NAIROBI SCHOOL

Opener Term 3 Exam
121-Hybrid

MATHEMATICS

Marking Scheme

October, 2022 – 150 minutes

Form 4

FILL IN YOUR PERSONAL DETAILS HERE									
Student Name:									
Admission Number:		Class:	4						

Instructions to candidates

- (a) Write your name, admission number and class in the spaces provided above.
- (b) This paper consists of two sections; Section I and Section II.
- (c) Answer all the questions in Section I and any five questions from Section II.
- (d) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
- (e) KNEC Mathematical tables may be used, except where stated otherwise.
- **(f) Non-programmable** silent electronic calculators **must not** be used, except where stated otherwise.
- (g) This paper consists of 16 printed pages.
- (h) Remember to tick the questions you have attempted in Section II

For Examiner's Use Only

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II(Please tick the questions you have attempted)

17	18	19	20	21	22	23	24	TOTAL
								√

©2022 Nairobi School 121-Hybrid

By Mr Waihenya

TURN OVER

SECTION ONE - 50 MARKS

Answer all questions from this section in the spaces provided.

- 1). The coordinates of two airports M and N are $(60^{\circ}N, 35^{\circ}W)$ and $(60^{\circ}N, 15^{\circ}E)$ respectively. Calculate;
 - (a) the longitude difference.

[1 mark]

Solution

longitudinal difference =
$$35 + 15$$
 sum as the places have different longitude direction = 50° B1

(b) the shortest time an aeroplane whose speed is 250 knots will take to fly from \mathbf{M} to \mathbf{N} along a circle of latitude. [2 marks]

Solution

Arc Length =60
$$\times$$
 50 cos 60 60 θ cos α
=1500 nm M1

Time = $\frac{1500 \text{ nm}}{250 \text{knots}}$ distance= speed \times time
=6 h

2). Kasyoka and Kyalo working together can do a piece of work in 6 days. Kasyoka, working alone takes **5** days longer than Kyalo. How many days does it take Kyalo to do the work alone? [4 marks]

Solution

Let $\mathbf{x} =$ the number of days Kyalo takes to finish the job

	Total time in days	Fractional part done in 1 day	Fractional part each person does in 6 days
Kyalo	×	$\frac{1}{x}$	$\frac{6}{x}$
Kasyoka	x + 5	$\frac{1}{x+5}$	$\frac{6}{x+5}$
Together	6	$\frac{1}{6}$	1

Kasyoka and Kyalo do 1 fractional part in 6 days.
$$\frac{6}{x} + \frac{6}{x+5} = 1 \qquad \qquad M1$$

$$6(x+5) + 6x = x(x+5) \qquad \qquad \text{clear off fractions}$$

$$x^2 - 7x - 30 = 0 \qquad \qquad (x-10)(x+3) = 0 \qquad \qquad M1$$

$$x = 10 \quad \text{or} \quad x = -3 \quad \text{(reject)} \checkmark \quad A1 \qquad \text{as x cannot be negative}$$

Hence Kyalo takes 10 days to complete the job. B1

3). Find the radius and the centre of the circle whose equation is:

[4 marks]

$$3x^2 + 3y^2 - 6x + 12y + 3 = 0$$

Solution

$$\begin{aligned} 3x^2 + 3y^2 - 6x + 12y + 3 &= 0 \\ x^2 - 3x + y^2 + 4y &= -3 \end{aligned}$$

$$x^2 - 3x + \left(-\frac{3}{2}\right)^2 + y^2 + 4y + (2)^2 &= -3 + \left(-\frac{3}{2}\right)^2 + (2)^2 \checkmark M1$$

$$\left(x - \frac{3}{2}\right)^2 + (y + 2)^2 &= \frac{13}{4}$$
 $\checkmark M1$

Hence the centre is $\left(\frac{3}{2},-2\right)$ and radius is $\frac{\sqrt{13}}{2}.$

4). A particle moves along a straight line **AB**. Its velocity ${\bf v}$ metres per second after ${\bf t}$ seconds is given by ${\bf v}={\bf t}^2-3{\bf t}+5$. Determine distance covered within the third second. [3 marks]

Solution

$$s = \int_{2}^{3} t^{2} - 3t + 5dt$$

$$= \left[\frac{t^{3}}{3} - \frac{3t^{2}}{2} + 5t + c\right]_{2}^{3}$$

$$= \frac{23}{6} = 3\frac{5}{6}$$
A1

5). Ali deposited **KES 100,000** in a financial institution that paid simple interest at the rate of **12.5**% p.a. Mohamed deposited the same amount of money as Ali in another financial institution that paid compound interest. After **4** years, they had equal amounts of money. Determine the compound interest rate per annum to one decimal place.

