - All workings and answers must be written on the question paper in the spaces provided below each question. - Marks may be given for correct working even if the answer is wrong. - Non programmable silent electronic calculators and KNEC Mathematical tables may be used EXCEPT where stated otherwise - Show all the steps in your calculations, giving your answers at each stage in the spaces below each question. ## FOR EXAMINERS'S USE ONLY # Section 1 | Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Total | |----------|---|---|---|-----|---|---|---|---|---|----|----|----|----|----|----|----|-------| | Marks | 4 | | - | s.I | | | | | | | | | | | | | | | Section | . T | |---------|-----| | Section | | | Section | | #### **TOTAL** | Question | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Total | |----------|----|----|----|----|----|----|----|----|-------| | Marks | | | | | | | | - | | | | _ | | | | |----|---|---|-----|--------------| | G | D | • | N.T | \mathbf{r} | | ١. | к | 4 | × | ., | ## SECTION I(50MARKS) # Answer all questions in this section 1. Find the value of x in the equation $\log_{10}(2x-1) + \log_{10} 3 = \log_{10}(8x-1)$ (2mks) $$|ag|^{3(2x-1)} = |ag|^{8x-1} = |ag|^{6x-8x=-1+3}$$ $$-2x=2$$ $$|ag|^{3(2x-1)} = |ag|^{8x-1} = |ag|^{6x-8x=-1+3}$$ 2. By correcting each number to the nearest one significant figure, approximates the value of 699 \times 0.003, hence calculate the percentage error arising for the approximation. (3marks) Astron = $699 \times 0.003 = 2.097$ $\sqrt{2 \times 2.097} \times 2.097$ Approximated = $700 \times 0.003 = 2.1$ $\sqrt{2.097} \times 2.097$ = 0.143061516 g $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{6} - \sqrt{3}} = \frac{\sqrt{2} \frac{\sqrt{3} + \sqrt{6} \frac{\sqrt{6} + \sqrt{6} + \sqrt{3}}{\sqrt{6} - \sqrt{3}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6} - \sqrt{6}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6} - \sqrt{6}} = \frac{\sqrt{6} + \sqrt{6} + \sqrt{6}}{\sqrt{6}} = \frac{\sqrt{6} \sqrt{6}}{\sqrt{6}}$ 3. Simplify by rationalizing the denominator $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{6} - 2\sqrt{3}}$ - 4. The points with the coordinates (5,5) and (-3,1) are the ends of a diameter of a circle Centre A. determine: - (a) The coordinate of A. (5+2,54) = (1,3) B (b) The equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$ when a, b and c are constants. 8=15-13-46-33 $7(^{2}+y^{2}-2x-6y-10=0$ $$(x-1)^{2} + (y-3)^{2} = 20$$ $$x^{2} - 2x + 1 + y^{2} - 6y + 9 = 20$$ $$x^{2} + y^{2} - 2x - 6y + 10 = 20$$ 5. a) Expand $$(x+y)^4$$ $$x^{4}(y)^{6} + 4(x)^{3}(y)^{4} + 6(x)^{2}(y)^{2}$$ $$+ 4(x)^{3}(y)^{3} + y^{4}$$ $$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$ $$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$ (2mks) b) Use your expansion to evaluate (1.99)⁴ correct to five significant figures. $$\frac{(x+y)^{4} = (2-0.01)^{4}}{(x+y)^{4} = (2-0.01)^{4}} = (2-0.01)^{4} + 4(2)^{3}(-0.01) + 6(2)^{2}(-0.01)^{2} + 4(2)(-0.01)^{3} + (-0.01)^{4}$$ $$= 15.682$$ 6. A quantity A is partly constant and partly varies inversely as a quantity B. Given that A = -10 when B = 2.5 and A = 10 when B = 1.25, find the value of A when B = 1.5. $$A \propto C + \frac{1}{B}$$ $$A = C + \frac{1}{B}$$ $$-10 = C + \frac{1}{2.5}$$ Given that $S = \frac{a(1-r^n)}{1-r}$ make n the subject of the formula. Hinks) $$A = C + \frac{1}{B}$$ =$$ $$\frac{S(1-x)}{q} = \frac{A(1-x^7)}{q}$$ $$\frac{1-x^7}{q} = \frac{S-Sx}{q}$$ $$g^{n}=1-\frac{s-s_{k}}{q}\sqrt{\frac{s}{q}}$$ $$n = \log \left(\frac{a - s + s \times s}{a}\right)$$ $$\log \left(\frac{a - s + s \times s}{a}\right)$$ $$\log \left(\frac{a - s + s \times s}{a}\right)$$ $$\log \left(\frac{a + s \times s}{a}\right)$$ $$\log \left(\frac{a + s \times s}{a}\right)$$ $$\log \left(\frac{a + s \times s}{a}\right)$$ (3 marks) (3mks) 6, 13, 16, 17, 18, 20, 24, 40 \ MI (Arange in as landing) desce Q_1 Q_2 Q_3 Q_4 Q_4 Q_5 $$\frac{22-14.5}{2}=3.75$$ 11. It would take 18 men 12 days to dig a piece of and, if they work for 8 hours a day. How long will it take 24 men if they work 12 hours a day to cultivate three quarters of the same land. 12. Solve the equation $2x^2 + 4x + 1 = 0$ using completing square method (3mks) $$x^{2}+2x^{+2}-\frac{1}{2}+cq$$ $$2c^{2}+2x+1=-\frac{1}{2}+1 \quad M$$ $$(x+1)^{2}=\frac{1}{2}$$ 12. Solve the equation $$2x^{2} + 4x + 1 = 0$$ using completing square method (3mks) $$x^{2} + 2x^{2} = -\frac{1}{2} + C4$$ $$x = -\frac{1}{2} + C4$$ $$x = -\frac{1}{2} + \sqrt{0.5}$$ $$x = -\frac{1}{2} + \sqrt{0.5}$$ $$x = -\frac{1}{2} + \sqrt{0.7071}$$ $$= -1 \pm 0.7071$$ $$= -0.2929$$ $$= -0.2929$$ (4 marks) 13. Use logarithm tables to evaluate. 4 $$0.8465 \times 12.14$$ | $\sqrt{\frac{0.8405}{214.5}}$ | 5÷9.067 | |-------------------------------|-----------| | No | live | | 0-8465 | 1. 92767+ | | 12.14 | 1.0118 | | 2145 | 2.33147 | | 9.067 | 0. 9575 | | | 7.6379 | | | i aivan l | 14. The gradient function of a curve is given by the expression 2x + 1. If the curve passes through the point (-4, 6); find the equation of the curve $$\frac{dy}{dx} = 2x+1$$ $$y = 2x^{2} + x + c$$ $$y = 2x^{2} + x + c$$ Page 5 of 14 $y = 2c^{2} + x + c$ $$6 = (-4)^{2} + (-4) + c$$ $$6 = 16 - 4 + C$$ $6 = 16 - 4 + C$ $6 - 12 = C = 2 = -6$ Equation 1 $y = x^2 + 2C - 6$ 15. Solve $$8 \cos^2 x - 2 \cos x - 1 = 0$$ for $0^0 \le x \le 360^0$ (3marks) Let $\cos x = \pm 1$ $8 \pm^2 - 2 \pm -1 = 0$ $4 \pm (2 \pm -1) + 1(2 \pm -1) = 0$ $4 \pm (2 \pm -1) + 1($ 16. The table below represents a relationship between two variables P and T connected by the equation P = aT + b where a and b are constants | T | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | |---|-----|-----|-----|-----|-----|-----| | P | 6.2 | 5.6 | 4.8 | 4.0 | 3.4 | 2.7 | On the grid provided, draw the line of best fit for the data (3mks) # SECTION II (50MKS) Attempt ANY five (5) questions ONLY - 17. An arithmetic progression is such that the first term is -5, the last term is 135 and the sum of the progression is 975 - (a) Calculate The number of terms in the series $$S_n = \frac{n}{2} (a+1)$$ $$975 = \frac{n}{2} (-5+135)$$ $$65n = 975$$ $$n = 15$$ $$n = 15$$ (2 marks) The common difference of the progression (11) $$135 = -5 + (15 - 1)dV$$ $$135 = -5 + 14d$$ $$140 = 14d$$ $$-2d = 10$$ (c) The sum of the first three terms of a geometric progression is 27 and first term is 36. Determine the common ratio and the value of the fourth term (4 marks) $$a + ax + ax^{2} = 27$$ $$36 + 36x + 36x^{2} = 27$$ $$36x^{2} + 36x + 9 = 0$$ $$4x^{2} + 4x + 1 = 0$$ $$4x^{2} + 4x + 1 = 0$$ $$4x^{2} + 2x + 2x + 1 = 0$$ Maiyo will not be bitten by a rabid dog. i. $$\frac{187 \times 11}{15} + \frac{3}{24} \times \frac{12}{13} = \frac{346}{455}$$ (2mks) ii. He will get rabies. $$(18) \times \frac{4}{15} \times \frac{1}{5} \times 57 + (\frac{3}{21} \times \frac{1}{15} \times 57) + (\frac{3}{21} \times \frac{1}{15} \times 57)$$ $$\frac{8}{245} + \frac{1}{637} = \frac{109}{31835}$$ iii. He will not get rabies. $$(8/2) \times \frac{4}{15} \times \frac{1}{5} \times \frac{2}{7} + (3/2) \times \frac{1}{13} \times \frac{1}{5} \times \frac{2}{7} \frac{2}{7$$ $$\frac{20}{1000} = \frac{780000}{1000} = \frac{780000}{1000}$$ $$\frac{1000}{1000} \frac{7800000}{1000}$$ $$\frac{1000}{1000} = \frac{7800000}{1000}$$ $$\frac{1000}{1000} = \frac{7800000}{1000}$$ $$\frac{1000}{1000} = \frac{7800000}{1000}$$ OC = 5 - a) Given that OA = p and AB = q, express in terms of p and q - (lmk) - AD -P + 3/5 (59) = -P + 32 - iii) **CB** -52 + P + 2 = -42+P 08 P-42 - b) Lines OB and AD intersect at point X such that AX = kAD and OX = rOB where k and r are scalars. Determine the values of k and r. (5) (5mks) $$\begin{array}{c|c} \hline OX = & (l+2) \\ \hline Fill & | & & & \\ \hline Fill & | & & \\ \hline OX = & (l+2) \\ \hline Fill & | & & \\ \hline Frage 10 of 14 \\ \hline OX = & & & \\ \hline OX = & & & \\ \hline Cl + & & \\ \hline Cl + & & \\ \hline Cl + & & \\ \hline Frage 10 of 14 Frage 10 of 14$$ $$8 = 1 - K$$ $$8 = 3K$$ $$1 - K = 3KVM$$ $$4K = 1$$ $$K = \frac{1}{4}VA1$$ $$8 = 3(\frac{1}{4})$$ $$= 3(\frac{1}{4})$$ $$= 3(\frac{1}{4})$$ 21. The diagram below represents a cuboid ABCDEFGH in which FG= 4.5 cm. GH=8cm and HC=6 Calculate: a) The length of FC a) The length of FC $$FC = \sqrt{9.179^2 + 6^2}$$ $$= 10.97$$ b) (i) The size of the angle between the lines FC and FH b) (i) The size of the angle between the lines $$TC$$ and TC $$\begin{array}{c|c} \hline G & & \\ G & & \\ \hline G & & \\ G & & \\ \hline G & & \\ G & & \\ \hline G & & \\ &$$ (ii) The size of the angle between the lines AB and FH $$\frac{1}{8} = \frac{1}{8}$$ $$\frac{1}{8} = \frac{1}{8}$$ $$\frac{1}{8} = \frac{36.87}{87}$$ (2mks) Page 11 of 14 # 22. The table below shows the rates of taxation in the year 2004 | Income in K£ pa | Rate in Ksh per K£ | |-----------------|--------------------| | 1 – 3900 | 2 | | 3901 - 7800 | 3 | | 7801 - 11700 | 4 | | 11701 - 15600 | 5 | | 15601 - 19500 | 7 | | Above 19500 | 9 | In that period, Juma was earning a basic salary of sh. 21,000 per month. In addition, he was entitled to a house allowance of sh. 9000 per month, and a personal relief of ksh. 1056 per month. He also has an insurance scheme for which he pays a monthly premium of sh. 2000. He was also entitled to a tax relief of 15% of the premium paid. a) Calculate how much income tax Juma paid per month. Taxable income $$Pa = (21000 + 9000)12$$ = $KF 18000$ pt slab = $3900 \times 2 = kgh, 7800$ $2^{10} \text{ slab} = 3900 \times 3 = kgh, 11700$ b) Juma's other deductions per month were cooperative society contributions of sh. 2000 and a loan repayment of sh. 2500. Calculate his net salary per month. (3 mks) 23. Use a ruler and compasses only for all construction in this question. Construct a triangle ABC in which AB = 8cm, BC = 7.5cm and \angle ABC = $112\frac{1}{2}^{\circ}$. (3 marks) 24. (a) Complete the table below for the functions $y = 4 \cos 2x$ and $y = 3 \sin (2x + 30^{\circ})$ (2mks) | giving the value | es to 1 | decim | | | 0.00 | 120° | 150° | 180° | 210° | 240° | 270° | |--------------------------|---------|-------|-----|------|------|------|------|------|------|-------|------| | х | -30° | 00 | 30° | 60° | 70 | | | 4.0 | 2.0 | - 7.0 | -4.0 | | y= 4 Cos 2x | 2.0 | 4.0 | 2.0 | -2.0 | -4.0 | -2.0 | 2.0 | 4.0 | 2.6 | | -2.6 | | $y=3 \sin(x+30^{\circ})$ | 0.0 | 1.5 | 2.6 | 3.0 | 2.6 | 1.5 | 0 | -1.2 | -2.6 | -3.0 | | (b) Draw the graphs of y = 4 Cos $2x^0$ and y = 3 Sin $(x + 30^0)$ for $-30^0 \le x \le 270^0$ on the same axes. Use a scale of 1cm for 300 on x-axis and 1cm for 1 unit on the y-axis. (c) Use your graphs in (b) above to solve the equation: (i) $$3 \sin (x + 30^{\circ}) - 4 \cos 2x = 0$$. (2mks) (ii) $$3 \sin (2x + 30^0) + 1 = 0$$ $$3 \sin (2x + 30^0) + 1 = 0$$ $$7 = 16 \times 10^{-10}$$ Determine the period of the function $y = 4 \cos 2x$. (d) Determine the period of the function $y = 4 \cos 2x$. Page 14 of 14