MARKING SCHEME (CONFIDENTIAL)

Please turn over

SCHOOL

Kenya Certificate of Secondary Education

121/2 - MATHEMATICS - Paper 2

(ALT A) 2 ½ hours

THE NAIROBI SCHOOL MOCK EXAMINATIONS

July/August, 2023

							2 200000	1000000	100	-	Adm	. No_			(Class
Can	didat	te's S	igna	ature					A.		Date	-		-		
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)	Wr Sig Thi An. Sho pro Ma Non exc This that	n and is pape swer a ow all ivided rks mo n – pro ept wh s pape	write write er con Il the the st below by be ogran ere s er con e pag	me, and the desists of questing the desists of the	dmiss late of of twe tions n your h que ded fe le sile other	f example of example o	aminar ections. ection culatio	Section in Section I and ons, gi working can ages. (aces pad Sective que our an if the ors an lates s	providention lestion l	led ab II. ns from at eac wer is EC M	ove. n Secion stay wrong	tion II ge in t g. atical	the spa	es may be used, per to ascertain
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL
Section 17	n II 18	19	20	2	1 2	22	23	24	TO	TA	L		G	irand	Total	
		- 13						T	Ne							

NAIROBI SCHOOL

SECTION I (50 Marks)

Answer all the questions in this section in the spaces provided.

1. Solve for x in the equation $0.25^x = \frac{25^x}{25}$

$$\left(\frac{0.25}{25}\right)^{\chi} = \frac{1}{25}$$

$$x \log 0.01 = \log \frac{1}{25}$$
 M1
 $x = \frac{\log \frac{1}{25}}{\log 0.01} = 0.698.9700043 \approx 0.6990$
Use the binomial

2. Use the binomial expansion of $(2 + x)^5$ up to the term in x^3 to estimate the value of $(1.99)^5$,

3. The cost, C shillings, of hiring a taxi varies partly as the time, t hours, and partly as the distance, d kilometres, travelled. The cost is sh. 1600 when t = 1 and d = 12. The cost is sh. 2500 when t = 3 and d = 15. John hired the taxi for 1 hour 45 minutes and paid sh. 2500.

(3 marks)

$$C = at + bd$$

$$a + 12b = 1600$$

$$3a + 15b = 3750$$

$$39 + 36b = 4800$$

$$39 + 15b = 3750$$

$$21b = 1050$$

$$b = 50$$

$$Q = 1000$$

2500=1000x1.75+50d~MI d=15km.~fi

4. A factory packs canned beans in cylindrical cans of radius 5 cm and a height of 15 cm. The tins are then packed in large cylindrical cartons of diameter 50 cm. Determine the minimum height of a carton that should accommodate 100 such tins.

$$T \times 25 \times 25 \times h$$

 $T \times 5 \times 5 \times 15$ = 100 / MI

5. On the line segment O₁O₂ below, draw two circles, centres O₁ and O₂, of radii 2.5 cm and 1.5 cm, respectively. Determine, by construction, the length of a direct common tangent to the

6. Solve for x in the equation, to 2 decimal places in the range $0^{\circ} \le x \le 360^{\circ}$ $4\sin^2(x+20) = 2\cos^2(x+20)$

$$\frac{\sin^{2}(x+20)}{\cos^{2}(x+20)} = \frac{2}{4}$$

$$\tan^{2}(x+20) = \frac{1}{2}$$

$$\tan^{2}(x+20) = \frac{1}{2}$$

$$(x+20) = \frac{1}{\sqrt{2}}$$

$$(x+20) = \tan^{2}(\frac{1}{\sqrt{2}}) = 35.26^{\circ}, 215.26^{\circ}$$

$$(x+20) = \tan^{2}(\frac{1}{\sqrt{2}}) = 35.26^{\circ}, 195.26^{\circ}$$

$$(x+20) = \tan^{2}(\frac{1}{\sqrt{2}}) = 144.74^{\circ}, 324.74^{\circ}$$
Examinations