[4 marks]

Solution

Let r = compound interest per annum. Simple Interest =100000 \times $\frac{12.5}{100}$ \times 4 = $\frac{100000}{10000}$ Amount for Ali =100000 + 50000 = 150000 Amount for Mohamed =KES 150000 $\Rightarrow 150000 = 100000 \left(1 + \frac{r}{100}\right)^4 \qquad M$ $1.5 = \left(1 + \frac{r}{100}\right)^4 \qquad M$ $\Rightarrow \frac{r}{100} = \sqrt[4]{1.5} - 1$ $r = 100(\sqrt[4]{1.5} - 1) = 10.7\%$ 6). Make **x** the subject of the formula.

[3 marks]

$$\frac{x^4-4}{x^2-2}=k$$

Solution

$$\begin{aligned} \frac{x^4-4}{x^2-2} = & k \\ \frac{(x^2-2)(x^2+2)}{x^2-2} = & k \\ x^2-2 & = & k \\ x^2+2 = & k \\ x^2 = & k-2 \\ x = & \pm \sqrt{k-2} \end{aligned}$$

7). Solve for **x** in the equation.

[3 marks]

$$2\sin^2 x - 1 = \cos^2 x - \sin^2 x$$
, where $0^{\circ} \le x \le 360^{\circ}$.

Solution

$$2 \sin^2 x - 1 = (1 - \sin^2 x) - \sin^2 x$$

 $4 \sin^2 x = 2$
 $\sin^2 x = \frac{1}{2}$
 $\sin x = \pm \frac{1}{\sqrt{2}}$

Working from the first quadrant:

$$\implies x = \sin^{-1}\frac{1}{\sqrt{2}} = 45^{\circ}$$
 M1

Translating to required quadrants gives:

8). Find C that divide AB externally in the ratio 5:2, given that A(3,-6,9) and B(-15,3,12). [3 marks] Solution

$$\overrightarrow{OC} = \frac{-2}{3}\overrightarrow{OB} + \frac{5}{3}\overrightarrow{OA}$$

$$= \frac{-2}{3}\begin{pmatrix} -15\\3\\12 \end{pmatrix} + \frac{5}{3}\begin{pmatrix} 3\\-6\\9 \end{pmatrix}$$

$$= \begin{pmatrix} 10\\-2\\-8 \end{pmatrix} + \begin{pmatrix} 5\\-10\\15 \end{pmatrix} = \begin{pmatrix} 15\\-12\\7 \end{pmatrix}$$

$$\therefore C(15, -12, 7)$$

$$\checkmark B1$$

9). If $\sin x = 2b$ and $\cos x = 2b\sqrt{3}$, find the value of $\tan x$.

[2 marks]

Solution

$$\tan x = \frac{\sin x}{\cos x}$$

$$= \frac{2b}{2b\sqrt{3}} = \frac{1}{\sqrt{3}} \checkmark M1$$

$$= \frac{\sqrt{3}}{3}$$

$$\checkmark A1$$
 must rationalize denominator

10). Solve for **y** in the equation:

[3 marks]

$$(\log_2 y)^2 + \log_2 8 = \log_2 y^4$$

Solution

$$(\log_2 y)^2 + \log_2 8 = \log_2 y^4$$

$$(\log_2 y)^2 + 3 = 4\log_2 y$$

$$\log_2 8 = 3 \text{ and } \log m^n = n\log m$$
 Let $\log_2 y = a$, thus
$$a^2 + 3 = 4a$$

$$a^2 - 4a + 3 = 0$$

$$(a - 3)(a - 1) = 0$$

$$\Rightarrow a = 3 \text{ or } a = 1$$
hence $\log_2 y = 3 \Rightarrow y = 2^3 = 8$
and $\log_2 y = 1 \Rightarrow y = 2^1 = 2$

11). On the triangle PQR, draw a circle touching PR, QP produced and QR produce@ marks]

12). The gradient of a curve at any point given by 2x - 1. Given that the curve passes through point (1,5). Find the equation of the curve. [3 marks]

