LASJET EXAMINATION

Name:	Class: Adm.No
School:	Date:

Sign:....

233/2 CHEMISTRY Paper 2

Time: 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name, admission number, date and school in the spaces provided.
- Answer **all** the questions in the spaces provided.
- All working must be clearly shown where necessary.
- Scientific calculators may be used.

FOR EXAMINERS' USE ONLY

Questions	Maximum Score	Candidate's Score
1	10	
2	12	
3	10	
4	12	
5	13	
6	12	
7	11	
TOTAL	80	

This paper consists of **13** printed pages. Candidates are advised to check and to make sure all pages are as indicated and no question is missing.

1. A. In an experiment to determine the percentage of oxygen in air, the apparatus below were set up. Study the set up and the information provided to answer the questions that follow.

A 500cm³ measuring cylinder **K** was filled with water and assembled for gas collection. Copper turnings were heated red hot and water was slowly passed into 500cm³ flask **H** until it reached the 500cm³ mark. A colourless gas was collected in **K**.

((i)	What was the purpose of passing water into flask H ?	(1 mark)
((ii)	What observations were made in the tube I?	(1 mark)
	(iii)	Name one of the gases that is likely to be found in J .	(1 mark)
((iv)	What was the volume of the gas collected in the measuring cylinder at the experiment?	the end of (1 mark)
@2020	(v)	Calculate the percentage of oxygen in air using the above results.	(2 marks)

B. Study the diagram below and answer the questions that follow.

2. Use the information below to answer the questions that follow. The letters are not the actual symbols of the elements.

Element	Atomic No.	M.P ^o C	B.PºC	Ionic radius (nm)
Р	11	98	890	0.095
Q	12	650	1110	0.065
R	13	660	2470	0.050
S	14	1410	2360	0.041
Т	15	44.2 & 590	280	0.034

U	16	113 & 119	445	0.184
V	17	-101	-35	0.181
W	18	-189	-186	-

(a) (i) Write the electronic configuration of the atoms represented by letters T and W. (1 mark)

	(ii)	State the nature of the oxides of the elements represented by Q	and U. (2 marks)
(b)	Why c meltir	loes the elements represented by the letters T and U have two vang points?	alues of (1 mark)
(c)	Explai (i)	in the following observations in terms of structure and bonding. There is an increase in boiling point from P to R .	(2 marks)
	(ii)	Element S has a high boiling point.	(2 marks)
	(iii) 	There is a decrease in boiling points from U to W .	(2 marks)

(d)	(i)	Compare the atomic radius of U and V .	(1 mark)
(ii) V	Why is there no ionic radius for W reported in the table?	(1 mark)

3. (a) The solubilities of potassium nitrate and potassium bromide at different temperatures was determined. The following data was obtained.

Temperature ⁰	0	10	20	30	40	50	60	70	80	
Solubility	KNO ₃	5	15	26	43	61	83	105	135	165
g/100g H ₂ O	KBr	50	55	60	65	70	77	85	90	95

(i) Draw solubility curves for both salts on the same axis. (3 marks)

(ii)	What was the solubility of each salt at 65°C?	(1 mark)
------	---	----------

(iii) 100g of a saturated solution of potassium nitrate at 70°C was cooled to 20°C. What mass of the crystals will be crystallized? (2 marks)

(b) Study the flow chart below and answer the questions that follow.

.....

4. Study the flow chart below and answer the questions that follow.

(c) What are the conditions and reagent required for steps?

	(i)	Ι				(2 marks)
		Reagen	nt	-		
		Conditi	ion	-		
	(ii)	IV				(2 marks)
		Reagen	nt	-		
		Conditi	ion	-		
(b)	Name	the pro	cess re	presen	ted by:	(4 marks)
	Ι	-				
	II	-				
	IV	-				
	V	-				

5. **I.** Study the scheme below and answer the questions that follow.

(2 marks)

6. **I.** Study the standard electrode potentials given below and answer the questions that follow.

D ²⁺ (a	_{1q)} + 2e ⁻		$D_{(s)}$	$E^{\theta} = -2.92V$	
G ²⁺ (a	_{2q)} + 2e ⁻		G _(s)	$E^{\theta} = -2.36V$	
$\frac{1}{2}J^{2+}$	_{g)} + e ⁻		$J_{(s)}$	$E^{\theta} = 0.00V$	
$M^{2+}_{(aq)} + 2$	e ⁻	<u></u>	$E^{\theta} =$	+0.34V	
$\frac{1}{2}R^{2+}_{(aq)} + \epsilon$,-	$\overline{R_{(s)}}$	E ^θ :	= 2.87V	
(a)	Identif	fy the stron	ngest:		
	(i)	Reducing	agent		(1 mark)
	(ii)	Oxidizing	agent		(1 mark)

(b) Calculate the e.m.f of a cell made of G and M. (2 marks)

(c)	Write the cell representation for the above cell in (b).	(1 mark)
-----	--	----------

(d)	Draw a cell diagram for the cell in	(b)) above.	(2 marks))
· ()	~)		\sim	,	[,

(e)	Write the cell reaction for the drawn cell diagram in (d) above.	(1 mark)
II.	Electrolysis of aqueous solution of metal M resulted in the deposit metal upon passage of a current of 1.32 amperes for 75 minutes. (M = 52, 1F = 96500C)	tion of 1.07g of
(i)	Calculate the quantity of electricity passed through the cell.	(1 mark)

(ii) Calculate the charge on the metal ion. (3 marks)

7. Extraction of iron involves two main processes, smelting and refining. Below is the blast furnace which is used to smelt iron from its ore.

@2020

	 (iii)	What is	s the role of	the hot air	blast in th	e process	s?	(2 marks)
(b)	Write	equatio	ns for the re	eactions tha	it take pla	ce at the i	region marke	d A, B and C. (3 marks)
	А	-						
	В	-						
	С	-						
(c)	What	is the pı	arpose of lin	nestone in t	he extract	tion proce	ess?	(1 mark)
(f)	Write	equatio	ns to show]	how impuri	ties are re	emoved fr	rom the ore.	(3 marks)