NAME DATE INDEX NO. SIGNATURE

232/3 PHYSICS PAPER 3 PRACTICAL

TIME: 2^{1/4} HOURS

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided
- Answer ALL the questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the $2^{1}/_{4}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for clear record of observations made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical table may be used.
- This paper consists of 7 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	20	
2	20	
TOTAL	40	

FOR EXAMINER'S USE ONLY

PART A

- 1. You are provided with the following:
 - A retort stand, clamp and boss.
 - A spiral spring.
 - A stop watch.
 - Three 100g masses.
 - Three 50g masses.

PROCEDURE

a) Suspend a 100g mass at the end of a spiral spring as shown below.

- b) Now give the mass a small vertical displacement and release so that it performs vertical oscillation.
- c) Time for 20 oscillations and determine the period. Enter the result in the table below.
- d) Repeat the experiment for other values of mass given and complete the table.

Mass m(g)	100	150	200	250	300	350
Time for 20 oscillations t (s)						
Period time T (s)						
T^2 (S ²)						

6marks

PART B

You are provided with the following

- 5 optical pins
- A rectangular glass block
- A plain paper
- A soft board
- 4 thumb pins

Proceed as follows

- h) Fix the white piece of paper on the soft board using thumb pins. Place the glass block on the white paper and draw the outline of the block.
- i) Remove the glass block and indicate the sides A, B, C and D as shown.

- j) On side BC, determine its center and fix a pin P_0 as shown. Looking from one side at the opposite end of the slab, fix pin P_1 and then pin P_2 so that they are in line with the image I of the pin P_0 . On the other side locate the same image using pins P_3 and P_4 as shown above.
- k) Remove the glass block and the pins and produce lines P_1P_2 and P_3P_4 to their points of intersection; (the position of the image I) (1mark)
- 1) Determine the midpoint of AD and label it Q. Measure the lengths QP_0 and Q1. (2marks)

$QP_0 =$		cm
----------	--	----

Q1 =.....cm

m)	Work out the ratio	$=\frac{QP_O}{Q1}=n$		(1mark)
		••••••	 	
 n)	What does n represent		 	(1mark)

QUESTION 2

- Two dry cells
- A voltmeter
- A cell holder
- An ammeter
- Five connecting wires
- A nichrome wire mounted on a meter rule and labeled Q
- A jockey

PROCEED AS FOLLOWS

a) Set up the apparatus as shown

b) By disconnecting the jockey from the nichrome wire ,read and record the ammeter reading I and the corresponding voltmeter reading E. (2marks)

I=.....A

E.....V

c) With the jockey placed at the following lengths, read and record the ammeter reading and the corresponding voltmeter reading. Compete the table below.

Length L (cm)	70	50	40	30	20	10
P. d V (V)						
Current I (A)						
				<u> </u>		

6mks

e)) Determine the slope S of the graph.			
••••				
••••				

f)	Given that the equation connecting V, E, I, and r is $E = V + Ir$, from the graph determine:	
i)	the e.m.f of one cell.	(2marks)
ii)	the internal resistance of one cell	(2marks)
••••		
••••		
iii)	the voltage p. d when current is 0.4 A	(1mark)
••••		
••••		
••••		