Solution

$$\frac{dy}{dx} = 2x - 1$$

$$y = \int \frac{dy}{dx} dx$$

$$y = 2x - 1 dx = x^2 - x + c \checkmark M1$$

$$5 = 1^2 - 1 + c \implies c = 5 \checkmark M1$$

$$\therefore y = x^2 - x + 5 \checkmark A1$$

13). w varies directly as the cube of x and inversely as y. Find w in terms of x and y given that w = 80 when x = 2 and y = 5.
[3 marks]
Solution

$$w \propto \frac{x^3}{y} \implies w = \frac{kx^3}{y} \checkmark M1$$

$$80 = \frac{k(2)^3}{5} \implies 80 = \frac{8k}{5} \checkmark M1$$

$$k = 50$$

$$\therefore w = \frac{50x^3}{y} \checkmark A1$$

14). Given that $2 \le A \le 4$ and $0.1 \le B \le 0.2$. Find the minimum value of $\frac{AB}{A-B}$ as a fraction. [2 marks]

Solution

15). Use matrix method to solve the given simultaneous equation:

[3 marks]

$$3x + y = 7$$

 $5x + 2y = 12$

Solution

$$\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 12 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 12 \end{pmatrix} \checkmark M1$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \checkmark M1$$

$$\implies x = 2$$

$$y = 1$$

16). The figure below is a cuboid **EFGHJKLM**. EF = 12 cm, FG = 5 cm and GM = 6.5 cm.

(a) State the projection of \boldsymbol{EM} on the plane $\boldsymbol{EFGH}.$

[1 mark]

Solution

(b) Calculate the angle between **EM** and the plane **EFGH** correct to 2 decimal planes. [3 marks]

Solution

$$EG^{2} = EF^{2} + FG^{2}$$

$$= 12^{2} + 5^{2} = 169$$

$$\implies EG = 13$$

$$\therefore \tan \theta = \frac{MG}{EG} = \frac{6.5}{13}$$

$$\implies \theta = \tan^{-1} \frac{1}{2} = \frac{1}{2}$$

SECTION TWO - 50 Marks

Answer any **five** questions from this section in the spaces provided.

- 17). Use Trapezoidal rule to find the area between the curve $\mathbf{y} = \mathbf{x^2} + \mathbf{4x} + \mathbf{4}$, the \mathbf{x} -axis and the ordinates $\mathbf{x} = -\mathbf{2}$ and $\mathbf{x} = \mathbf{1}$. (Use 6 strips)
 - (a) Complete the table below.

[2 marks]

×	-2	—1.5	–1	-0.5	0	0.5	1	
y	-1	-0.75	0	1.25	3	5.25	8	√ B2

(b) Find the area enclosed by the curve, the **x**-axis, lines $\mathbf{x} = -\mathbf{2}$ and $\mathbf{x} = \mathbf{1}.[\mathbf{3} \text{ marks}]$ Solution

$$\begin{aligned} h = & \frac{b-\alpha}{2} = \frac{1--2}{6} = 0.5 \\ \text{Area} = & \frac{1}{2} h \big\{ (y_1 + y_7) + 2(y_2 + y_3 + \dots + y_6) \big\} \\ = & \frac{1}{2} \times 0.5 \big\{ (1+8) + 2(0.75 + 0 + 1.25 + 3 + 5.25) \big\} \checkmark \text{M1} \\ = & \frac{1}{4} \times 29.5 = 7.375 \text{ sq units} \end{aligned}$$

(c) Use integration to find the exact area.

[3 marks]

Solution

Area
$$=\int_{-2}^{1} x^2 + 4x + 4dx$$

 $=\int_{-2}^{-1} x^2 + 4x + 4dx + \int_{-1}^{1} x^2 + 4x + 4dx$
 $=\left[\frac{x^3}{3} + 2x^2 + 4x + c\right]_{-2}^{-1} + \left[\frac{x^3}{3} + 2x^2 + 4x + c\right]_{-1}^{1} \checkmark M1$
 $=\left|-\frac{2}{3}\right| + \frac{20}{3}$
 $=\frac{22}{3} = 7\frac{1}{3}$ sq units

(d) Hence or otherwise find the percentage error in your approximation correct to 2 significant figures. [2 marks]

Solution

$$\begin{split} \text{Percentage Error} = & \frac{\text{Absolute error}}{\text{Actual Area}} \times \textbf{100}\% \\ = & \frac{\textbf{7.375} - \frac{22}{3}}{\frac{22}{3}} \times \textbf{100}\% \\ = & \textbf{0.5682}\% \approx \textbf{0.57}\% \end{split} \qquad \checkmark \textbf{A1}$$

18). (a) Complete the table below for the functions $\mathbf{y}=\mathbf{3}\sin\mathbf{3}\theta$ and $\mathbf{y}=\mathbf{2}\cos(\theta+\mathbf{40}^\circ)$ [2 marks]

