NAIROBI SCHOOL

Opener Term 3 Exam 121-Hybrid

MATHEMATICS

Form 4

Question Paper

October. 2022– 150 minutes

FILL IN YOUR PERSONAL DETAILS HERE						
Student Name:						
Admission Number:		Class:	4			

Instructions to candidates

- (a) Write your name, admission number and class in the spaces provided above.
- (b) This paper consists of two sections; Section I and Section II.
- (c) Answer all the questions in Section I and any five questions from Section II.
- (d) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
- (e) KNEC Mathematical tables may be used, except where stated otherwise.
- (f) Non-programmable silent electronic calculators **must not** be used, except where stated otherwise.
- (g) This paper consists of 16 printed pages.
- (h) Remember to tick the questions you have attempted in Section II

For Examiner's Use Only

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II(Please tick the questions you have attempted)

17	18	19	20	21	22	23	24	TOTAL
								\checkmark

©2022 Nairobi School 121-Hybrid

SECTION ONE - 50 MARKS

Answer all questions from this section in the spaces provided.

- The coordinates of two airports M and N are (60°N, 35°W) and (60°N, 15°E) respectively. Calculate;
 - (a) the longitude difference.

[1 mark]

(b) the shortest time an aeroplane whose speed is 250 knots will take to fly from M to N along a circle of latitude.
[2 marks]

2). Kasyoka and Kyalo working together can do a piece of work in 6 days. Kasyoka, working alone takes 5 days longer than Kyalo. How many days does it take Kyalo to do the work alone?

3). Find the radius and the centre of the circle whose equation is:

[4 marks]

 $3x^2 + 3y^2 - 6x + 12y + 3 = 0$

4). A particle moves along a straight line **AB**. Its velocity **v** metres per second after **t** seconds is given by $\mathbf{v} = \mathbf{t}^2 - 3\mathbf{t} + 5$. Determine distance covered within the third second. [3 marks]

5). All deposited KES 100,000 in a financial institution that paid simple interest at the rate of 12.5% p.a. Mohamed deposited the same amount of money as Ali in another financial institution that paid compound interest. After 4 years, they had equal amounts of money. Determine the compound interest rate per annum to one decimal place. [4 marks]

6). Make **x** the subject of the formula.

$$\frac{x^4-4}{x^2-2}=k$$

7). Solve for **x** in the equation. [3 marks] $2\sin^2 x - 1 = \cos^2 x - \sin^2 x$, where $0^\circ \le x \le 360^\circ$.

8). Find C that divide AB externally in the ratio 5:2, given that A(3, -6, 9) and B(-15, 3, 12). [3 marks]

9). If sin $\mathbf{x} = \mathbf{2b}$ and $\cos \mathbf{x} = \mathbf{2b}\sqrt{3}$, find the value of tan \mathbf{x} .

10). Solve for **y** in the equation:

[3 marks]

[2 marks]

 $(\log_2 y)^2 + \log_2 8 = \log_2 y^4$

11). On the triangle PQR, draw a circle touching PR, QP produced and QR produce[3. marks]

12). The gradient of a curve at any point given by 2x - 1. Given that the curve passes through point (1, 5). Find the equation of the curve. [3 marks]

13). w varies directly as the cube of x and inversely as y. Find w in terms of x and y given that w = 80 when x = 2 and y = 5.
 [3 marks]

14). Given that $2 \le A \le 4$ and $0.1 \le B \le 0.2$. Find the minimum value of $\frac{AB}{A - B}$ as a fraction. [2 marks]

Page 7 of 16

[3 marks]

15). Use matrix method to solve the given simultaneous equation:

$$3x + y = 7$$

 $5x + 2y = 12$

16). The figure below is a cuboid EFGHJKLM. EF = 12 cm, FG = 5 cm and GM = 6.5 cm.

(a) State the projection of **EM** on the plane **EFGH**.

[1 mark]

(b) Calculate the angle between **EM** and the plane **EFGH** correct to 2 decimal planes. [3 marks]

SECTION TWO - 50 Marks

Answer any **five** questions from this section in the spaces provided.

- 17). Use Trapezoidal rule to find the area between the curve $\mathbf{y} = \mathbf{x}^2 + 4\mathbf{x} + 4$, the **x**-axis and the ordinates $\mathbf{x} = -2$ and $\mathbf{x} = 1$. (Use 6 strips)
 - (a) Complete the table below.

×	-2	-1.5	—1	-0.5	0	0.5	1
y							

(b) Find the area enclosed by the curve, the x-axis, lines x = -2 and x = 1.[3 marks]

(c) Use integration to find the exact area.

