NAIROBI SCHOOL

Opener Term 3 Exam

121-Hybrid

MATHEMATICS

Question Paper

October. 2022-150 minutes

FILL IN YOUR PERSONAL DETAILS HERE
Student Name: \square

Admission Number:

Class:

4	

Instructions to candidates

(a) Write your name, admission number and class in the spaces provided above.
(b) This paper consists of two sections; Section I and Section II.
(c) Answer all the questions in Section I and any five questions from Section II.
(d) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
(e) KNEC Mathematical tables may be used, except where stated otherwise.
(f) Non-programmable silent electronic calculators must not be used, except where stated otherwise.
(g) This paper consists of $\mathbf{1 6}$ printed pages.
(h) Remember to tick the questions you have attempted in Section II

For Examiner's Use Only

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II(Please tick the questions you have attempted)

17	18	19	20	21	22	23	24	TOTAL
								$\boldsymbol{\swarrow}$

SECTION ONE - 50 MARKS
Answer all questions from this section in the spaces provided.
1). The coordinates of two airports \mathbf{M} and N are $\left(60^{\circ} \mathrm{N}, 35^{\circ} \mathrm{W}\right)$ and $\left(60^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}\right)$ respectively. Calculate;
(a) the longitude difference.
(b) the shortest time an aeroplane whose speed is $\mathbf{2 5 0}$ knots will take to fly from \mathbf{M} to \mathbf{N} along a circle of latitude.
2). Kasyoka and Kyalo working together can do a piece of work in 6 days. Kasyoka, working alone takes 5 days longer than Kyalo. How many days does it take Kyalo to do the work alone?
[4 marks]
3). Find the radius and the centre of the circle whose equation is:

$$
3 x^{2}+3 y^{2}-6 x+12 y+3=0
$$

4). A particle moves along a straight line $\mathbf{A B}$. Its velocity \mathbf{v} metres per second after \mathbf{t} seconds is given by $\mathbf{v}=\mathbf{t}^{\mathbf{2}} \mathbf{- 3} \mathbf{t}+\mathbf{5}$. Determine distance covered within the third second.
5). Ali deposited KES 100, $\mathbf{0 0 0}$ in a financial institution that paid simple interest at the rate of $\mathbf{1 2 . 5 \%}$ p.a. Mohamed deposited the same amount of money as Ali in another financial institution that paid compound interest. After 4 years, they had equal amounts of money. Determine the compound interest rate per annum to one decimal place.
6). Make \mathbf{x} the subject of the formula.

$$
\frac{x^{4}-4}{x^{2}-2}=k
$$

7). Solve for \mathbf{x} in the equation.

$$
2 \sin ^{2} x-1=\cos ^{2} x-\sin ^{2} x, \quad \text { where } 0^{\circ} \leq x \leq 360^{\circ}
$$

8). Find \mathbf{C} that divide $\mathbf{A B}$ externally in the ratio $5: \mathbf{2}$, given that $\mathbf{A}(\mathbf{3},-\mathbf{6}, \mathbf{9})$ and $B(-15,3,12)$.
9). If $\sin \mathbf{x}=\mathbf{2 b}$ and $\cos \mathbf{x}=\mathbf{2 b} \sqrt{\mathbf{3}}$, find the value of $\tan \mathbf{x}$.
10). Solve for \mathbf{y} in the equation:

$$
\left(\log _{2} y\right)^{2}+\log _{2} 8=\log _{2} y^{4}
$$

11). On the triangle $\mathbf{P Q R}$, draw a circle touching $\mathbf{P R}, \mathbf{Q} \mathbf{P}$ produced and $\mathbf{Q} \mathbf{R}$ produce[W. marks]

12). The gradient of a curve at any point given by $\mathbf{2 x} \mathbf{- 1}$. Given that the curve passes through point $(\mathbf{1}, \mathbf{5})$. Find the equation of the curve.
13). \mathbf{w} varies directly as the cube of \mathbf{x} and inversely as \mathbf{y}. Find \mathbf{w} in terms of \mathbf{x} and \mathbf{y} given that $\mathbf{w}=\mathbf{8 0}$ when $\mathbf{x}=\mathbf{2}$ and $\mathbf{y}=\mathbf{5}$.
14). Given that $\mathbf{2} \leq \mathbf{A} \leq \mathbf{4}$ and $\mathbf{0 . 1} \leq \mathbf{B} \leq \mathbf{0}$.2. Find the minimum value of $\frac{\mathbf{A B}}{\mathbf{A}-\mathbf{B}}$ as a fraction.
15). Use matrix method to solve the given simultaneous equation:

$$
\begin{aligned}
3 x+y & =7 \\
5 x+2 y & =12
\end{aligned}
$$

16). The figure below is a cuboid EFGHJKLM. EF $=\mathbf{1 2} \mathbf{c m}$, FG $=\mathbf{5} \mathbf{c m}$ and $\mathbf{G M}=$ 6.5 cm .

