NAIROBI SCHOOL

Opener Exam, Term 2

121

MATHEMATICS

Marking Scheme
July. 2022-150 minutes

Form 4

FILL IN YOUR PERSONAL DETAILS HERE

Student Name: \square

Admission Number: \square Class: 4

Instructions to candidates

(a) Write your name, admission number and class in the spaces provided above.
(b) This paper consists of two sections; Section I and Section II.
(c) Answer all the questions in Section I and any five questions from Section II.
(d) Show all the steps in your calculations, giving your answers at each stage in the spaces provided below each question.
(e) KNEC Mathematical tables may be used, except where stated otherwise.
(f) Non-programmable silent electronic calculators must not be used, except where stated otherwise.
(g) This paper consists of 16 printed pages.
(h) Remember to tick the questions you have attempted in Section II

For Examiner's Use Only

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II(Please tick the questions you have attempted)

17	18	19	20	21	22	23	24	TOTAL
								$\sqrt{ }$

SECTION ONE - 50 MARKS

Answer all questions from this section in the spaces provided.
1). Solve $2 \sin ^{2} \theta+\mathbf{3} \cos \theta=-\mathbf{1}$ for $\mathbf{0}^{\circ} \leq \theta \leq 360^{\circ}$

Solution

$$
\begin{aligned}
2 \sin ^{2} \theta+\mathbf{3} \cos \theta & =-\mathbf{1} \\
\mathbf{2 (1 - \operatorname { c o s } ^ { 2 } \theta) + \mathbf { 3 } \operatorname { c o s } \theta} & =-\mathbf{1} \\
2-\mathbf{2} \cos ^{2} \theta+\mathbf{3} \cos \theta & =-\mathbf{1} \\
\mathbf{2} \cos ^{2} \theta-\mathbf{3} \cos \theta-\mathbf{3} & =\mathbf{0} \\
\cos \theta & =\frac{\mathbf{3} \pm \sqrt{(-\mathbf{3})^{2}-\mathbf{4} \cdot \mathbf{2 \cdot (- 3)}}}{\mathbf{2 \cdot 2}} \\
\cos \theta & =\mathbf{2 . 1 8 6 1 4 \ldots , \mathbf { x } = - \mathbf { 0 . 6 8 6 1 4 } \ldots} \\
\Longrightarrow \cos \theta & =-\mathbf{0 . 6 8 6 1 4} \\
\theta & =\mathbf{4 6 . 6 7 ^ { \circ }} \quad \text { working on first quadrant } \\
\theta & =180^{\circ}-\mathbf{4 6 . 6 7 ^ { \circ } , \mathbf { 1 8 0 } ^ { \circ } + \mathbf { 4 6 . 6 7 }} \\
& =133.33^{\circ}, \mathbf{2 2 6 . 6 7 ^ { \circ }}
\end{aligned}
$$

2). Given that $\mathbf{A}=\sqrt[4]{\frac{d-c^{2} g}{b+c^{2} f}}$ make \mathbf{c} the subject of the formula.

Solution

$$
\begin{aligned}
& A=\sqrt[4]{\frac{d-c^{2} g}{b+c^{2} f}} \Longrightarrow A^{4}=\frac{d-c^{2} g}{b+c^{2} f} \\
& A^{4}\left(b+c^{2} f\right)=d-c^{2} g \\
& A^{4} b+A^{4} c^{2} f=d-c^{2} g \\
& A^{4} c^{2} f+c^{2} g=d-A^{4} b \\
& c^{2}\left(A^{4} f+g\right)=d-A^{4} b \\
& c^{2}=\frac{d-A^{4} b}{A^{4} f+g} \\
& c= \pm \sqrt{\frac{d-A^{4} b}{A^{4} f+g}}
\end{aligned}
$$

3). A sum of Ksh. $\mathbf{8 0 0 0}$ was partly lent at $\mathbf{1 0 \%}$ p.a simple interest and $\mathbf{1 2 . 5 \%}$ p.a simple interest. The total interest after 2 years was Ksh. 1775. How much was lent at $\mathbf{1 0 \%}$ simple interest?