Mock Examinations

NAIROBI SCHOOL 74°, 304.949uly/August, 2023

> X = 15.26°, 124.74°, 195.26°, 324.74° VAT

7. A right pyramid on a circular base has a radius of 10.5 cm, measured to the nearest 0.1 cm. Given that the height of the pyramid is exact, calculate the percentage error in finding its

$$V_{Max} = M \times 10.55^{2} \times h = M.15083 \text{ Th} \rightarrow 37.10083 \text{ Th}$$

$$V_{Min.} = M \times 10.45^{2} \times h = 36.40083 \text{ Th} \rightarrow 36.40083 \text{ Th}$$

$$V_{Max} = M \times 10.5^{2} \times h = 36.40083 \text{ Th} \rightarrow 36.40083 \text{ Th}$$

$$V_{Max} = M \times 10.5^{2} \times h = 36.40083 \text{ Th} \rightarrow 36.40083 \text{ Th}$$

$$V_{Max} = M \times 10.5^{2} \times h = 36.40083 \text{ Th} \rightarrow 36.$$

8. Solve for x by completing the square method.

$$x^{2} + 8x - 16 = 0$$

$$x^{2} - 8x = -16$$

$$x^{2} - 8x + (-4)^{2} = -16 + 16 \text{ M}$$

$$(x - 4)^{2} = 0$$

$$x - 4 = 0 \implies x = 4 \text{ twice } M$$

9. In the year 2023, a Revenue Authority charged taxes on incomes as per the rates shown in the

3.5	
Monthly tax bands	Rate
1 - 24000	10%
24001 - 32333	25%
32334 and above	
- HILL HOUVE	30%

A public servant is paid a monthly basic salary of Ksh. 50 000. He is also given allowances amounting to Ksh. 60 000 and a monthly personal relief of Ksh. 2 400. In the month of June, his basic salary was increased by 7%, and an allowable deduction of 1.5% of his gross income was charged as housing levy. Calculate the employee's net tax that

10. The figure below represents a model of the globe. A, B and C are airports in different

An airplane leaves airport A and travels along latitude 75°N using the shortest distance to airport B. From airport B, the airplane then travels due south to another airport C. If the total distance travelled by the airplane is 7796.43 nm, determine the position of airport C on the

AB =
$$60 \times 135 \times$$

11. Make x the subject of the formula:

$$\frac{a^2}{q^3} = \frac{a^3}{q^3} \left(\sqrt{\frac{x^2 - m}{m}} \right)$$

$$\left(\frac{1}{a} \right)^2 = \left(\sqrt{\frac{x^2 - m}{m}} \right)^2 \wedge M$$

$$\frac{1}{a^2} = \frac{x^2 - M}{M}$$

$$Q^2 \chi^2 = m + a^2 m \wedge M$$

$$\left(\frac{1}{a}\right)^{2} = \left(\sqrt{\frac{x^{2}-m}{m}}\right)^{2} \wedge MI$$

$$\frac{1}{a^{2}} = \frac{x^{2}-M}{M}$$

$$q^{2}x^{2} = m + a^{2}m \wedge MI \Rightarrow x = \pm \sqrt{\frac{m+a^{2}m}{a^{2}}} \wedge AI \quad a + ma^{2}$$

(3 marks)

12. A point M divides a straight line, AB, internally in the ratio 2:3. Given that the position vectors of A and M are 3i - j - 2k and $i - \frac{1}{5}j$, respectively, find the magnitude of \overrightarrow{AB} .

329+26= m

$$3 \cdot (3i - i - 2k) + 2k = (i - 6i)$$

$$6 = -2i + i + 3k$$

$$48 = 6 - 9 = (-2i + i + 3k) - (3i - i - 2k)$$

$$= -5i + 2i + 5k$$

$$|AB| = \sqrt{(-5)^2 + (2)^2 + (5)^2} = 7.348 \text{ Units}$$

AM = V(-2)2+(4)2+(2)2 = 2.939387691 |粉| = 多x 2.93938769 = 7.348 Units

July/August, 2023

NAIROBI SCHOOL Alt.2 AM = (i-1/2i)-(32-1-2K) = -1/2+ 1/2i+2K AB = 5 AM = -52 + 20 + 5k 10 1= 1(5)2+(2)2+(5)2 = 7.848 Units.

