MARKING SCHEME CHEMISTRY PAPER

1. Table 1 5mks
Award a maximum total of 5 marks distributed as follows.
i. Complete table 1mk
Conditions: either of the following:

- Complete Table with 3 Titrations done 1mk
- Incomplete Table with only 2 Titrations done. ½mk
- Incomplete Table with only 1 Titration done. Omrk
- For no Titration done Omk
NOTE: where NO TITRATION done, penalize FULLY for ALL the marking points for Table 1.

Penalties:

before awarding a mark for complete Table; THE EXAMINER MUST ensure that none of the following mistakes is there in the Table- otherwise penalize $1 / 2 \mathrm{mk}$ for EACH MISTAKE but to a maximum penalty of $1 / 2 m k$ (i.e. penalize $1 / 2 m k$ ONCE even if there two or more mistakes):

- Wrong arithmetic/subtraction
- Inverted Table
- Burette reading(s) beyond $50.0 \mathrm{~cm}^{3}$, except where explained.
ii. Use of Decimals (tied to the $1^{\text {st }}$ and $2^{\text {nd }}$ ROWS ONLY).. 1 mk

Conditions:

Either 1 or 2 decimal places used consistently.
If 2 decimal places are used then the $2^{\text {nd }}$ decimal place MUST be either a " O "
iii. Accuracy (tied to CORRECT titre values ONLY) 1mk

Compare the candidate's CORRECT Titre values with the school values, (i.e. Teacher's Average Titre):

Conditions:

- If at least one titre value is within $\pm 0.10 \mathrm{~cm}^{3}$ of $S V$, then awarded \qquad 1mk
- If No titre value is within $\pm 0.10 \mathrm{~cm}^{3}$ of the SV but at least one titre value is within $\pm 0.20 \mathrm{~cm}^{3}$ of the $S V$, then award $1 / 2$ mark
- If NONE of the titre values is within $\pm 0.20 \mathrm{~cm}^{3}$ of the SV , then award \qquad Omark

NOTE: If there is wrong arithmetic/ subtraction in the Table, compare the SV with the CORRECT worked out titre and award accordingly.
iv. Principles of averaging 1 mk
Values averaged MUST be shown and MUST be consistent within $\pm 0.20 \mathrm{~cm}^{3}$ of each other.

Conditions.

- If 3 consistent values are averaged.. 1 mk
- If 3 titrations are done and only 2 possible averaged.. 1 mk
- If only 2 titrations are done, and are inconsistent and averaged................................... 1 mk
- If only 2Titrations are done, and are inconsistent and yet averaged Omk
- If 3 Titrations are done, ALL are possible and yet only 2 are averaged Omk
- If 3 inconsistent values are averaged.. 0 mk
- If only 1 Titration is done... 0 mk

Penalties:

- Wrong arithmetic, i.e. arithmetic error outside ± 2 units in the $2^{\text {nd }}$ decimal place (e.g. 24.67 given as 24.64), penalize $1 / 2 m k$
- If no WORKING is shown but "answer" given is correct, penalize $1 / 2 \mathrm{mk}$.
- If value is rounded off to the1st decimal place (e.g. $24.66 \approx 24.7$) or to a whole number (e.g. $24.33 \approx 24$), penalize $1 / 2 \mathrm{mk}$.
- If no working is shown but answer given is wrong, penalize FULLY, i.e. award Omk
v. Final accuracy (tied to the CORRECT average titre) \qquad 1mk
- Compare the candidate's CORRECT average titre with the SV and award accordingly:
- If within $\pm 0.10 \mathrm{~cm}^{3}$ of the $S V$, award.
- If Not within $\pm 0.10 \mathrm{~cm}^{3}$ of the $S V$, but it is within $\pm 0.20 \mathrm{~cm}^{3}$ of the $S V$, award1⁄2mk
- If BEYOND $\pm 0.20 \mathrm{~cm}^{3}$ of the SV , award... 0 mk

Complete table....................... 1 mk
Use of decimals....................... 1 mk
Accuracy 1 mk
Principles of averaging.............. 1 mk