Solution

Let the amount lent at $\mathbf{1 0 \%}$ p. a simple interest be x :

$$
\begin{aligned}
\left(x \times \frac{10}{100} \times 2\right)+\left([8000-x] \times \frac{12.5}{100} \times 2\right) & =1775 \\
0.2 x+2000-0.25 x & =1775 \\
-0.05 x & =-225 \\
x & =\frac{-225}{-0.05}=4500
\end{aligned}
$$

Hence amount lent at $\mathbf{1 0 \%}$ interest is Ksh. 4500.
4). Solve the following simultaneous equations
$\log _{3}(3 x+4 y)=2$
$\log _{2}(2 x+y)=1$
Solution

$$
\begin{aligned}
& \log _{3}(3 x+4 y)=2 \\
& \log _{2}(2 x+y)=1 \\
& 3 x+4 y+4 y=3^{2} \\
& 2 x+y=2 \\
&=2 x+y=2^{1} \\
&-5 x=1 \\
& y \Longrightarrow x=-\frac{1}{5} \\
& y=2-2\left(-\frac{1}{5}\right)=\frac{12}{5}
\end{aligned}
$$

Hence $x=-\frac{1}{5}$ and $y=2 \frac{2}{5}$
5). The position ${ }^{5}$ vectors fo ${ }^{5}$ points \mathbf{P} and \mathbf{Q} are $\mathbf{6 i} \mathbf{- 3} \mathbf{j}+\mathbf{9 k}$ and $\mathbf{3 i} \mathbf{- 6 j} \mathbf{- 3} \mathbf{k}$ respectively.
\mathbf{R} divides line $\mathbf{P Q}$ in the ratio $\mathbf{1 : 2}$. Find the position vector of \mathbf{R} and express it in terms of unit vector \mathbf{i}, \mathbf{j} and \mathbf{k}.
Solution

$$
\begin{aligned}
\overrightarrow{O R} & =\frac{1}{3} \overrightarrow{O Q}+\frac{2}{3} \overrightarrow{O P} \\
& =\frac{1}{3}(6 \mathbf{i}-3 j+9 \mathbf{k})+\frac{2}{3}(3 \mathbf{i}-6 \mathbf{j}-3 \mathbf{k}) \\
& =2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}+2 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k} \\
& =4 \mathbf{i}-5 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

6). The parallelogram below has adjacent sides of lengths 5.6 cm and 10.1 cm respectively while the angle between them is 50°.

Calculate the percentage error of finding its area.
Solution

$$
\begin{aligned}
\text { Minimum area } & =\frac{1}{2} \times 5.55 \times 10.05 \sin 50^{\circ}=21.36402 \ldots \\
\text { Actual area } & =\frac{1}{2} \times 5.6 \times 10.1 \sin 50^{\circ}=21.6637 \mathrm{~cm}^{2} \\
\text { Maximum area } & =\frac{1}{2} \times 5.65 \times 10.15 \sin 50^{\circ}=21.96536 \ldots \\
\text { Absolute error } & =\frac{21.9653-21.6637}{2}=0.1508 \\
\text { Percentage error } & =\frac{0.1508}{21.6637} \times 100 \%=0.696 \%
\end{aligned}
$$

7). Simplify completely $\frac{9 x^{2}-16 x+7}{162 x^{2}-98}$

Solution

$$
\begin{aligned}
\frac{9 x^{2}-16 x+7}{162 x^{2}-98} & =\frac{9 x^{2}-9 x-7 x+7}{2\left(81 x^{2}-49\right)} \\
& =\frac{(9 x-7)(x-1)}{2(9 x-7)(9 x+7)} \\
& =\frac{x-1}{2(9 x+7)}
\end{aligned}
$$

8). Without using mathematical tables or a calculator, express $\sin 45^{\circ}$ in surd form. Hence simplify $\frac{\sqrt{8}}{1+\sin 45^{\circ}}$ leaving your answer in surd form.

$$
\begin{aligned}
\sin 45^{\circ} & =\frac{1}{\sqrt{2}} \\
\frac{\sqrt{8}}{1+\sin 45^{\circ}} & =\frac{2 \sqrt{2}}{1+\frac{1}{\sqrt{2}}}=\frac{2 \sqrt{2}}{1+\frac{\sqrt{2}}{2}} \\
& =\frac{2 \sqrt{2}}{1+\frac{\sqrt{2}}{2}} \times \frac{1-\frac{\sqrt{2}}{2}}{1-\frac{\sqrt{2}}{2}} \\
& =\frac{2 \sqrt{2}-2}{1-\frac{1}{2}}=\frac{2 \sqrt{2}-2}{\frac{1}{2}} \\
& =4 \sqrt{2}-4
\end{aligned}
$$

9). (a) Expand $\left(1-\frac{1}{4} x\right)^{5}$ up to the $4^{\text {th }}$ term.

