NAIROBI SCHOOL

End Term 1 Exam

121/2

 \section*{
 \section*{MATHEMATICS

 \section*{
 \section*{MATHEMATICS

 \section*{
 \section*{MATHEMATICS

 Question Paper

 Question Paper

 Question Paper

 April. 2023-2 hours 30 minutes}

 April. 2023-2 hours 30 minutes}

 April. 2023-2 hours 30 minutes}

FILL IN YOUR PERSONAL DETAILS HERE

Student Name: \square

Admission Number:

Class: 4

Instructions to candidates

(a) Write your name, admission number and class in the spaces provided above.
(b) This paper consists of two sections; Section I and Section II.
(c) Answer all the questions in Section I and any five questions from Section II.
(d) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
(e) KNEC Mathematical tables may be used, except where stated otherwise.
(f) Non-programmable silent electronic calculators must not be used, except where stated otherwise.
(g) This paper consists of $\mathbf{1 6}$ printed pages.

For Examiner's Use Only

SECTION I(50 Marks)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II(50 Marks)

17	18	19	20	21	22	23	24	TOTAL

GRAND TOTAL

SECTION ONE - 50 MARKS

Answer all questions from this section in the spaces provided.
1). In the figure below, not drawn to scale $\mathbf{A X}=\mathbf{X B}=\mathbf{3}$. Given that the circle has a radius of 4.5 cm .

Calculate to 2 decimal places, the length $\mathbf{X D}$.
2). Solve $\mathbf{2} \sin ^{\mathbf{2}} \theta-\cos ^{\mathbf{2}} \theta=\mathbf{1}+\sin \theta$ for $\mathbf{0}^{\circ} \leq \theta \leq \mathbf{3 6 0 ^ { \circ }}$ correct to 2 decimal places. (4 marks)
3). Tap \mathbf{A} takes $\mathbf{3}$ hours to fill a tank when empty, Tap \mathbf{B} takes $\mathbf{4}$ hours to fill the same tank when empty. Tap \mathbf{C} takes $\mathbf{6}$ hours to empty the same tank when full. Tap \mathbf{A} is opened, one hour later Tap B and Tap \mathbf{C} are opened simultaneously. Calculate the total time it takes to fill the tank.
4). An object has an area of $\mathbf{1 6} \mathrm{cm}^{2}$. It is transformed using the matrix $\left(\begin{array}{cc}\mathbf{1} & 2 \\ -3 & 2\end{array}\right)$, find the area of the image formed.
5). The data below represents the ages in months at which 6 babies started walking; $\mathbf{9}, \mathbf{1 1}, \mathbf{1 2}, 13,11$ and 10. Without using a calculator, find the exact value of the variance of the data.
6). The graph below shows the rate of change of heating of a metal with respect to time.

Determine the average rate of heating of the metal between the $\mathbf{4 t h}$ and the 10th minute correct to 2 decimal places.
7). Simplify:
8). The cost (C) of hiring a venue for a delegates conference is partly fixed and partly varies inversely to the number \mathbf{N} of delegates. When $\mathbf{2 0 0}$ delegates attend the cost is KES $\mathbf{4 5 0 0}$ per delegate while for $\mathbf{1 5 0}$ delegates the cost is KES $\mathbf{5 5 0 0}$ per delegate. Calculate the fixed cost.
9). The length of a rectangle is $\mathbf{y} \mathrm{cm}$. The width of the rectangle is $(\mathbf{x}-\mathbf{1}) \mathrm{cm}$. Given that the perimeter and the area of the rectangle of the rectangle are 32 cm and $48 \mathrm{~cm}^{2}$ respectively, determine the values of \mathbf{x} and \mathbf{y}.
10). Given that $\mathbf{y}=\mathbf{2} \cos (2 x-15)$, find
(a) Amplitude.
(b) Period.
11). Three boats $\mathbf{P}, \boldsymbol{Q}$ and \mathbf{R} are situated such that boat \boldsymbol{Q} is $\mathbf{4 5 0} \mathrm{m}$ on a bearing of $\mathbf{1 2 0 ^ { \circ }}$ from boat \mathbf{P}. Boat \mathbf{R} is $\mathbf{6 0 0} \mathrm{m}$ on a bearing of $\mathbf{0 3 0}$ from boat \mathbf{Q}.
(a) Draw a sketch showing the positions of \mathbf{P}, \mathbf{Q} and \mathbf{R}.
(b) Calculate the distance of boat \mathbf{R} from boat \mathbf{P}.
12). The table below shows income tax rates in the year 2018.