θ	0 °	10°	20°	30 °	40°	50°	60°	70 °	80 °	90
$3 \sin 3\theta$	0.00	1.50	2.60	3.00	2.60	1.50	0.00	-1.50	-2.60	-3.00
$2\cos(\theta+40^\circ)$	1.53	1.29	1.00	0.68	0.35	0.00	-0.35	-0.68	-1.00	-1.29

(b) On the grid provided, draw the graphs of $\mathbf{y} = \mathbf{3}\sin\mathbf{3}\theta$ and $\mathbf{y} = \mathbf{2}\cos(\theta + \mathbf{40}^\circ)$ on the same axis. [5 marks]

Take 1 cm to represent 10° on the x-axis and 4 cm to represent 2 unit on the y - axis.

(c) From the graph find the roots of the equation:

(i)
$$\frac{3}{4}\sin 3\theta = \frac{1}{2}\cos(\theta + 40^{\circ}).$$

[2 marks]

(ii) $2\cos(\theta + 40^{\circ}) = 0$ in the range $0 \le \theta \le 90^{\circ}$.

[1 mark]

19). The diagram below shows a histogram marks obtained in a certain test.

(a) Develop a frequency distribution table for the data if the first class **5** — **9** has a frequency of **8**. [3 marks]

Class	5 — 9	10 — 19	20 — 39	40 – 49
Frequency Density	4	6	2	4
Frequency	8	24	16	16

(b) Fill in the table below, hence or otherwise calculate the mean using an assumed mean of **19.5**. [3 marks]

Class	Midpoint(x)	d=x-19.5	$t=rac{d}{5}$	Frequency(f)	ft	cf
5 – 9	7	-12.5	-2.5	8	-20	8
10 — 19	14.5	–5	-1	24	-24	32
20 – 39	29.5	10	2	16	32	48
40 – 49	44.5	25	5	16	80	64

Solution

(c) Calculate interquatile range.

[4 marks]

Solution

$$\begin{split} & \text{IQR} = & \text{Q}_3 - \text{Q}_1 \\ & = \left\{ \text{LCB} + \frac{\frac{3}{4}\text{N} - \text{cf}}{\text{f}} \times \text{cw} \right\} - \left\{ \text{LCB} + \frac{\frac{1}{4}\text{N} - \text{cf}}{\text{f}} \times \text{cw} \right\} \\ & = \left\{ 19.5 + \frac{\frac{3}{4} \times 64 - 32}{16} \times 20 \right\} - \left\{ 9.5 + \frac{\frac{1}{4} \times 64 - 8}{24} \times 10 \right\} \\ & = & 39.5 - 12.83 = 26.67 \end{split}$$

20). In the figure below AB, PQ and QR are straight lines

- (a) Use the figure to:
 - (i) find a point **S** on **AB** such that **S** is equidistant from **P** and **R**. [1 mark]
 - (ii) complete a heptagon **PQRSTVW** with **AB** as its line of symmetry and hence measure **Q** from **S**. [5 marks]
- (b) shade the region within the heptagon in which a variable point **X** must lie given that **X** satisfies the following conditions:
 - (i) X is nearer to TV than to TS.

[1 mark]

(ii) SX is less than 3 cm.

[1 mark]

(iii) $\angle PXW \ge 90^{\circ}$.

[2 marks]

21). The table below shows the income tax rates for a certain year.

Monthly taxable income sh	Tax rates(Percentage)
1 — 9680	10%
9681 — 18800	15%
18801 — 27920	20%
27921 — 37040	25%
37041 — 46160	30%
above 46161	35%

Naliaka earned a basis salary of **KES 30840** and a house allowance of **KES 15000** per month also a commuter allowance amounting to **KES 10480** in a particular month.

(a) Calculate the tax she paid in that month if she is entitled a personal tax relief of **KES 1056** per month. [7 marks]

Solution

- (b) The following deduction are also made on Naliaka's income:
 - NHIF = **KES 1800**
 - NSSF = **KES 920**

Calculate the net income in that month.

[3 marks]

Solution

Deductions =
$$11676 + 1800 + 920 = KES 14396 \checkmark M1$$

Net income = $56320 - 14396$ $\checkmark M1$
= KES 41924 \checkmark A1

22). The points P(2,1), Q(4,1), R(4,3) and S(3,3) are coordinates of a quadrilateral.

(a) Plot the quadrilateral **PQRS** on the grid provided.