[3 marks]

[2 marks]

(d) Hence or otherwise find the percentage error in your approximation correct to 2 significant figures. [2 marks]

18). (a) Complete the table below for the functions $\mathbf{y} = \mathbf{3} \sin \mathbf{3}\theta$ and $\mathbf{y} = \mathbf{2} \cos(\theta + \mathbf{40}^\circ)$ [2 marks]

θ	0 °	10°	20 °	30 °	40 °	50°	60°	70 °	80°	90
3 sin 3 <i>θ</i>	0.00		2.60	3.00		1.50		-1.50		-3.00
$2\cos(\theta + 40^\circ)$		1.29	1.00		0.35		-0.35	-0.68	-1.00	

(b) On the grid provided, draw the graphs of $\mathbf{y} = \mathbf{3} \sin \mathbf{3}\theta$ and $\mathbf{y} = \mathbf{2} \cos(\theta + \mathbf{40}^\circ)$ on the same axis. [5 marks]

Take $1\,cm$ to represent 10° on the x-axis and $4\,cm$ to represent 2 unit on the y - axis.

(c) From the graph find the roots of the equation:

(i)
$$\frac{3}{4}\sin 3\theta = \frac{1}{2}\cos(\theta + 40^{\circ}).$$
 [2 marks]
(ii) $2\cos(\theta + 40^{\circ}) = 0$ in the range $0 < \theta < 90^{\circ}$. [1 mark]

19). The diagram below shows a histogram marks obtained in a certain test.

 (a) Develop a frequency distribution table for the data if the first class 5 – 9 has a frequency of 8.
 [3 marks]

Class	5 — 9		
Frequency Density			
Frequency	8		

(b) Fill in the table below, hence or otherwise calculate the mean using an assumed mean of **19.5**. [3 marks]

Class	Midpoint(x)	d = x - 19.5	$t = \frac{d}{5}$	Frequency(f)	ft	cf
5 — 9				8		

(c) Calculate interquatile range.

[4 marks]

20). In the figure below **AB**, **PQ** and **QR** are straight lines

(a) Use the figure to:

	(i) find a point S on AB such that S is equidistant from P and R .	[1 mark]
	(ii) complete a heptagon PQRSTVW with AB as its line of symmetry of hence measure Q from S.	and [5 marks]
(b)	shade the region within the heptagon in which a variable point ${f X}$ must given that ${f X}$ satisfies the following conditions:	lie
	(i) X is nearer to TV than to TS.	[1 mark]
	(ii) SX is less than 3 cm.	[1 mark]

(iii) $\angle PXW \ge 90^{\circ}$.

Total: 10 marks

[2 marks]

21). The table below shows the income tax rates for a certain year.

Monthly taxable income sh	Tax rates(Percentage)
1 — 9680	10%
9681 — 18800	15%
18801 — 27920	20%
27921 — 37040	25%
37041 — 46160	30%
above 46161	35%

Naliaka earned a basis salary of **KES 30840** and a house allowance of **KES 15000** per month also a commuter allowance amounting to **KES 10480** in a particular month.

(a) Calculate the tax she paid in that month if she is entitled a personal tax relief of **KES 1056** per month. [7 marks]

(b) The following deduction are also made on Naliaka's income:

- NHIF = **KES 1800**
- NSSF = **KES 920**

Calculate the net income in that month.

[3 marks]

22). The points P(2,1), Q(4,1), R(4,3) and S(3,3) are coordinates of a quadrilateral.

(a) Plot the quadrilateral **PQRS** on the grid provided.

[1 mark]

(b) Find the coordinates of P'Q'R'S' the image of PQRS under the transformation

represented by the matrix $\mathbf{M} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{0} \end{pmatrix}$ [2 marks]

[1 mark]

- (c) Draw and label **P'Q'R'S'** on the same grid.
- (d) Find the coordinates of **P''Q''R''S''** on the image of **P'Q'R'S'** under the transformation represented by the matrix $M = \begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix}$ [2 marks]

- 23). A supermarket is stocked with plates which come from two suppliers A and
 B. They are bought in the ratio 3 : 5 respectively, 10% of plates from A are defective and 6% of the plates from B are defective.
 - (a) A plate is chosen by a buyer at randon. Find the probability that:

(i) it is from A.	[1 mark]
(ii) it is from B and it is defective.	[2 marks]
(iii) it is defective.	[2 marks]
(b) Two plates are chosen at random. Find the probability that:	[2 marks]
() both dre delective.	

Total: 10 marks

[3 marks]

(ii) at least one is defective.

(ii) By drawing a suitable straight line on the graph, solve the equatior [3 marks] $x^3 + 4x^2 - 5x - 5 = -4x - 1$