13. Given that
$$3x = 2y$$
, find the ratio $(5x - 2y) : (x + y)$

$$\begin{array}{c}
X = 2y \\
5(2y) - 2y \\
3 & 1
\end{array}$$

$$\begin{array}{c}
(2 \text{ marks}) \\
4 & 2 \\
3 & 3
\end{array}$$

$$\begin{array}{c}
4 & 3 \\
3 & 3
\end{array}$$

$$\begin{array}{c}
4 : 5
\end{array}$$

$$\begin{array}{c}
(3 \text{ marks}) \\
4 : 5
\end{array}$$

$$\begin{array}{c}
(4 + 3) \\
4 : 5
\end{array}$$

14. A circle passes through the a point A(4,1) and has centre O(2.5, -1). Determine the equation of the circle in the form $x^2 + y^2 + ax + by + c = 0$, where a, b, and c are integers.

$$r = \sqrt{(4 - 2.5)^{2} + (1+1)^{2}} = 2.5$$
 (3 marks)

$$(x - 2.5)^{2} + (y+1)^{2} = 2.5^{2}$$
 M1

$$\Rightarrow x^{2} + y^{2} - 5x + 2y + 1 = 0$$
 M

15. Without using calculators or mathematical tables, simplify the surd, and rationalize the

$$\frac{\sqrt{8} + \sqrt{175}}{\sqrt{28} - \sqrt{112}}$$

$$\frac{2\sqrt{7} + 5\sqrt{7}}{2\sqrt{7} - 4\sqrt{7}}$$

$$= 2\sqrt{2} + 5\sqrt{7}$$

$$-4\sqrt{7}$$

$$-7\sqrt{7}$$

$$-7\sqrt{7}$$

- 16. A team of 10 contestants took part in a Mathematics contest. The marks (x) scored out of 50 had a mean of 19 and a standard deviation of $\sqrt{13}$. The marks were then converted into percentages before being ranked with the rest of the contestants.
 - (a) the mean of the converted scores

(2 marks)

(b) the standard deviation of the converted scores

$$2 \times \sqrt{13}$$
 /MI /MI $2\sqrt{13}$ or 7.211 (4 s.f)

SECTION II (50 MARKS)

Answer only five questions from this section in the spaces provided.

17. The figure below represents a ranch in the shape of a quadrilateral PQRS. $\angle PQR = 95^{\circ}$, $\angle QPR = 66^{\circ}$, $\angle SPR = 58^{\circ}$, $QR = 40^{\circ}$ and PQ = PX.

Use the diagram to calculate, correct to 2 decimal places:

(a) the length of PR

$$\frac{PR}{Sin95} = \frac{40}{Sin66} \text{ M} \implies PR = 43.62 \text{ M} \text{ M}$$
 (2 marks)

(b) the length of PQ

$$\frac{PQ}{\sin 19^{\circ}} = \frac{4D}{\sin 66^{\circ}} \sim M_{1} \Rightarrow PQ = 14.26 \text{ M M} \qquad (2 \text{ marks})$$

- e length of RS $RS^{2} = 14.26^{2} + 43.62^{2} 2x14.26x43.62 \cos 58^{\circ}$ (c) the length of RS RS = 38.04M ~ AT
- (d) the area of triangle PQR in m²

$$A = \frac{1}{2} \times 40 \times 14.26 \sin 95^{\circ} \sim M1$$

$$= 284.11 \, M^{2} \cdot 6 \left(0.284.03 \, M^{2} \text{ or } 284.12 \, M^{2} \right)$$

$$= 284.11 \, M^{2} \cdot 6 \left(0.284.03 \, M^{2} \text{ or } 284.12 \, M^{2} \right)$$

(e) The area of the ranch PQRS in m²

$$A = 284.11 + 5 \times 14.26 \times 43.62 \sin 58^{\circ} \sqrt{M1}$$
 (2 marks
= 547.86 M² (or 547.78 M² or 547.87 M²) $\sqrt{M1}$

18. The table below represents a relationship b vo variables Q and R.

10	10		T Totationship between tw						
10	1.2	1.5	2.0	2.5	35	15	1		
R	1.58	225	2 20	2010	3.3	4.0	л		
-	11:00	4.40	3.39	4.74	7.86	115	1		
PA DE NOVA		-			1 100	1 1 1			

The variables are connected by the equation $\log Q = k \log n$ where k and n are constants.

