KAPSABET HUGH SCHC MARKING SCHEME CHEMISTRY PAPER 3 1. Table 1	
1. Table 1	5MKS
Award a maximum total of 5 marks distributed as follows.	
i. Complete table	1mk
Conditions: either of the following:	
Complete Table with 3 Titrations done	1mk
Incomplete Table with only 2 Titrations done	½mk
Incomplete Table with only 1 Titration done	0mrk
For no Titration done	0mk
<u>NOTE</u> : where NO TITRATION done, penalize FULLY for ALL the marking points	for Table 1.
Penalties:	
before awarding a mark for complete Table: THE EXAMINER MUST ensure the	at none of

before awarding a mark for complete Table; THE EXAMINER MUST ensure that none of the following mistakes is there in the Table- otherwise penalize ½mk for EACH MISTAKE but to a maximum penalty of ½mk(i.e. penalize ½mk ONCE even if there two or more mistakes):

- Wrong arithmetic/subtraction
- Inverted Table
- Burette reading(s) beyond 50.0cm³, except where explained.
- ii. <u>Use of Decimals (tied to the 1st and 2nd ROWS ONLY)</u>.....1mk <u>Conditions:</u>

Either 1 or 2 decimal places used consistently.

If 2 decimal places are used then the 2^{nd} decimal place MUST be either a "O"

iii. <u>Accuracy (tied to CORRECT titre values ONLY)</u>......1mk
 Compare the candidate's CORRECT Titre values with the school values, (i.e. Teacher's Average Titre):

<u>Conditions</u>:

- If at least one titre value is within ± 0.10 cm³ of SV, then awarded......1mk
- If No titre value is within ± 0.10 cm³ of the SV but at least one titre value is within ± 0.20 cm³ of the SV, then award ½mark
- If NONE of the titre values is within ± 0.20 cm³ of the SV, then award......0mark

<u>NOTE</u>: If there is wrong arithmetic/ subtraction in the Table, compare the SV with the CORRECT worked out titre and award accordingly.

- iv. Principles of averaging......1mk Values averaged MUST be shown and MUST be consistent within ± 0.20 cm³ of each other. Conditions. • If 3 consistent values are averaged......1mk • If 3 titrations are done and only 2 possible averaged......1mk • If only 2 titrations are done, and are inconsistent and averaged.....1mk • If only 2Titrations are done, and are inconsistent and yet averaged.....Omk • If 3 Titrations are done, ALL are possible and yet only 2 are averaged.....Omk • If 3 inconsistent values are averaged......Omk • If only 1 Titration is done......Omk Penalties: • Wrong arithmetic, i.e. arithmetic error outside ± 2 units in the 2nd decimal place (e.g. 24.67 given as 24.64), penalize ½mk • If no WORKING is shown but "answer" given is correct, penalize ½mk. • If value is rounded off to the1st decimal place (e.g. $24.66 \approx 24.7$) or to a whole – number (e.g.24.33≈24), penalize ½mk. • If no working is shown but answer given is wrong, penalize FULLY, i.e. award Omk Final accuracy (tied to the CORRECT average titre).....1mk ٧. • Compare the candidate's CORRECT average titre with the SV and award accordingly: • If within ± 0.10 cm³ of the SV, award......1mk • If Not within ± 0.10 cm³ of the SV, but it is within ± 0.20 cm³ of the SV, award½mk • If BEYOND ±0.20 cm³ of the SV, award......0mk Complete table.....1mk Use of decimals.....1mk Accuracy1mk
 - Principles of averaging......1mk

TABLE 1

Final accuracy1	mk
-----------------	----

Sub-total 5mks

Calculations :

(i) Moles of NaOH in average titre = $\frac{0.05 \times 30.0}{1000} \sqrt{\frac{1}{2}mk}$

 $= 0.0015 mol \sqrt{\frac{1}{2}mk}$

Note:

- Units may not be given but if given Must be correct otherwise penalize½mark foe wrong units attached to correct answer.
- (ii). Moles of HCl in 25 cm³ of solution FA4

NaOH : HCl

1 : 1 $\sqrt{1mk}$

0.0015 mol 0.0015 mol $\sqrt{1mk}$

(iii)
$$=\frac{0.0015 \times 250}{25}\sqrt{1mk} = 0.015 \ mol \ \sqrt{1mk}$$

Note:

- 0.0015 MUST be transferred and used INTACT otherwise penalize FULLY for any other figure used and award 0mk
- Accept answer given to at least 4 decimals places, otherwise penalize $\frac{1}{2}mk$ for rounding off to 3 decimal places or less.