TABLE 1

Sub-total 5 mks

Calculations:
(i) Moles of NaOH in average titre $=\frac{0.05 \times 30.0}{1000} \sqrt{1} / 2 \mathrm{mk}$

$$
=0.0015 \mathrm{~mol} \sqrt{ } 1 / 2 \mathrm{mk}
$$

Note:

- Units may not be given but if given Must be correct otherwise penalize $1 / 2$ mark foe wrong units attached to correct answer.
(ii). Moles of HCl in $25 \mathrm{~cm}^{3}$ of solution FA4

$$
\mathrm{NaOH}: \mathrm{HCl}
$$

1 : $1 \quad \sqrt{ } 1 m k$
$0.0015 \mathrm{~mol} \quad 0.0015 \mathrm{~mol} \sqrt{ } 1 \mathrm{mk}$
(iii) $=\frac{0.0015 \times 250}{25} \sqrt{ } 1 \mathrm{mk} \quad=0.015 \mathrm{~mol} \sqrt{ } 1 \mathrm{mk}$

Note:

- 0.0015 MUST be transferred and used INTACT otherwise penalize FULLY for any other figure used and award 0mk
- Accept answer given to at least 4 decimals places, otherwise penalize $1 / 2 m k$ for rounding off to 3 decimal places or less.
(iv)
- Moles of HCl in $50 \mathrm{~cm}^{3}$ of $\mathrm{FA} 2=\frac{0.7 \times 50}{1000} \sqrt{1} / 2 \mathrm{mk}$

$$
=0.035 \sqrt{1} / 2 m k
$$

(v) moles of HCl that reacted with magnesium= Ans in (v) - ans in (iv)

$$
0.035-0.015 \sqrt{1} / 2 m k=0.02 \sqrt{1} / 2 m k
$$

(vi) $\mathrm{Mg}: \mathrm{HCl}$
$\begin{array}{ccc}1 & : & 2 \sqrt{1} / 2 \mathrm{mk} \\ =\frac{0.02 \times 1}{2} \sqrt{1} / 2 \mathrm{mk} & =0.01 \mathrm{~mol} \sqrt{ } 1 \mathrm{mk}\end{array}$
2. Table 2. .4 mks Award a MAXIMUM TOTAL of 4 mks distributed as follows:
i) Complete table. 2mks

Conditions/penalties

- Award $1 / 2 m k$ for EACH experiment completely done.
- Penalize $1 / 2 m k$ for EACH solubility value either wrongly worked out or not work to a MAXIMUM penalty of 1mark.
- Penalize 1mark ONCE for unrealistic Temperature readings, for any Temperature reading $\mathrm{T} \leq 25.0^{\circ} \mathrm{C}$ and $T>80.0^{\circ} \mathrm{C}$.
- Penalize $1 / 2 m k$ if ALL Temperature readings given in the Table are CONSTANT.
ii) Use of decimals(Tied to Temperature reading). $1 / 2 m k$
Accept ONLY if all readings recorded consistently either as whole numbers or to one decimal place of 0 or .5 , otherwise penalize FULLY.

iii) Accuracy

 $1 / 2 m k$Compare the candidate's first Temperature reading (i.e. Temperature reading when the volume of water added is $5.00 \mathrm{~cm}^{3}$) with the school value, SV (i.e. the Teacher's temperature reading when the volume of water added is $5.00 \mathrm{~cm}^{3}$). If within $\pm 2.0^{\circ} \mathrm{C}$ of the SV, awarded 1mark, otherwise awarded Omark.
iv) Trend \qquad 1mk
Award mark for Temperature readings showing a CONTINUOUS DROP, otherwise penalize FULLY.
Hence the distribution of marks for table 2 is as follows.

TABLE 2	Complete table...................2mks	
	Use of decimals...................122mk	
	Accuracy1⁄2mk	
	Trend1mk	
	Sub-total	4 mks

f) GRAPH. 3 mks

Award MAXIMUM total of 3marks distributed as follows
A. Labeling of the axes. $1 / 2 m k$.