Solution

Apply binomial theorem: $(\mathbf{a}+\mathbf{b})^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{(n-i)} \boldsymbol{b}^{i}$ where $\mathbf{a}=1, \quad \mathbf{b}=-\frac{1}{4} \mathbf{x}$

$$
\begin{aligned}
\left(1-\frac{1}{4} x\right)^{5} & =\sum_{i=0}^{5}\binom{5}{i} \cdot 1^{(5-i)}\left(-\frac{1}{4} x\right)^{i=0} \\
& =1 \cdot 1^{5}\left(-\frac{1}{4} x\right)^{0}+5 \cdot 1^{4}\left(-\frac{1}{4} x\right)^{1}+1 \\
& =1-\frac{5 x}{4}+\frac{5 x^{2}}{8}-\frac{5 x^{3}}{32}+\frac{5 x^{4}}{256}-\frac{x^{5}}{1024} \\
& =1-\frac{5 x}{4}+\frac{5 x^{2}}{8}-\frac{5 x^{3}}{32}+\cdots
\end{aligned}
$$

$$
=1 \cdot 1^{5}\left(-\frac{1}{4} x\right)^{0}+5 \cdot 1^{4}\left(-\frac{1}{4} x\right)^{1}+10 \cdot 1^{3}\left(-\frac{1}{4} x\right)^{2}+10 \cdot 1^{2}\left(-\frac{1}{4} x\right)^{3}+5 \cdot 1^{1}\left(-\frac{1}{4} x\right)^{4}
$$

(b) Use the expansion in part (a) above to find the approximate value of $(\mathbf{1 . 2 5})^{\mathbf{5}}$.

$$
\begin{aligned}
1.25^{5} & =1-\frac{5(-1)}{4}+\frac{5(-1)^{2}}{8}-\frac{5(-1)^{3}}{32} \\
& =\frac{97}{32}=3.03125
\end{aligned}
$$

10). A bus travelling at an average speed of $\mathbf{x k m} / \mathrm{h}$ left a station at 8.15 a.m . A car, travelling at an average speed of $80 \mathrm{~km} / \mathrm{h}$ left the same station at 9.00 a .m. and caught up with the bus at 10.45 a.m. Find the value of \mathbf{x}.
Solution

	Time (hours)	Rate (speed)	Distance
Bus	$\frac{\mathbf{5}}{2}$	\mathbf{x}	$\frac{\mathbf{5}}{\mathbf{2}} \times \mathbf{x}$
Car	$\frac{7}{4}$	80	$\frac{7}{\mathbf{4}} \times \mathbf{8 0}$

The bus travelled the same distance as the car hence:

$$
\begin{aligned}
\frac{5}{2} x & =\frac{7}{4} \times 80 \\
\frac{5}{2} x & =140 \\
\Longrightarrow x & =140 \times \frac{2}{5} \\
& =56 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

11). The data below represents the ages in months at which 6 babies started walking; $9,11,12,13,11$ and 10. Without using a calculator, find the exact value of the variance of the data.
Solution

$$
\begin{aligned}
& \bar{x}=\frac{9+11+12+13+11+10}{6}=11 \\
& d:-2
\end{aligned}
$$

12). A triangle PQR has an area of $3.2 \mathbf{c m}^{2}$. It's image under a transformation matrix $\left(\begin{array}{cc}4 x^{2} & 5 \\ -x & 1\end{array}\right)$ has an area of $19.2 \mathrm{~cm}^{2}$. Find the value of x
Solution

$$
\begin{aligned}
& \mathrm{ASF}=\frac{19.2}{3.2}=6 \\
& \mathrm{ASF}=\operatorname{det} \mathbf{M} \\
& 6=4 x^{2}-5(-x) \\
& 0=4 x^{2}+5 x-6 \\
& 0=4 x^{2}+8 x-3 x-6 \\
& 0=(x+2)(4 x-3) \\
& \Longrightarrow x=-2 \text { or } x=\frac{3}{4}
\end{aligned}
$$