(a) Fill the table below for values of log Q and corresponding values of log R, correcting each

X log Q 0.08 0.18	10		(2 marks	s)
9 log R 0.20 0.35	0.30 0.40	0.54	0.65	181
h) On the -il	10.53 0.68	0.90	1.06	vai

n the grid provided below, draw a suitable line of best fit for the data. (3 marks)

(c) Use your graph to find:

(i) The value of k
$$K = \frac{0.53 - 0.35}{0.3 - 0.18} = 1.5 \text{ / B}_1$$
(1 mark)

(ii) The value of n

(2 marks) $\log n = 0.08$ M1 $N = 10^{0.08} = 1.202264435 \approx 1.202(4sf)$ The value of R when Q = 3

(iii)

$$\log 3 = 0.48$$
 $\Omega = 10^{0.8} = 6.309573445 \approx 6.310 (4 sf)$

19. (a) Find the sum of the first 10 terms of the series
$$\log 100 + \log 10000 + \log 1000000 + \cdots$$

$$\frac{44.1}{2+4+6+...} \checkmark M1$$

$$S_{10} = \frac{10}{2} (2x^{2}) + (10-1)^{2} \checkmark M1$$

$$= 110 \checkmark M$$

$$S_{10} = \frac{10}{2} \left\{ (2 \log_{100}) + (10-1) \log_{100} \right\}$$

$$= 110$$

- (b) The first three terms of a GP are 3^{2x+1} , p and 81. If the first term of the GP is 729, determine the: -
 - (i) value of x

(ii) common ratio of the GP.

(3 marks)

$$729, p, 81$$

$$\frac{p}{729} = \frac{81}{p} = r \sim M_1$$

$$\therefore \Upsilon = \frac{81}{243}$$

$$p^{a} = 9a9 \times 81$$
 $p = \pm 243 \times 81$

(iii) sum of the first 7 terms of the GP.

(2 marks)

$$G_7 = \frac{729(1-(\frac{1}{3})^7)}{1-\frac{1}{2}} = 1093$$

$$S_{7} = \frac{729(1-(\frac{1}{3})^{7})}{1-\frac{1}{3}} = 1093 \text{ PM}$$

$$S_{7} = \frac{729(1-(-\frac{1}{3})^{7})}{1-(-\frac{1}{3})} = 547 \text{ PM}$$

July/August, 2023

20. In this question, use a ruler and a pair of compasses only.

(a) In the space below, construct a rectangle KLMN in which KL = 80m and LM = 65m, using a suitable scale. (2 marks)

- Construct the locus of a point which is equidistant from K and M. Construct another locus of a point equidistant from LK and LM. Let the two loci intersect at a point R. (3 marks)
- Construct the locus of a point S such that RS = 46m. (ii) (1 mark) Construct the locus of a point T such that $\angle KTL = 75^{\circ}$. (iii)
- (c) The locus of S and the locus of T intersect at T_1 and T_2 . Measure T_1T_2 . (2 marks) (1 mark)

T1T2 = 6.3CM 10.1CM

(d) Shade the region bounded by the loci in (b) above, such that $RS \le 46m$ and ∠KTL ≥ 75°.

(1 mark)

21. (a) A biased tetrahedron with faces marked 1,2,2 and 3 and a fair die with faces marked 1,2,3,4,5 and 6 are tossed together once and the number on the faces showing up recorded.

(i) Draw a possibility space to show the possible outcomes. Biased 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 B1 1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

(ii) What is the probability space if the two faces show the same number? $p(1,1), p(2,2), p(3,3) \Rightarrow \frac{1}{24}, \frac{1}{12}, \frac{1}{24}$ (1 mark)
(iii) Determine the probability that the sum of the numbers on the faces showing up is

P(SUM=5) = 4 or 1 9

(b) Three bags each contain 10 balls of the same shape and size, except for their colour. The first bag contains 3 red and 7 black balls; the second contains 8 red and 2 black balls, and the third contains 4 red and 6 black balls.

A bag is selected at random and a ball drawn from it.

Represent the information above on a probability tree diagram.

Determine the probability that the ball drawn was red. (ii) (2 marks) P(AR OV BR OV CR)
= 1/3 x 3/6 + 1/3 x 4/0 = 1/2 M

What is the probability that the ball was drawn from either the first or the (iii) third bag, and was black? (2 marks)

$$P(AB \text{ of } CB)$$
 $3 \times \% + 3 \times \% = \frac{13}{30} \times A$

22. (a) Find
$$\int \left(4 + \frac{1}{2}x - \frac{1}{8}x^2\right) dx$$

$$4x + \frac{1}{2x^2}x^2 - \frac{1}{2x^3}x^3 + c \quad M$$

$$4x + \frac{1}{4}x^2 - \frac{1}{24}x^3 + c \quad M$$

(b) In the figure below, the shaded region is bounded by the straight line $y = \frac{1}{2}x + 6$ and the curve $y = \frac{1}{8}x^2 + 2$. The straight line intersects the curve at points P and Q.