Award $1 ⁄ 2 m k$ ONLY if BOTH axes are CURRECTLY labelled.

Penalties:

- Penalize FULLY for inversion of axes
- Penalize FULLY for wrong unit given, otherwise ignore if units are omitted.
- Penalize FULLY if only ONE axis is correctly labelled.
B. Scale $1 / 2 m k$
Award $1 / 2 m k$ for scale subject to the following conditions.

Conditions:

- Area covered by the PLOTS must be at least half the grid on EACH of the axis
- Scale intervals MUST be consistent on EACH axis.
- Scale chosen must be able to accommodate ALL plots/ points-Examiner MUST check the range of the readings on EACH axis.
Note: panelize FULLY if any of the above three conclusions is NOT met.
C. Plotting \qquad 1 mk
Award maximum of 1 mark for plotting.

Conditions:

- if 6 or 5 points are correctly plotted award \qquad 1mk
- if only 4 or 3 points are correctly plotted award $1 / 2 m k$
- If less than 3 points are correctly plotted award.......... 0 mark.
D. Curve \qquad 1 mk
Award 1mark for a smooth rising curve joining at least three correctly plotted points.

Note: Reject curve obtained by plotting 2 or more wrongly calculated solubility values from table 2.
Hence the distribution of marks for the graph is as follows.

Label of a	$1 / 2 m k$
Scale.	$1 / 2 m k$
Plotting.	1 mk
Curve	.1mk
Sub-total	3 mks

(g)
(I) Correct reading from the graph. $\sqrt{ } 1 m k$
(II) Correct reading from the graph. $\sqrt{ } 1 m k$
(h) $100 \mathrm{~g}-\mathrm{ans}$ in (g)(ii) $\sqrt{1} m k$

Final ans $\sqrt{1} m k$
3. a
(i)

OBSERVATION(S)	INFERENCE(S)
- White ppt $\sqrt{1} / 2 m k$ formed which then	$\mathrm{Al}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}$, present $\sqrt{ } 1 m k$
dissolves $\sqrt{1} / 2 m k$ in excess alkali forming a colourless solution.	- All 3 ions given - Only two ions given. $1 / 2 m k$

(ii)

OBSERVATION(S)	INFERENCE(S)
- White ppt $\sqrt{1} / 2 m k$ formed which is	$\mathrm{Al}^{2+\sqrt{1} 1 / 2 m k, \mathrm{~Pb}^{2+}, \sqrt{1} / 2 m k \text { present }}$insoluble $\sqrt{1} \sqrt{2} m k$ in excess aqueous ammonia
Penalize $1 / 2$ mark for each contradictory ion.	

(iii)

OBSERVATION(S)	INFERENCE(S)
• White ppt formed $\sqrt{ } 1 m k$	
Type equation here.	

(iv)

OBSERVATION(S)	INFERENCE(S)
• Yellow White precipitates formed	Pb^{2+} present. $\sqrt{ } 1 m k$ $\bullet \sqrt{ } 1 m k$ Penalize FULLY for any contradictory ion.

(v)
B. (i)

OBSERVATION(S)	INFERENCE(S)
- Solution has $\mathrm{pH}=2 \sqrt{ } 1 m k$.	Solution is strongly acidic. $\sqrt{ } 1 m k$
- NOTE. Reject pH given as range.	• NOTE. Reject the solution is "strong acid".
	• Correct inference tied to correct pH.

(ii)

OBSERVATION(S)	INFERENCE(S)
- KMnO_{4} solution is decolourised $\sqrt{ } 1 m k$	R-OH and $>C=C</-C \equiv C$ - present
OR	$\sqrt{ } 1 m k$
- KMnO	
colution changes from purple to	
-NOTE. Reject " solution becomes/ turns colourless" or "it turns colourless"	

(iii)

OBSERVATION(S)	INFERENCE(S)
- Effervescence producing a clourless gas	R-COOH present $\sqrt{1 m k}$
$\sqrt{ } 1 m k$	