13). The scale of a map is given as $1: 50,000$. Find the actual area in hectares of the region represented by a rectangle of sides $\mathbf{6 c m}$ by $\mathbf{c m}$. Solution

$$
\begin{aligned}
\mathbf{1} \mathrm{cm} & \text { rep } 50000 \mathrm{~cm} \\
\mathbf{1} \mathrm{~cm} & \text { rep } 500 \mathrm{~m} \\
\mathbf{1} \mathrm{~cm}^{2} & \text { rep } \mathbf{2 5 0 0 0 0} \mathrm{m}^{2} \\
\mathbf{1} \mathrm{~cm}^{2} & \text { rep } \mathbf{2 5 ~ h a ~} \\
\text { Scale Area } & =\mathbf{6} \times \mathbf{7}=\mathbf{4 2} \mathrm{cm}^{2} \\
\text { Actual area } & =\mathbf{2 5} \mathrm{ha} \times \mathbf{4 2} \\
& =\mathbf{1 0 5 0} \mathrm{ha}
\end{aligned}
$$

14). In the figure below, the tangent $\mathbf{S T}$ meets chord VU produced at \mathbf{T}. chord SW passes through the centre \mathbf{O} of the circle and intersects chord $\mathbf{V U}$ at X . line $\mathbf{S T}=\mathbf{2 4} \mathbf{~ c m}$ and $U T=16 \mathrm{~cm}$.

(a) Calculate the length of chord $\mathbf{V U}$.

Solution
Let $\mathbf{x}=\mathbf{V U}$

$$
\begin{aligned}
\mathrm{ST}^{2} & =\mathrm{VT} \cdot \mathrm{TU} \\
24^{2} & =(16+\mathrm{x}) 16 \\
576 & =256+16 \mathrm{x} \\
\Longrightarrow 16 \mathrm{x} & =320 \\
\mathrm{VU}=\mathrm{x} & =20 \mathrm{~cm}
\end{aligned}
$$

(b) If $\mathbf{W X}=\mathbf{6} \mathrm{cm}$ and $\mathbf{V X}: \mathbf{X U}=\mathbf{2}: \mathbf{3}$ find $\mathbf{S X}$

Solution

$$
\begin{aligned}
\frac{v X}{X U}=\frac{w X}{S X} & =\frac{2}{3} \\
\frac{6}{s X}=\frac{2}{3} \Longrightarrow S X & =6 \times \frac{3}{2} \\
s X & =9 \mathrm{~cm}
\end{aligned}
$$

15). Find the value of x in the following equation, $2^{2 x-1}+4^{x+1}=36$

Solution

$$
\begin{aligned}
2^{2 x-1}+4^{x+1} & =36 \\
2^{2 x-1}+2^{2(x+1)} & =36 \\
\frac{1}{2} \cdot 2^{2 x}+2^{2} \cdot 2^{2 x} & =36 \\
\frac{1}{2} \cdot 2^{2 x}+4 \cdot 2^{2 x} & =36 \\
\frac{9}{2} \cdot 2^{2 x} & =36 \\
2^{2 x} & =8=2^{3} \\
\Longrightarrow 2 x & =3 \\
x & =\frac{3}{2}=1 \frac{1}{2}
\end{aligned}
$$

16). Triangle $\mathbf{A B C}$ is shown on the coordinate plane below. Given that $\mathbf{A}(\mathbf{1}, \mathbf{1})$ is mapped onto $\mathbf{A}^{\prime}(\mathbf{1}, \mathbf{1})$ by a shear with the $\boldsymbol{y}-\mathbf{a x i s}$ invariant, draw triangle $\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ the image of triangle $\mathbf{A B C}$ under the shear.

SECTION TWO - 50 Marks

Answer any five questions from this section in the spaces provided.

17). (a) The probability that Nina goes to bed on time is $3 / 4$. If she goes to bed on time, the probability that she wakes up on time is $2 / 3$, otherwise the probability that she wakes up on time is $\mathbf{1 / 4}$. If she wakes up late, her probability of getting to class on time is $1 / 5$ otherwise her probability of getting to class on time is $4 / 5$. Find the probability that:
(i) She wakes up late.

