INDEX NO.

SIGNATURE

232/3
PHYSICS
PAPER 3
PRACTICAL
TIME: $2^{1 / 4}$ HOURS

INSTRUCTIONS TO CANDIDATES

Write your name and index number in the spaces provided

- Answer ALL the questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for clear record of observations made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical table may be used.
- This paper consists of 7 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	20	
2	20	
TOTAL	40	

PART A

1. You are provided with the following:

- A retort stand, clamp and boss.
- A spiral spring.
- A stop watch.
- Three 100 g masses.
- Three 50 g masses.

PROCEDURE

a) Suspend a 100 g mass at the end of a spiral spring as shown below.

b) Now give the mass a small vertical displacement and release so that it performs vertical oscillation.
c) Time for 20 oscillations and determine the period.

Enter the result in the table below.
d) Repeat the experiment for other values of mass given and complete the table.

Mass m(g)	100	150	200	250	300	350
Time for 20 oscillations t (s)						
Period time T (s)						
$\mathrm{T}^{2}\left(\mathrm{~S}^{2}\right)$						

6marks
e) Plot a graph of $\mathrm{T}^{2}\left(\mathrm{~S}^{2}\right)(\mathrm{y}$-axis) against $\mathrm{m}(\mathrm{kg})$.

\qquad
\qquad
g) Given that $\mathrm{T}^{2}=\pi^{2} m$ where k is the spring constant, use the graph to obtain the value of the spring constant $\mathrm{k} . \mathrm{k}$ (2marks)

PART B

You are provided with the following

- 5 optical pins
- A rectangular glass block
- A plain paper
- A soft board
- 4 thumb pins

Proceed as follows

h) Fix the white piece of paper on the soft board using thumb pins. Place the glass block on the white paper and draw the outline of the block.
i) Remove the glass block and indicate the sides $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D as shown.

j) On side BC , determine its center and fix a pin P_{0} as shown. Looking from one side at the opposite end of the slab, fix pin P_{1} and then pin P_{2} so that they are in line with the image I of the pin P_{0}. On the other side locate the same image using pins P_{3} and P_{4} as shown above.
k) Remove the glass block and the pins and produce lines $P_{1} P_{2}$ and $P_{3} P_{4}$ to their points of intersection; (the position of the image I)

1) Determine the midpoint of AD and label it Q . Measure the lengths QP_{0} and Q 1 .
$\mathrm{QP}_{0}=$ cm

Q1 =. \qquad cm
m) Work out the ratio $\quad=\frac{Q P_{O}}{Q 1}=n$
(1mark)
\qquad
\qquad
\qquad
\qquad
n) What does n represent
\qquad
\qquad
\qquad

QUESTION 2

You are provided with the following

- Two dry cells
- A voltmeter
- A cell holder
- An ammeter
- Five connecting wires
- A nichrome wire mounted on a meter rule and labeled Q
- A jockey

PROCEED AS FOLLOWS

a) Set up the apparatus as shown

b) By disconnecting the jockey from the nichrome wire ,read and record the ammeter reading I and the corresponding voltmeter reading E .
$\mathrm{I}=$ \qquad A
E. V
c) With the jockey placed at the following lengths, read and record the ammeter reading and the corresponding voltmeter reading. Compete the table below.

Length L (cm)	70	50	40	30	20	10
P. d V (V)						
Current I (A)						

e) Determine the slope S of the graph.
f) Given that the equation connecting $\mathrm{V}, \mathrm{E}, \mathrm{I}$, and r is $\mathrm{E}=\mathrm{V}+\mathrm{Ir}$, from the graph determine:
i) the e.m.f of one cell.
\qquad
\qquad
\qquad
\qquad
ii) the internal resistance of one cell
\qquad
\qquad
\qquad
\qquad
iii) the voltage p. d when current is 0.4 A
\qquad
\qquad
\qquad
\qquad