(i) Determine the coordinates of points P and Q.

Determine the coordinates of points P and Q.

$$\frac{1}{8} x^2 + 2 = \frac{1}{2} x + 6$$

$$x^2 - 4x - 32 = 0$$

$$(2 \text{ marks})$$

$$x^4 + 0 \Rightarrow x = -4; y = 4$$

$$(x - 8) = 0$$

$$(x + 4)(x - 8) = 0$$

$$(x - 8) = 0$$

$$x^{2}-4x-32=0$$

 $(x+4)(x-8)=0$

$$\Rightarrow P(-4,4)^{\prime}; \, \varrho(8,10)^{\prime}$$

(ii) Usin	g the mid-	ordinate r	ule with s	ix ordinate	es, estimat	e the area	of the shaded region
_ ^	-3	-1	1	3	.5	7	(4 marks)
7====x+6	4.5	5.5	6.5	7.5	8.5	9.5	
$y_2 = \frac{1}{8}x^2 + 2$	3.125	2.125	2.125	3.125	5.125	0.125	J BI
y= y1-y2	1.375	3.375	4.375	4.375	3.375	1. 295	~91

= 36.5 sq. Units. \sqrt{M} (c) Determine the exact area of the shaded region by integration

(2 marks)

$$[4x + \frac{1}{4}x^{2} - \frac{1}{24}x^{3} + c]^{8}$$

$$[4(8) + \frac{1}{4}(8)^{2} - \frac{1}{24}(8)^{3}] - (4(-4) + \frac{1}{4}(-4)^{2} - \frac{1}{24}(-4)^{3}) \sim MI$$

$$= 36 \text{ Aq. units. } \sim M$$

23. The figure below shows a model of a roof of a structure with a rectangular base ABCD. BC = 85 cm and AB = 50 cm. The ridge PQ = 45 cm and is centrally placed above the base. The faces ABQ and CDP are equilateral triangles and X is the midpoint of CD.

Calculate:

55

(a) (i) the length of PX

 $PX = \sqrt{50^2 - 25^2}$ / M₁ (Fmark) = $25\sqrt{3} = 43.30$ CM / M

(ii) the height of P above the base ABCD.

P $\gamma = \sqrt{2}$

 $PY = \sqrt{(25\sqrt{3})^2 - 20^2} / MI$ = $5\sqrt{59} = 38.41 \text{ cm} / MI$

(b) The angle between plane CPD and line PQ

90° + $Sin^{-1} \left(\frac{20}{25\sqrt{3}} \right) \sim MI$ = 90° + 27.51° = 117. 51° $\sim M$

(c) The angle between the planes BCPQ and ABCD

 $tano = \frac{5\sqrt{69}}{25} \sqrt{M1}$ $0 = 56.94^{\circ} \sqrt{M}$

(d) The acute angle between lines PQ and AC.

$$tan \theta = \frac{25}{42.5} / M1$$

$$\theta = tan^{-1} \left(\frac{25}{42.5} \right)$$

$$= 30.47^{\circ} / M$$

- 24. The vertices of a quadrilateral ABCD are A(1,1), B(4,1), C(4,3) and D(1,3). The vertices of its image under a transformation M, are A'(1,-1), B'(4, -4), C'(4,-2) and D'(1,1).
 - (a) Draw quadrilateral ABCD and its image on the grid below.

(2 marks)

- BI ~ Image

(b) (i) Describe transformation M, that maps quadrilateral ABCD onto quadrilateral

A'B'C'D'. B1 (2 marks)
Shear of factor -1 with X = -1 invariant and $B(4,1) \rightarrow B'(4,-4)$

 $\therefore M = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \sim M$

 $\mathbf{N} = \begin{pmatrix} -1 & 0 \\ -1 & -2 \end{pmatrix}$. Determine the coordinates of quadrilateral A'B'C'D'. Hence, plot quadrilateral A'B''C''D'' on the same grid above. (3 marks)