(ii) She gets to class on time Solution

$$
\begin{aligned}
\mathbf{P}(\text { arrives on time }) & =\mathbf{P}(\mathbf{B W E})+\mathbf{P}\left(\mathbf{B W}^{\prime} \mathbf{E}\right)+\mathbf{P}\left(\mathbf{B}^{\prime} \mathbf{W E}\right)+\mathbf{P}\left(\mathbf{B}^{\prime} \mathbf{W}^{\prime} \mathbf{E}\right) \\
& =\left(\frac{3}{4} \times \frac{2}{3} \times \frac{4}{5}\right)+\left(\frac{3}{4} \times \frac{1}{3} \times \frac{1}{5}\right)+\left(\frac{1}{4} \times \frac{1}{4} \times \frac{4}{5}\right)+\left(\frac{1}{4} \times \frac{3}{4} \times \frac{1}{5}\right) \\
& =\frac{2}{5}+\frac{1}{20}+\frac{1}{20}+\frac{3}{80}=\frac{43}{80}
\end{aligned}
$$

(b) A die and a coin are cast simultaneously.
(i) Draw a table to show all the possible outcomes

	1	2	3	4	5	6
H	H1	H2	H3	H4	H5	H6
T	T1	T2	T3	T4	T5	T6

(ii) What is the probability of a tail and a number less than 4 showing up.

$$
\begin{aligned}
\mathbf{P}(\mathbf{T} \text { and } \mathbf{X}<4) & =\mathbf{P}(\mathbf{T} 1)+\mathbf{P}(\mathbf{T} 2)+\mathbf{P}(\mathbf{T} 3) \\
& =\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}
\end{aligned}
$$

18). (a) The first term of an arithmetic progression (AP) is $\mathbf{6}$. The sum of the first $\mathbf{7}$ terms of the AP is 126.
(i) Find the common difference of the AP

Solution
First term is $\mathbf{T}_{\mathbf{1}}=\mathbf{6}$ and sum of first 7 terms is $\mathbf{S}_{\mathbf{7}}=\mathbf{1 2 6}$.

$$
\begin{aligned}
S_{7}=126 & =\frac{7}{2}(2(6)+d(7-1)) \\
126 & =7(6+3 d) \\
18 & =6+3 d \\
12=3 d \Longrightarrow d & =4
\end{aligned}
$$

(ii) Find the $19^{\text {th }}$ term of the AP.

Solution
First term is $\mathbf{T}_{\mathbf{1}}=\mathbf{6}$ and common difference $\mathbf{d}=\mathbf{4}$.

$$
\begin{aligned}
\mathbf{T}_{\mathbf{n}} & =\mathbf{a}+\mathbf{d}(\mathbf{n}-\mathbf{1}) \\
\mathrm{T}_{19} & =6+4(19-1)=78
\end{aligned}
$$

(b) The $\mathbf{2}^{\text {nd }}, 3^{\text {rd }}$ and $\mathbf{1 1}^{\text {th }}$ terms of an increasing arithmetic progression(AP) form the first $\mathbf{3}$ terms of a geometric progression (GP). The first term of the AP is $\mathbf{- 2}$.
(i) Find the common difference of the AP and the common ratio(r) of the GP.

Solution
Let the first term of the GP be \mathbf{a} and common ratio be \mathbf{r} and \mathbf{d} be the common difference of the AP.

$$
\begin{aligned}
& \mathrm{T}_{1}=a \boldsymbol{r}^{1-1}=\mathbf{b}+(\mathbf{2}-\mathbf{1}) \mathbf{d} \Longrightarrow \mathbf{a}=-\mathbf{2}+\mathbf{d} \\
& \mathrm{T}_{2}=a \boldsymbol{r}^{2-1}=\mathrm{b}+(3-1) \mathrm{d} \Longrightarrow a r=-2+2 d \\
& \mathrm{~T}_{3}=a \mathrm{r}^{3-1}=\mathrm{b}+(11-1) \mathbf{d} \Longrightarrow a \boldsymbol{r}^{2}=-2+10 d
\end{aligned}
$$

Solve equations for \mathbf{d} by dividing consecutive terms in the GP.