Monthly Income (KES)	Tax rates (\%)
$0-\mathbf{9 6 8 0}$	10
$9681-\mathbf{1 8 8 0 0}$	$\mathbf{1 5}$
$18801-\mathbf{2 7 9 2 0}$	$\mathbf{2 0}$

In April 2018, the tax on Mutuku's monthly income after tax relief of KES 1162 was KES 2714. Calculate Mutuku's monthly income.
13). A motorist travelling at a steady speed of $\mathbf{1 2 0} \mathrm{km} / \mathrm{h}$ covers a section of a highway in $\mathbf{1 0}$ minutes. To minimize accidents a speed limit is imposed. Travelling at the maximum speed allowed, the motorist takes 5 minutes longer to cover the same section. Calculate the speed limit imposed.
14). The circle shown below cuts the line $\mathbf{y}=-\mathbf{1}$ at $(-\mathbf{1}, \mathbf{3})$ and $(-\mathbf{1}, \mathbf{7})$. It also cuts the line $\mathbf{y}=\mathbf{3}$ at $(-\mathbf{7}, \mathbf{3})$ and $(-\mathbf{1}, \mathbf{3})$.

(a) Find the radius of the circle, leaving your answer in surd form.
(2 marks)
(b) Determine the equation of the circle in the form $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}+\mathbf{a x}+\mathbf{b} \mathbf{y}+\mathbf{c}=\mathbf{0}$. (2 marks)
15). The figure below represents a triangular prism. The faces ABCD, ADEF and CBFE are rectangles. $\mathbf{A B}=\mathbf{8} \mathrm{cm}, \mathbf{B C}=\mathbf{1 4} \mathrm{cm}, \mathbf{B F}=\mathbf{7} \mathrm{cm}$ and $\mathbf{A F}=\mathbf{7} \mathrm{cm}$.

Calculate the angles between faces BCEF and $\mathbf{A B C D}$ correct to 1 decimal place. (3 marks)
16). A plane leaves airport $\mathbf{P}\left(60^{\circ} \mathrm{N}, \mathbf{3 8 ^ { \circ }} \mathrm{W}\right)$ at $\mathbf{9}$ am local time and flies due east at a speed of $\mathbf{4 0 0}$ knots to airport \mathbf{Q}. The distance from \mathbf{P} to \mathbf{Q} is $\mathbf{3 0 0 0} \mathrm{nm}$. Determine the local time in 12 hour clock system at airport \mathbf{Q} when the aircraft lands there.

SECTION TWO - 50 Marks

Answer any five questions from this section in the spaces provided.
17). (a) Complete the table given below correct to $2 \mathrm{~d} . \mathrm{p}$
(2 marks)

x	0°	20°	40°	60°	80°	100°	120°	140°	160°	180°
$y=2 \cos (2 x-40)$	1.53			0.35	-1.00		-1.88			1.53
$y=3 \sin 3 x$		2.60		0		-2.60		2.60	2.60	

(b) Using the grid provided draw on the same axes the graph of $\mathbf{y}=\mathbf{2} \cos (\mathbf{2 x}-$ 40) and $\mathbf{y}=\mathbf{3} \sin \mathbf{3 x}$ for $\mathbf{0}^{\circ} \leq \mathbf{x} \leq \mathbf{1 8 0 ^ { \circ }}$.

Take $\mathbf{2} \mathrm{cm}$ to represent $\mathbf{2 0}^{\circ}$ on the \mathbf{x}-axis and $\mathbf{2} \mathrm{cm}$ for $\mathbf{1}$ unit on the y-axis. (5 marks)

(c) Use your graph to solve the equation $\mathbf{2} \cos (\mathbf{2 x}-\mathbf{4 0}) \mathbf{3} \sin \mathbf{3 x}=\mathbf{0}$
(2 marks)
(d) State the period of the function $\mathbf{y}=\mathbf{2} \cos (\mathbf{2 x}-\mathbf{4 0})$
18). Bag \mathbf{A} contains $\mathbf{2}$ green balls and $\mathbf{3}$ red balls while bag \mathbf{B} contains $\mathbf{3}$ green balls and $\mathbf{4}$ red balls. Bag \mathbf{A} has a probability of $\mathbf{2 5 \%}$ of being selected while B's probability is $\mathbf{7 5 \%}$. A bag is selected and two balls are drawn from the bag at random, one at a time without replacement.
(a) Draw a tree diagram to represent this information.
(b) Find the probability that the two balls are green and from bag
B.
(2 marks)
(c) Find the probability that the two balls are of different colours.
19). The table below shows the masses to the nearest kilogram of Form four students in a certain school.

