THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/3 -

CHEMISTRY (PRACTICAL) Nov. 2017 – 21/4 hours

- Paper 3

Name	Index Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided in the question paper.
- (d) You are **not** allowed to start working with the apparatus for the first 15 minutes of the 2¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- (e) All working **MUST** be clearly shown where necessary.
- (f) KNEC mathematical tables and silent electronic calculators may be used.
- (g) This paper consists of 8 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	19	
2	12	
3	9	*
Total Score	40	

© 2017 The Kenya National Examinations Council 233/3

- 1. You are provided with:
 - Solution A, 0.5 M copper(II) sulphate
 - Solid B₁, metal B₁ powder
 - Solid B₂, Iron powder
 - Solution C, 0.02 M acidified potassium manganate(VII)

You are required to determine the:

- Enthalpy change for the displacement reaction between metal B₁ and copper(II) sulphate.
- Mass of iron that reacts with copper(II) sulphate in the displacement reaction.

PROCEDURE I

(a) (i) Using a pipette and a pipette filler, place 25.0 cm³ of solution A into a 100 ml plastic beaker. Allow to stand for about 1 minute and then measure the temperature of the solution. Record the reading in Table 1 as the initial temperature. Add all of solid B₁ to the solution. Stir the mixture carefully with the thermometer and measure the highest temperature reached. This will take about 5 minutes. Record the reading in Table 1 as maximum temperature reached.

Table 1

(3 marks)

	(ii)	Calc	culate the:			
		l n	number of moles of copper(II) sulphate use	ed.		(1 mark)
			I consider the second			
						••••••
			enthalpy change for the reaction of metal sulphate.	B ₁ with on	e mole of copp	per(II)
			(Assume that for the mixture, specific hea = 1.0 g cm ⁻³)	t capacity	$= 4.2 \text{ Jg}^{-1} \text{K}^{-1} \text{ a}$	nd density (1 mark)
					T to the	191 2 1
			1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		••••••	
				a i		
			r bes	dett u	41.	
(b)	The n	naxim	cedure I, (a) (i) with all of metal B_2 (iron num temperature is reached after about 8 m Table 2. Retain the mixture for use in P	ninutes. Re	cord the tempe	al B ₁ . rature
	Table	2				
	Max	imum	temperature reached (°C)			
	Initia	al tem	perature (°C)			
	Char	nge in	temperature, ΔT ₂ (°C)			
						(3 marks)
(c)	Comp	are th	he changes in temperature ΔT_1 and ΔT_2 and	d commen	t on the differe	nces. (2 marks)

PROCEDURE II

- (i) Fill a burette with solution C.
- (ii) Filter the mixture obtained in **procedure I** (b) into a 250 ml volumetric flask. Wash the residue with distilled water and add into the flask. Add more distilled water to make up to the mark. Label this as solution B₂.
- (iii) Using a pipette and a pipette filler, place 25.0 cm³ of solution B₂ into a 250 ml conical flask. Titrate solution B₂ with solution C until a permanent pink colour just appears. Record the readings in Table 3.

Repeat step (iii) and complete Table 3.

(d) Table 3

	I	11	Ш
Final burette reading			
Initial burette reading			
Volume of solution C used, cm ³			

(4 marks

		()
(e)	Calculate the average volume of solution C used.	(1 mark
		•••••

(f)	The e	quation for the reaction between manganate(VII) and iron(II) ions is:				
	$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \longrightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(aq)$					
	Calcu	late the number of moles of:				
	(i)	potassium manganate(VII) used.	(1 mark)			
	(ii)	iron (II) ions in 25.0 cm ³ solution B	(1 mark)			
	(iii)	iron that reacted with copper(II) sulphate.	(1 mark)			
(g)	Deter	rmine the mass of iron that reacted. (RAM of $Fe = 55.8$)	(1 mark)			

2.	You	are	provided	with
2.	You	are	provided	wi

- Solid K
- Aqueous ammonia
- Aqueous sodium sulphate
- Dilute nitric(V) acid
- Wooden splint

Solid K is suspected to be lead(II) carbonate.

(a) From the reagents provided, select and describe **three** tests that could be carried out **consecutively** to confirm if **solid** K is lead(II) carbonate. Write the tests and expected observations in the places provided.

(i)

Test 1	Expected Observations
(1 mark)	(1 mark)

(ii)

Test 2	Expected Observations
the format tight.	i i i i i i i i i i i i i i i i i i i
(1 mark)	
(I mark)	(1 mark)

(iii)

Test 3	Expected Observations
(1 mark)	(1 mark)

(b)	Carry out the tests described in (a) using solid K and record the observations and inferences in the spaces provided.
	spaces provided.

1.1	fro .
(i)	Test

Observations	Inferences
	,
(½ mark)	(½ mark)

(ii) Test 2

Observations	Inferences
F = 1)	
(1 mark)	(2 marks)

(iii) Test 3

Observations	Inferences
4	

(1 mark)

(1 mark)

- You are provided with an organic compound solid M. Carry out the following tests. Record the
 observations and inferences in the spaces provided.
 - (a) Place **all** of **solid M** in a boiling tube. Add about 10 cm³ of distilled water and shake. Retain the solution for use in procedure (b) (i), (ii) and (iii).

Observations	Inferences
(1 mark)	(1 mark)

- (b) Use about 2 cm³ portions of the mixture in a test tube for tests (i), (ii) and (iii).
 - (i) To the first portion, add all the solid sodium carbonate provided.

Observations	Inferences
1	
(*2**	
(1 mark)	(1 mark)

(ii) To the second portion, add two drops of acidified potassium manganate(VII) and warm the mixture.

Observations	Inferences
	(9)
(1 mark)	(2 marks)

(iii) To the third portion, add about 2 cm³ of acidified potassium dichromate(VI). Heat the mixture to boiling and allow to stand for about 2 minutes.

Observations	Inferences
(1 mark)	(1 mark)