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}} \Longrightarrow \frac{-2+2 d}{-2+d}=\frac{-2+10 d}{-2+2 d} \\
&(-2+2 d)^{2}=(-2+d)(-2+10 d) \\
& 4-8 d+4 d^{2}=4-22 d+10 d^{2} \\
&-6 d^{2}+14 d=-2 d(3 d-7)=0 \\
& \Longrightarrow d=0 \quad \text { or } \quad d=\frac{7}{3}
\end{aligned}
$$

We are know that $\mathbf{d}=\mathbf{6}$ hence the common ratio:

$$
\begin{aligned}
& r=\frac{T_{2}}{T_{1}}=\frac{-2+2 d}{-2+d}=\frac{-2+2(7 / 3)}{-2+7 / 3} \\
& \Longrightarrow r=8
\end{aligned}
$$

(ii) Find the sum of the first 5 terms of the geometric progression(GP).

We are at a GP with $\mathbf{n}=\mathbf{5}$ terms, first term $\mathbf{a}=-\mathbf{2}+\frac{\mathbf{7}}{3}$ and the common ratio $\mathbf{r}=\mathbf{8}$

$$
\begin{aligned}
& T_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& T_{5}=\frac{\frac{1}{3}\left(8^{5}-1\right)}{8-1}=\frac{4681}{3}
\end{aligned}
$$

19). An aircraft leaves town $\mathbf{P}\left(\mathbf{3 0}^{\circ} \mathbf{S}, \mathbf{1 7}^{\circ} \mathbf{E}\right)$ and flies due north to $\mathbf{Q}\left(6 \mathbf{0}^{\circ} \mathbf{N}, \mathbf{1 7}^{\circ} \mathbf{E}\right)$. It then flies at an average speed of $\mathbf{3 0 0}$ knots for $\mathbf{8}$ hours due west to town \mathbf{R}. Determine:
(a) The distance $P Q$ in nautical miles.

Solution

$$
\begin{aligned}
\text { Latitude difference } & =\mathbf{3 0}+\mathbf{6 0}=\mathbf{9 0} \\
\text { Arc length } \mathrm{PQ} & =\mathbf{6 0} \times \mathbf{9 0} \\
& =\mathbf{5 4 0 0} \mathrm{nm}
\end{aligned}
$$

(b) The position of town \boldsymbol{R}.

Solution

$$
\begin{aligned}
& \text { arc length } Q R=\mathbf{3 0 0} \times \mathbf{8}=\mathbf{2 4 0 0} \mathrm{nm} \\
& \mathbf{2 4 0 0}=\mathbf{6 0} \theta \cos \mathbf{6 0} \\
& \Longrightarrow \theta=\mathbf{8 0 ^ { \circ }} \\
& \text { longitude difference }=\mathbf{1 7}+\mathbf{x}=\mathbf{8 0} \\
& \Longrightarrow \mathbf{x}=\mathbf{6 3}
\end{aligned}
$$

Hence position of R is $\left(60^{\circ} \mathrm{N}, 63^{\circ} \mathrm{W}\right)$.
(c) The local time at \mathbf{R} if the local time at \mathbf{Q} is $\mathbf{3 . 1 2 ~ p m}$.

Solution

$$
\begin{aligned}
\text { time difference } & =60 \times 4=240 \mathrm{~min} \\
\text { local time at } R & =3.12 \mathrm{pm}+4 \mathrm{~h} \\
& =7.12 \mathrm{pm}
\end{aligned}
$$

(d) The distance travelled by the aircraft from \mathbf{Q} to \mathbf{R} to the nearest kilometre. ($1 \mathrm{~km}=0.539957 \mathrm{~nm}$)
Solution

$$
\begin{aligned}
\text { arc length } Q R & =2400 \times 1.852 \\
& =4444.8 \mathrm{~km}
\end{aligned}
$$

20). (a) Complete the table below, giving the values correct to $\mathbf{2}$ decimal places.
(2 marks)

\mathbf{x}	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$	$\mathbf{1 2 0}^{\circ}$	$\mathbf{1 5 0}^{\circ}$	$\mathbf{1 8 0}^{\circ}$	$\mathbf{2 1 0}^{\circ}$	$\mathbf{2 4 0}^{\circ}$	$\mathbf{2 7 0}^{\circ}$	$\mathbf{3 0 0}^{\circ}$	$\mathbf{3 3 0 ^ { \circ }}$	$\mathbf{3 6 0}^{\circ}$
$\sin \mathbf{2 x}$	$\mathbf{0}$	0.50	$\mathbf{0 . 8 7}$	1	$-\mathbf{0 . 8 7}$	0.5	$\mathbf{0}$	$\mathbf{0 . 8 7}$	$\mathbf{0 . 8 7}$	-1	-0.87	-0.5	$\mathbf{0}$
$\mathbf{3} \cos \mathbf{x}-\mathbf{2}$	$\mathbf{1}$	$\mathbf{0 . 6 0}$	-0.5	$-\mathbf{2}$	$-\mathbf{3 . 5}$	-4.60	-5	$-\mathbf{4 . 6 0}$	-3.5	-2	$-\mathbf{0 . 5}$	0.60	$\mathbf{1}$

