Name \qquad ADM. \qquad
FORM 3
CLASS \qquad

CHEMISTRY

Paper 3
Time : 2¼ Hours

CHEMISTRY

Paper 3
Time : $\mathbf{2}^{1 / 4}$ Hours

INSTRUCTIONS TO CANDIDATES

- Answer all questions on the space provided
- All working Must be clearly shown

For Examiner's Use Only

Question	Maximum score	Candidate's score
1	17	
2	13	
Total score	30	

1. You are provided with;

- Solution A 0.2MNaOH
- Solution B Hydrochloric acid
- Solution C sodium Carbonate solution

You are required to standardize hydrochloric acid using solution A and hence determine the morality in moles per liter of solution C sodium carbonate

Procedure I

Using a pipette transfer $25 \mathrm{~cm}^{3}$ solution A into conical flask add 2 to 3 drops phenolphthalein indicator then titrate with hydrochloric acid provided in a beaker from burette. Shake the conical flask after each additional and note the volume required to neutralize sodium hydroxide solution. Record your results in the table below.

Titre	I	II	III
Final burette readings $\left(\mathrm{cm}^{3}\right)$			
Initial burette readings $\left(\mathrm{cm}^{3}\right)$			
Volume of the acid used $\left(\mathrm{cm}^{3}\right)$			

a) What is the average volume of solution B ? $(5 \mathrm{mks})$
CTV
D \checkmark
A $\pm 0.1 \checkmark$
$\pm 0.2 \checkmark 1 / 2$
PA \checkmark
FA \checkmark

Average $=25.1 \mathrm{~cm}^{3}$
b) Calculate the number of moles of solution B required to complete neutralize solution A. (3mks)

Moles of $\mathrm{NaOH} \equiv>\underline{25.0 \times 0.2}$

1000

$=0.005 \mathrm{moles} \checkmark$

Moles of acid, moles ratio $1: 1 \checkmark$

$=0.005 \times 1$
$=0.005$ moles \checkmark
c) Calculate the molarity in moles per liter of solution B hydrochloric acid. (1mk) $\underline{0.005 \times 1000}{ }^{1 / 2}$

25

$=0.2 \mathrm{M} \sqrt{1 / 2}$

Procedure II

Rinse the pipette thoroughly then pipette $25 \mathrm{~cm}^{3}$ of solution C sodium carbonate into clean conical flask then add 2 to 3 drops of phenolphthalein indicator. Refill the burette with solution B and use it to titrate content of the conical flask. Shake the flask after each addition of the acid solution B and note the volume of the acid required to neutralize $25 \mathrm{~cm}^{3}$ of sodium carbonate solution C .
Record your results in table below

Titre			
Final burette readings $\left(\mathrm{cm}^{3}\right)$			
Initial burette readings			
Volume of solution B used			
d) Calculate average volume of solution B used. (5mks)			

Volume average $=12.5 \mathrm{~cm}^{3} \quad \mathrm{CT} \checkmark$
$\mathrm{A} \pm 0.1 \checkmark$
$\pm 0.2 \sqrt{1 / 2}$
D $\sqrt{ }$
PA $\sqrt{ }$
FA $\sqrt{ }$
e) Calculate the number of moles of solution C in $25 \mathrm{~cm}^{3}$ of the solution. (2 mks)

Moles of the acid $=\underline{12.5 \times 0.2}$
1000
$=0.0025 \mathrm{moles} \checkmark$
Moles of carbonate, moles ratio 1:2 $\sqrt{1 / 2}^{1 / 2}$
$=0.0025$
$2=0.00125$ moles $\sqrt{ } 1 / 2$
f) Calculate the molarity of solution C in Mole per liter. (1mk)
$=\underline{0.00125 \times 1000}$
25
$=0.05 \mathrm{M}$
2. You are provided with solid D. Carry out tests below and record your observation and inferences in the table below.
a) Describe the appearance of sold D. (2mks)

White/ colorless \checkmark

Crystalline solid \checkmark

b) Take a boiling tube, add all solid D and add about $10 \mathrm{~cm}^{3}$ of distilled water. Shake the mixture

Observations	Inference
Solid dissolved forming a colorless solution \checkmark	Soluble salt \checkmark Absences of colored ions $(1 \mathrm{mk})$
$(1 \mathrm{mk})$	

c) Divide the solution obtained above into five portions. To the first portion add drops of lead (ii) Nitrate solution.

Observations	Inference
No white precipitate \checkmark	$\left.\begin{array}{l}\text { SO4 }^{2-} \\ \\ \text { Cog }^{2-} \\ \\ \\ \text { C1- } \\ (1 \mathrm{mk}) \\ \text { So4 }^{2-} \\ (2 \mathrm{mk})\end{array}\right\} \quad$ absent. Each ion $\checkmark 1 / 20$

d) To the second portion add 3 drops of barium Nitrate.

Observations	Inference
No white precipitate $(1 \mathrm{mk})$	

e) To the third portion add few then excess drops of ammonia solution.

Observations	Inference
	$\mathbf{P b}^{2+}$
White precipitate $\sqrt{ } 1 / 2$	$\mathbf{A l}^{3+}$
Insoluble in excess $\sqrt{ } 1 / 2$	$\mathbf{M g}^{2+}$
	$\mathbf{B a}^{2+}$$\quad$ Present. each ion $\sqrt{ } 1 / 2$
$(1 \mathrm{mk})$	$(2 \mathrm{mk})$

f) To the fifth portion, add drops of hydrochloric acid then boil the mixture.

Observations	Inference
No effervescence \checkmark While precipitate that dissolves on boiling \checkmark $(2 \mathrm{mk})$	$\mathbf{P b}^{2+}$ present \checkmark

g) Give the formula of the anion acid cation present in substance D.

Cation $\mathbf{P b}^{\mathbf{2 +}}$ (1mk)
Anion $\mathbf{N o}_{3}{ }^{-1}(1 \mathrm{mk})$

Assumption

The only soluble salts of lead is lead (iii) Nitrate