Mass(kg)	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$	$80-84$
Number of students	4	10	10	19	20	20	7	6	3	1

(a) State the median class.
(b) Taking an assumed mean of $\mathbf{6 2 k g}$ calculate:
(i) The actual mean.
(ii) The variance of the distribution.
(iii) Hence or otherwise determine the standard deviation.
20). The vertices of the triangle shown below are $\mathbf{A}(\mathbf{2}, \mathbf{0}), \mathbf{B}(\mathbf{5}, \mathbf{3})$ and $\mathbf{C}(\mathbf{5}, \mathbf{1})$.
(a) Find the coordinates of triangle $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$, the image of triangle $\mathbf{A B C}$ after a
transformation by the matrix $\mathbf{T}=\left(\begin{array}{cc}-1 / 2 & 3 / 2 \\ 3 / 2 & -1 / 2\end{array}\right)$.
(2 marks)
(b) Find the coordinates of triangle $\mathbf{A B C}$, the image of triangle $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ after a
transformation by the matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)$
(2 marks)
(c) Draw both triangle $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ and triangle $\mathbf{A}^{\prime \prime} \mathbf{B}^{\prime \prime} \mathbf{C}^{\prime \prime}$ on the same grid as triangle

ABC.
(2 marks)

(d) Determine the single matrix can map triangle $\mathbf{A}^{\prime \prime} \mathbf{B}^{\prime \prime} \mathbf{C}^{\prime \prime}$ onto triangle $\mathbf{A B C}$. (4 marks)
21). In the diagram below, the coordinates of points A, B and C are as shown.

(a) Use a vector method to find the coordinates of point \mathbf{D} given that $\mathbf{A B C D}$ is a parallelogram.
(2 marks)
(b) Given that point \mathbf{P} is on $\mathbf{B C}$ such that $\mathbf{B P}: \mathbf{P C}=\mathbf{2}: \mathbf{1}$, find the coordinates of P.
(c) If point \mathbf{Q} lies on line $\mathbf{A B}$ is produced to such that $\mathbf{B} \mathbf{Q}=\mathbf{2} \mathbf{A B}$
(i) The position vector of \mathbf{Q}.
(2 marks)
(ii) Show that the points \mathbf{D}, \mathbf{P} and \mathbf{Q} are collinear.
(4 marks)
22). An aircraft leaves town $\mathbf{P}\left(\mathbf{3 0 ^ { \circ }} \mathrm{S}, \mathbf{1 7}^{\circ} \mathrm{E}\right)$ and flies due north to $\mathbf{Q}\left(\mathbf{6 0}^{\circ} \mathrm{N}, \mathbf{1 7}^{\circ} \mathrm{E}\right)$. It then flies at an average speed of $\mathbf{3 0 0}$ knots for $\mathbf{8}$ hours due west to town \mathbf{R}. Determine:
(a) The distance $\mathbf{P Q}$ in nautical miles.
(2 marks)
(b) The position of town \mathbf{R}.
(4 marks)
(c) The local time at \mathbf{R} if the local time at \mathbf{Q} is $\mathbf{3 . 1 2 ~ p m}$.
(d) The distance travelled by the aircraft from \mathbf{Q} to \mathbf{R} to the nearest kilometre.

$$
\left(\pi=\frac{22}{7}, \quad R=6370 k m\right)
$$

23). A bus company runs a fleet of two types of buses operating between Nairobi and Nyeri. Type \mathbf{A} bus has a capacity to take 70 passengers and 2000 kg luggage. Type B can carry 50 passengers and 3000 kg of luggage. On a certain day, at most 500 passengers with at least 35000 kg of luggage to be transported. The company could only use a maximum of $\mathbf{1 5}$ buses altogether.
(a) If the company uses \mathbf{x} buses of type A and \mathbf{y} buses of type B write down all the inequalities satisfying the given conditions.
(b) Represent the inequalities graphically and use your graph to determine the least number of buses that could be used.

(c) If the cost of running one bus of type A is KES 7200 and that of running one bus of type B KES 6000. Find the minimum cost of running the buses. (2 marks)
24). In the figure below $\mathbf{A B}, \mathbf{P Q}$ and $\mathbf{Q R}$ are straight lines

(a) Use the figure to:
(i) find a point \mathbf{S} on $\mathbf{A B}$ such that \mathbf{S} is equidistant from \mathbf{P} and \mathbf{R}.
(ii) complete a heptagon PQRSTVW with $\mathbf{A B}$ as its line of symmetry and hence measure \mathbf{Q} from \mathbf{S}.
(b) shade the region within the heptagon in which a variable point \mathbf{X} must lie given that \mathbf{X} satisfies the following conditions:
(i) \mathbf{X} is nearer to $\mathbf{T V}$ than to $\mathbf{T S}$.
(ii) $\mathbf{S X}$ is less than $\mathbf{3} \mathrm{cm}$.
(iii) $\angle \mathrm{PXW} \geq 90^{\circ}$.