(b) On the grid provided, draw the graphs of $\boldsymbol{y}=\sin 2 x$ and $y=3 \cos x-2$ for $\mathbf{0}^{\circ} \leq \mathrm{x} \leq 360^{\circ}$ on the same axes. Use a scale of $\mathbf{1 ~ c m}$ to represent 30° on the \mathbf{x}-axis and $\mathbf{2} \mathbf{c m}$ to represent $\mathbf{1}$ unit on the \mathbf{y}-axis.

(c) Use the graph in (b) above to solve the equation $3 \cos x-\sin 2 x=2$.

Solution

$$
3 \cos x-\sin 2 x=2 \Longrightarrow \sin 2 x=3 \cos x-2 \sqrt{B 1} \quad \text { rearrange the equation }
$$

the curve $\mathbf{y}=\sin \mathbf{2 x}$ intersects with $\boldsymbol{y}=\mathbf{3} \cos \mathbf{x}-\mathbf{2}$ at:

$$
\mathrm{x}=24, \mathrm{x}=294^{\circ} \quad \mathrm{B} 1
$$

(d) State the amplitude of $\boldsymbol{y}=\mathbf{3} \cos \boldsymbol{x}-2$.

Solution

Amplitude $=3$
21). The figure below is of a right pyramid on a rectangle base. $T C=T B=T A=T D=$ 17 cm , and $T O=15 \mathrm{~cm} . A B$ is twice $B C$.

Calculate:
(i) The length $\mathbf{A B}$

Solution

$$
\begin{aligned}
O A^{2} & =A T^{2}-O T^{2}=17^{2}-15^{2}=64 \\
\Longrightarrow O A & =\sqrt{64}=8
\end{aligned}
$$

Note that $A B=2 B C$, hence

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
&(2 O A)^{2}=(2 B C)^{2}+B C^{2} \\
&(2 \cdot 8)^{2}=4 B C^{2}+B C^{2} \Longrightarrow 256=5 B C^{2} \\
& B C=\frac{16}{\sqrt{5}}=3.2 \sqrt{5} \\
& \Longrightarrow A B=2(3.2 \sqrt{5}) \approx 14.32 \mathrm{~cm}
\end{aligned}
$$

(ii) The angle between TC and plane ABCD

Solution

$$
\begin{aligned}
\sin \angle \mathrm{C} & =\frac{\mathrm{OT}}{\mathrm{TC}}=\frac{15}{17} \\
\Longrightarrow \angle C & =\sin ^{-1} \frac{15}{17}=61.93^{\circ}
\end{aligned}
$$

(iii) The angle between TD and plane TAC

$$
\begin{aligned}
61.93^{\circ}+\angle \mathrm{DTO} & =90^{\circ} \quad \angle \mathrm{ODT}+\angle \mathrm{DTO}=90^{\circ} \\
\Longrightarrow \angle \mathrm{DTO} & =28.07^{\circ}
\end{aligned}
$$

(iv) The angle between TAB and $A B C D$

Solution

$$
\begin{aligned}
\tan \angle M & =\frac{O T}{O M}=\frac{15}{3.2 \sqrt{5}} \\
\Longrightarrow \angle M & =\tan ^{-1} \frac{15}{3.2 \sqrt{5}}=64.50^{\circ}
\end{aligned}
$$

22). (a) Given that point $\mathbf{Q}(-2, \mathbf{3})$ is mapped onto $\mathbf{Q}^{\prime}(\mathbf{4}, \mathbf{3})$ by a shear with \mathbf{x} - axis invariant,