[1 mark]

(b) Find the coordinates of P'Q'R'S' the image of PQRS under the transformation represented by the matrix $M=\begin{pmatrix}1&1\\2&0\end{pmatrix}$ [2 marks]

Solution

$$\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 4 & 4 & 3 \\ 1 & 1 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 7 & 6 \\ 4 & 8 & 8 & 6 \end{pmatrix} \checkmark M1$$
Hence $P'(3,4) \ Q'(5,8), \ R'(7,8), \ S'(6,6) \checkmark A1$

(c) Draw and label P'Q'R'S' on the same grid.

[1 mark]

(d) Find the coordinates of P''Q''R''S'' on the image of P'Q'R'S' under the transformation represented by the matrix $\mathbf{M} = \begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix}$ [2 marks]

Solution

$$\begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 7 & 6 \\ 4 & 8 & 8 & 6 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -6 & -6 \\ 4 & 8 & 8 & 6 \end{pmatrix} \checkmark M1$$
Hence $P''(-2,4) Q''(-2,8), R''(-6,8), S''(-6,6) \checkmark A1$

(e) Draw and label P"Q"R"S" on the same grid.

[1 mark]

(f) Determine the matrix that maps **PQRS** directly onto **P"Q"R"S"**. [3 marks] Solution

Let M = the transformation matrix; thus,
$$M\begin{pmatrix} 2 & 4 & 4 & 3 \\ 1 & 1 & 3 & 3 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -6 & -6 \\ 4 & 8 & 8 & 6 \end{pmatrix}$$

$$M\begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 4 & 8 \end{pmatrix}$$

$$M\begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix} \frac{1}{-2}\begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 4 & 8 \end{pmatrix} \frac{1}{-2}\begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} \checkmark M1 \quad \text{post multiply to solve follows}$$

$$M\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 0 & 4 \\ -4 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$

- 23). A supermarket is stocked with plates which come from two suppliers **A** and **B**. They are bought in the ratio **3**: **5** respectively, **10**% of plates from **A** are defective and **6**% of the plates from B are defective.
 - (a) A plate is chosen by a buyer at randon. Find the probability that:
 - (i) it is from **A**. Solution

[1 mark]

$$P(A) = \frac{3}{8} \checkmark B1$$

(ii) it is from **B** and it is defective. Solution

[2 marks]

P(B and D) =
$$\frac{5}{8} \times 0.06$$
 M1
= $\frac{3}{80}$ A1

(iii) it is defective.

Solution

[2 marks]

- (b) Two plates are chosen at random. Find the probability that:
 - (i) both are defective. Solution

[2 marks]

P(AD and BD) =P(A and D)
$$\times$$
 P(B and D)
$$= \frac{3}{80} \times \frac{3}{80}$$

$$= \frac{9}{6400}$$
A1

(ii) at least one is defective.

Solution

[3 marks]

P(at least one D) =1 -
$$\left\{P(A \text{ and } D') \times P(B \text{ and } D')\right\} \checkmark M1$$

=1 - $\left\{\frac{27}{80} \times \frac{27}{80}\right\}$ $\checkmark M1$
= $\frac{5671}{6400}$ \checkmark A1

24). (a) Complete the table below for $y = x^3 + 4x^2 - 5x - 5$.

[2 marks]

×	-5	-4	-3	-2	-1	0	1	2
y	-5	15	19	13	3	-5	-5	9

(b) On the grid provided, draw the graph of:

[3 marks]

$$y = x^3 + 4x^2 - 5x - 5$$
 for $-5 \le x \le 2$.

(c) (i) Use the graph to solve the equation:

[2 marks]

$$x^3 + 4x^2 - 5x - 5 = 0$$

Solution

Read the x- intercepts on the graph of
$$y = x^3 + 4x^2 - 5x - 5$$

 $x_1 = 1.5, \quad x_2 = -0.7 \quad \text{and} \quad x_3 = -4.8 \quad B2$

(ii) By drawing a suitable straight line on the graph, solve the equation[3 marks]

$$x^3 + 4x^2 - 5x - 5 = -4x - 1$$

Solution

$$y = x^{3} + 4x^{2} - 5x - 5$$

$$-4x - 1 = x^{3} + 4x^{2} - 5x - 5$$

$$\implies y = -4x - 1$$
B1

Plot the straight line graph y = -4x - 1

The line intersects with $y = x^3 + 4x^2 - 5x - 5$ at

$$\mathbf{x} = -\mathbf{4}, \ \mathbf{x} = -\mathbf{1}$$
 and $\mathbf{x} = \mathbf{1} \checkmark \mathbf{B} \mathbf{1}$