(iv)

• Moles of HCl in 50 cm³ of FA2 = $\frac{0.7 \times 50}{1000} \sqrt{\frac{1}{2}mk}$

 $= 0.035 \sqrt{1/2} mk$

(v) moles of HCl that reacted with magnesium = Ans in (v) – ans in (iv)

 $0.035 - 0.015\sqrt{\frac{1}{2}mk} = 0.02\sqrt{\frac{1}{2}mk}$

(vi) Mg : HCl $1 : 2\sqrt{\frac{1}{2}mk}$ $=\frac{0.02 \times 1}{2}\sqrt{\frac{1}{2}mk} = 0.01 \text{ mol } \sqrt{1mk}$

- - i) Complete table......2mks

Conditions/ penalties

- Award $\frac{1}{2}mk$ for EACH experiment completely done.
- Penalize ½*mk* for EACH solubility value either wrongly worked out or not work to a MAXIMUM penalty of 1mark.
- Penalize 1mark ONCE for unrealistic Temperature readings, for any Temperature reading T $\leq 25.0^{\circ}$ C and T > 80.0°C.
- Penalize $\frac{1}{2}mk$ if ALL Temperature readings given in the Table are CONSTANT.
- ii) Use of decimals(Tied to Temperature reading)...... 1/2mk

Accept ONLY if all readings recorded consistently either as whole numbers or to one decimal place of .0 or .5, otherwise penalize FULLY.

iii) Accuracy¹/2mk

Compare the candidate's first Temperature reading (i.e. Temperature reading when the volume of water added is 5.00 cm^3) with the school value, SV (i.e. the Teacher's temperature reading when the volume of water added is 5.00 cm^3). If within $\pm 2.0^{\circ}$ C of the SV, awarded 1mark, otherwise awarded 0mark.

iv) Trend1mk

Award mark for Temperature readings showing a CONTINUOUS DROP, otherwise penalize FULLY.

Hence the distribution of marks for table 2 is as follows.

TABLE 2

Complete table	2mks
Use of decimals	¹ /2mk
Accuracy	¹ /2mk
Trend	1mk
Sub-total	4mks

f) GRAPH......3mks

Award MAXIMUM total of 3marks distributed as follows

A. Labeling of the axes..... $\frac{1}{2}mk$.

Award $\frac{1}{2}mk$ ONLY if BOTH axes are CURRECTLY labelled.

Penalties:

- Penalize FULLY for inversion of axes
- Penalize FULLY for wrong unit given, otherwise ignore if units are omitted.
- Penalize FULLY if only ONE axis is correctly labelled.

Award $\frac{1}{2}mk$ for scale subject to the following conditions.

Conditions:

- Area covered by the PLOTS must be at least half the grid on EACH of the axis
- Scale intervals MUST be consistent on EACH axis.
- Scale chosen must be able to accommodate ALL plots/ points-Examiner MUST check the range of the readings on EACH axis.

Note: panelize FULLY if any of the above three conclusions is NOT met.

Award maximum of 1 mark for plotting.

Conditions:

- if 6 or 5 points are correctly plotted award1mk
- if only 4 or 3 points are correctly plotted award $\frac{1}{2}mk$
- If less than 3 points are correctly plotted award......0 mark.
- D. Curve1mk

Award 1mark for a smooth rising curve joining at least three correctly plotted points.

<u>Note</u>: Reject curve obtained by plotting 2 or more wrongly calculated solubility values from table 2.

Hence the distribution of marks for the graph is as follows.

GRAPH	

Label of axes	½mk
Scale	¹ /2mk
Plotting	1mk
Curve	1mk
Sub-total	3mks

(g)

- (I) Correct reading from the graph. $\sqrt{1mk}$
- (II) Correct reading from the graph. $\sqrt{1mk}$
- (h) 100g ans in (g)(ii) $\sqrt{1mk}$ Final ans $\sqrt{1mk}$

3. a

(i)

OBSERVATION(S)	INFERENCE(S)
• <u>White ppt</u> $\sqrt{\frac{1}{2}mk}$ formed which then <u>dissolves</u> $\sqrt{\frac{1}{2}mk}$ in excess alkali forming a colourless solution.	 Al²⁺, Pb²⁺, Zn²⁺, present√1mk All 3 ions given Only two ions given.¹/₂mk Only one ion given. 0mk

(ii)

OBSERVATION(S)	INFERENCE(S)
• White ppt $\sqrt{\frac{1}{2}mk}$ formed which is insoluble $\sqrt{\frac{1}{2}mk}$ in excess aqueous ammonia	 Al²⁺√½mk , Pb²⁺,√½mk present Penalize ½ mark for each contradictory ion.

(iii)

OBSERVATION(S)	INFERENCE(S)
• White ppt formed $\sqrt{1mk}$	Pb ²⁺ present. $\sqrt{1mk}$
Type equation here.	

OBSERVATION(S)	INFERENCE(S)
• Yellow White precipitates formed $\sqrt{1mk}$	 Pb²⁺ present.√1mk Penalize FULLY for any contradictory ion.
	(1mks)
(v)	

B. (i)

OBSERVATION(S)	INFERENCE(S)
 Solution has pH=2 √1mk. NOTE. Reject pH given as range. 	 Solution is <u>strongly acidic</u>. √1mk NOTE. Reject the solution is "strong acid". Correct inference tied to correct pH.

(ii)

OBSERVATION(S)	INFERENCE(S)
• KMnO4 solution is decolourised $\sqrt{1mk}$	R-OH and $> C = C < -C \equiv C - present$
OR	$\sqrt{1mk}$
 KMnO₄ solution changes from purple to 	
colourless. $\sqrt{1mk}$	
• NOTE. Reject " solution becomes/ turns	
colourless" or " it turns colourless"	

(iii)

OBSERVATION(S)	INFERENCE(S)
• Effervescence producing a clourless gas $\sqrt{1mk}$	R-COOH present $\sqrt{1mk}$