(i) Draw triangle $\mathbf{P}^{\prime} \mathbf{Q}^{\prime} \mathbf{R}^{\prime}$, the image of $P Q R$ under the shear.
(ii) Determine the matrix representing the shear. Solution

$$
\begin{aligned}
& \text { shear factor }=\frac{4-(-2)}{3}=2 \\
& \text { shear matrix }=\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(b) Triangle $\mathbf{P}^{\prime} \mathbf{Q}^{\prime} \mathbf{R}^{\prime}$ is mapped onto triangle $\mathbf{P}^{\prime \prime} \mathbf{Q}^{\prime \prime} \mathbf{R}^{\prime \prime}$ by a transformation defined by the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
(i) Draw triangle $\mathbf{P}^{\prime \prime} \mathbf{Q}^{\prime \prime} \mathbf{R}^{\prime \prime}$

Solution

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ccc}
-5 & 4 & -3 \\
-3 & 3 & -4
\end{array}\right)=\left(\begin{array}{ccc}
-5 & 4 & -3 \\
3 & -3 & 4
\end{array}\right) \\
& \mathbf{P}^{\prime \prime}(-5,3), Q^{\prime \prime}(4,-3), R^{\prime \prime}(-3,4)
\end{aligned}
$$

(ii) Find a combined matrix that maps $P Q R$ onto $P^{\prime \prime} Q^{\prime \prime} \mathbf{R}^{\prime \prime}$

$$
M=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right)
$$

23). The table below shows the masses in kg of $\mathbf{5 0}$ animals selected at random in a farm.

60	25	37	50	62	39	47	64	70	58
66	48	28	47	43	56	59	53	77	46
47	59	40	78	45	51	61	73	33	70
69	61	52	53	36	48	74	58	82	54
54	68	41	59	45	69	83	50	91	63

(a) Starting with the mass of 25 and using equal class intervals of 10, make a frequency distribution table for the data.
(2 marks)
Solution

Class	$25-34$	$35-44$	$45-54$	$55-64$	$65-74$	$75-84$	$85-94$								
Tally	$\\|\\|$	HH\|	HHHHTHI\|	HHHH\\|		HHI\\|	$\\|\\|\\|$	\mid							
Frequency	3	6	16	12	8	4	1								
cf	3	9	25	37	45	49	50								

(b) On the grid provided draw a cumulative frequency curve for the data.

(c) Use the graph in (b) above to determine:
(i) The median mass.

Solution

$$
\text { Median }=54.5 \quad \text { read from the graph }
$$

(ii) The quartile deviation.

Solution

$$
\begin{aligned}
\text { Lower quartile } & =\mathbf{Q}_{1}=47.5 \\
\text { Upper quartile } & =\mathbf{Q}_{3}=64.5 \\
\text { Quartile deviation } & =\frac{\mathbf{Q}_{3}-\mathbf{Q}_{1}}{2} \\
& =\frac{64.5-47.5}{2}=8.5
\end{aligned}
$$

24). The diagram below is a scale drawing of a piece of land. Three boundaries AB, AD and DC of the land are given. The fourth boundary is not given but it is known that the area of the land if greater than that of rectangle $A B C D$.

Use a ruler and pair of compasses only in this question.
(a) Construct the locus of all points equidistant from points \mathbf{B} and \mathbf{C}.

Solution
Construct a perpendicular bisector of line BC
(b) The locus of any point \mathbf{P} lying on the fourth boundary is such that $\angle B P C=45^{\circ}$.

Draw the fourth boundary.

Solution

Construct 45° at \mathbf{B} to meet the bisector at \mathbf{O}.
Draw an arc center \mathbf{O} radius $\mathbf{B O}$.
Locus of \mathbf{P} lies on the arc above.
(c) Shade the region within the scale drawing in which a variable point \mathbf{X} must lie giving that \mathbf{X} satisfies the following conditions.
(i) X is at least $\mathbf{1 ~ c m}$ from each of the four boundaries
(ii) \mathbf{X} is at least $\mathbf{6} \mathrm{cm}$ from \mathbf{A}
(iii) Area of $\triangle A X D \geq 15 \mathrm{~cm}^{2}$

Solution

Construct lines parallel to the boundaries on the inner side.
Draw an arc center $\mathbf{O}, \mathbf{1} \mathrm{cm}$ away from the locus of \mathbf{P}.
Draw an arc centre A radius $\mathbf{6} \mathrm{cm}$.
Draw a line parallel to AD, 5 cm away from AD.
Shade the required region as shown above.