(a) State the projection of $\mathbf{E M}$ on the plane $\mathbf{E F G H}$.
(b) Calculate the angle between EM and the plane EFGH correct to 2 decimal planes.

SECTION TWO - 50 Marks

Answer any five questions from this section in the spaces provided.

17). Use Trapezoidal rule to find the area between the curve $\mathbf{y}=\mathbf{x}^{\mathbf{2}}+\mathbf{4 x}+\mathbf{4}$, the \mathbf{x}-axis and the ordinates $\mathbf{x}=\mathbf{- 2}$ and $\mathbf{x}=\mathbf{1}$. (Use 6 strips)
(a) Complete the table below.
[2 marks]

x	-2	-1.5	-1	-0.5	0	0.5	1
y							

(b) Find the area enclosed by the curve, the \mathbf{x}-axis, lines $\mathbf{x}=\mathbf{- 2}$ and $\mathbf{x}=\mathbf{1}$.[3 marks]
(c) Use integration to find the exact area.
[3 marks]
(d) Hence or otherwise find the percentage error in your approximation correct to 2 significant figures.
18). (a) Complete the table below for the functions $\mathbf{y}=\mathbf{3} \sin \mathbf{3} \boldsymbol{\theta}$ and $\mathbf{y}=\mathbf{2} \cos (\boldsymbol{\theta}+$ 40°)
[2 marks]

θ	0°	10°	20°	30°	40°	50°	60°	70°	80°	90
$3 \sin 3 \theta$	0.00		2.60	3.00		1.50		-1.50		-3.00
$2 \cos \left(\theta+40^{\circ}\right)$		1.29	1.00		0.35		-0.35	-0.68	-1.00	

(b) On the grid provided, draw the graphs of $\mathbf{y}=\mathbf{3} \sin \mathbf{3} \boldsymbol{\theta}$ and $\mathbf{y}=\mathbf{2} \cos (\boldsymbol{\theta}+$ 40°) on the same axis.
Take $\mathbf{1 ~ c m}$ to represent 10° on the \mathbf{x}-axis and $\mathbf{4 c m}$ to represent $\mathbf{2}$ unit on the \mathbf{y}-axis.

(c) From the graph find the roots of the equation:
(i) $\frac{3}{4} \sin 3 \theta=\frac{1}{2} \cos \left(\theta+40^{\circ}\right)$.
(ii) $\mathbf{2} \cos \left(\boldsymbol{\theta}+\mathbf{4 0 ^ { \circ }}\right)=\mathbf{0}$ in the range $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{9 0 ^ { \circ }}$.
19). The diagram below shows a histogram marks obtained in a certain test.

(a) Develop a frequency distribution table for the data if the first class $5 \mathbf{- 9}$ has a frequency of 8 .

Class	$5-9$			
Frequency Density				
Frequency	8			

(b) Fill in the table below, hence or otherwise calculate the mean using an assumed mean of 19.5.
[3 marks]

Class	Midpoint(x)	$\mathrm{d}=\mathrm{x}-19.5$	$\mathrm{t}=\frac{\mathrm{d}}{5}$	Frequency(f)	ft	cf
$5-9$				8		

(c) Calculate interquatile range.
20). In the figure below $\mathbf{A B}, \mathbf{P Q}$ and $\mathbf{Q R}$ are straight lines

(a) Use the figure to:
(i) find a point \mathbf{S} on $\mathbf{A B}$ such that \mathbf{S} is equidistant from \mathbf{P} and \mathbf{R}.
(ii) complete a heptagon PQRSTVW with $\mathbf{A B}$ as its line of symmetry and hence measure \mathbf{Q} from \mathbf{S}.
(b) shade the region within the heptagon in which a variable point \mathbf{X} must lie given that \mathbf{X} satisfies the following conditions:
(i) \mathbf{X} is nearer to $\mathbf{T V}$ than to $\mathbf{T S}$.
(ii) $\mathbf{S X}$ is less than $\mathbf{3} \mathbf{c m}$.
(iii) $\angle \mathrm{PXW} \geq 90^{\circ}$.
21). The table below shows the income tax rates for a certain year.

Monthly taxable income sh	Tax rates(Percentage)
$1-9680$	10%
$9681-18800$	15%
$18801-27920$	20%
$27921-37040$	25%
$37041-46160$	30%
above 46161	35%

Naliaka earned a basis salary of KES 30840 and a house allowance of KES 15000 per month also a commuter allowance amounting to KES 10480 in a particular month.
(a) Calculate the tax she paid in that month if she is entitled a personal tax relief of KES 1056 per month.
(b) The following deduction are also made on Naliaka's income:

- NHIF = KES 1800
- NSSF = KES 920

Calculate the net income in that month.
22). The points $\mathbf{P}(\mathbf{2}, \mathbf{1}), \mathbf{Q}(\mathbf{4}, \mathbf{1}), \mathbf{R}(\mathbf{4}, \mathbf{3})$ and $\mathbf{S}(\mathbf{3}, \mathbf{3})$ are coordinates of a quadrilateral.

(a) Plot the quadrilateral PQRS on the grid provided.
(b) Find the coordinates of $\mathbf{P}^{\prime} \mathbf{Q}^{\prime} \mathbf{R}^{\prime} \mathbf{S}^{\prime}$ the image of $\mathbf{P Q R S}$ under the transformation

$$
\text { represented by the matrix } \mathbf{M}=\left(\begin{array}{ll}
1 & \mathbf{1} \\
\mathbf{2} & \mathbf{0}
\end{array}\right)
$$

(c) Draw and label $\mathbf{P}^{\prime} \mathbf{Q}^{\prime} \mathbf{R}^{\prime} \mathbf{S}^{\prime}$ on the same grid.
(d) Find the coordinates of $\mathbf{P}^{\prime \prime} \mathbf{Q}^{\prime \prime} \mathbf{R}^{\prime \prime} \mathbf{S}^{\prime \prime}$ on the image of $\mathbf{P}^{\prime} \mathbf{Q}^{\prime} \mathbf{R}^{\prime} \mathbf{S}^{\prime}$ under the transformation represented by the matrix $\mathbf{M}=\left(\begin{array}{cc}-2 & \mathbf{1} \\ 0 & 1\end{array}\right)^{\mathbf{0}}$
(e) Draw and label $\mathbf{P}^{\prime \prime} \mathbf{Q}^{\prime \prime} \mathbf{R}^{\prime \prime} \mathbf{S}^{\prime \prime}$ on the same grid.
(f) Determine the matrix that maps PQRS directly onto $\mathbf{P}^{\prime \prime} \mathbf{Q}^{\prime \prime} \mathbf{R}^{\prime \prime} \mathbf{S}^{\prime \prime}$.
23). A supermarket is stocked with plates which come from two suppliers \mathbf{A} and B. They are bought in the ratio $\mathbf{3}: \mathbf{5}$ respectively, $\mathbf{1 0 \%}$ of plates from \mathbf{A} are defective and $\mathbf{6 \%}$ of the plates from B are defective.
(a) A plate is chosen by a buyer at randon. Find the probability that:
(i) it is from \mathbf{A}.
(ii) it is from \mathbf{B} and it is defective.
(iii) it is defective.
(b) Two plates are chosen at random. Find the probability that:
(i) both are defective.
[2 marks]
(ii) at least one is defective.
24). (a) Complete the table below for $\mathbf{y}=\mathbf{x}^{3}+\mathbf{4} \mathbf{x}^{2}-\mathbf{5 x}-\mathbf{5}$.

x	-5	-4	-3	-2	-1	0	1	2
y								

(b) On the grid provided, draw the graph of:

$$
y=x^{3}+4 x^{2}-5 x-5 \quad \text { for } \quad-5 \leq x \leq 2
$$

(c) (i) Use the graph to solve the equation:
[2 marks]

$$
x^{3}+4 x^{2}-5 x-5=0
$$

(ii) By drawing a suitable straight line on the graph, solve the equatior[3 marks]

$$
x^{3}+4 x^{2}-5 x-5=-4 x-1
$$

