KAPSABET HIGH SCHOOL 233/1 - CHEMISTRY - Paper 1 #### 2 Hours | NAME:
CLASS | ADM | NO.: | |----------------|-----------------------|------| | CANDID | | | | | | | | _ | INTERNAL TRIAL 1 2023 | | Kenya Certificate of Secondary Education (K.C.S.E) ## **Instructions to Candidates** - 1. Write your name and index number in the spaces provided above. - 2. Answer all the questions in the spaces provided. - 3. All working must be clearly shown. - 4. Non-programmable silent electronic calculators and KNEC mathematical tables may be used. #### For Examiner's Use only | Questions | Maximum score | Candidates score | |-----------|---------------|------------------| | | | | 1 | 1 - 25 | 80 | | |--------|----|--| | | | | This paper consists of 12 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. ### **ANSWER ALL QUESTIONS** | РΗ | 14.0 | 1.0 | nat follow. | 6.5 | 5.0 | | |---|---------------------------|----------------------------|-------------------------------------|---|---|---| | Solution | E E | F | G | H | J.0 | | | | ition with the h | | _ | | xide ions. Exp | lain (1m | | - | | _ | | = | _ | | | | | | | | | | | nich solution | can be used as | a reme | dy for acid | indigestion | in the stomac | h? Explain (1n | | | | | • | • | | - ' | | | | | | | | | | | | | | | | | | | - | • | | | | (1m | | | | | | | | | | Distinguish t | setween ionizat | non ene | rgy and ele | ectron aiiini | ty | (2m | • | | ••••• | ••••• | • | • | • | | The table bel | low shows firs | t ioniza | tion energi | es of metal | s represented | by letters A. F | | | als are in the sa | | _ | | * | -, | | | | | | 1 | | | | | | | A | В | | | | ľ | Metal | | A | Ь | C | D | | i . | ch solution Ch solution v | ch solution can be used as | ch solution would react explosively | ch solution would react explosively with Pota | ch solution would react explosively with Potassium meta | | | 3. | An elem | nent: $^{23}_{11}$ M | | |------|---------|---|-----------------------------------| | | (a) | To which chemical family does it belong? | $(^1/_2\text{mk})$ | | •••• | (b) | Write the electron arrangement of the atom. | (¹ / ₂ mk) | | | (c) | Draw the structure of its ion. | (1mk) | | 4. | (a) | Define electrolysis. | (1mk) | | (b) | Durir | ng the electrolysis of molten aluminium oxide, write the equations at t Anode - | he; | | | | Cathode - | (1mk) | | 5. | Solvayı | periment to determine the percentage purity of Sodium carbonate proprocess, 2.15g of the sample reacted with exactly 40.0cm ³ of 0.5M ic(VI)acid. Determine the percentage purity of sodium carbonate in the | | | | | 3 | | | 6. | Y is a product of gaseous reaction which | ch results in an e | equilibrium mixtur | e being formed. | |----|--|--------------------|--------------------|-----------------| | | Reactants \(\bigsim Y \) | | | | The percentage of \mathbf{Y} in equilibrium at various temperatures and pressure is shown in the following table. | Temperature (⁰ C) | 1 atm | 100 atm | 200 atm | |-------------------------------|-------|---------|---------| | 550 | 0.77 | 6.70 | 11.9 | | 650 | 0.032 | 3.02 | 5.71 | | 750 | 0.016 | 1.54 | 2.99 | | 850 | 0.09 | 0.87 | 1.68 | | Us | e this data to deduce, giving a reason for each case; | | |----|--|------------------| | a) | Whether production of Y is exothermic or endothermic. | (2mks) | | | | | | b) | Whether production of Y involves an increase or a decrease in number of moles of present. | of gas
(2mks) | | | During distillation in a laboratory the distillate can be collected either by a beaker or a conical flask. Define the term distillate. (1mk) | |--|--| | ······································ | During distillation in a laboratory the distillate can be collected either by a beaker or a conical flask. | | | | | | | | | | | | | | | | | • • • • | | | 8. | A sample of water collected from River Nzoia is suspected to contain chloride ions. Describe an experiment that can be carried out to determine the presence of the chloride ions. (2mks) | | •••• | | | | | | | | | | | | | | | | State and explain what is observed when moist red flowers are dropped in a gas jar containing Sulphur (IV) oxide. (3mks) | | 7. | | | 7. | | | Draw the diagram of a graduated conical flask. In an experiment to determine the proportion of backed in excess in a long combustion tube controlume. At the beginning of the experiment, synthesisting of the experiment, synthesis in the experiment of the experiment, synthesis in the experiment of the experiment. | nected to two syringes of 110cm | n ³ each in | |---|--|--| | backed in excess in a long combustion tube convolume. At the beginning of the experiment, syringe M was closed and empty as shown. | nected to two syringes of 110cm ringe R contained 110cm ³ of air | n ³ each in | | | | | | | 1 | | |
Syringe M | †† Heat Syri | inge R | | | Glass wool | | | passed over the heated copper slowly and repeate. 97.5cm ³ of air remained in syringe M. | ntedly until there was no further | change | | State and explain the observation made in the co | ombustion tube. | (2mks) | | | | | | | | | | | | (2mks) | | | passed over the heated copper slowly and repeate. 97.5cm ³ of air remained in syringe M. State and explain the observation made in the constitution of air in the combustion tube at the was 23.8cm ³ and at the end of the experiment re | Glass wool passed over the heated copper slowly and repeatedly until there was no further ne. 97.5cm³ of air remained in syringe M. State and explain the observation made in the combustion tube. If the volume of air in the combustion tube at the beginning of the experiment was 23.8cm³ and at the end of the experiment reduced to 10cm³, calculate the | 11. Below is a structure of an element X. Use it to answer the questions that follow. - (a) Name the chemical family to which element X belongs. Give a reason. (2mks) - (b) (i) Define covalent bond. (1mk) - (ii) Using dots (●) of cross (x) diagram, show bonding in Carbon (II) Oxide. (1mk) - 12. (a) (i) State *two* allotropes of Carbon. (1mk) - (ii) Explain the differences in their densities. (2mks) | raw n | (1) Name the process used for large scale production of Sodium Carbonate t naterial. | (1mk) | |-------|--|--------| | (ii) | Write the overall chemical equation for the reaction in the carbonator. | (1mk) | | (c) | Name two gases recycled in the above process | (1mk) | | 13. N | Jame the following compounds using the IUPAC system. (i) CH ₃ CH ₂ CH ₂ CH ₂ C = CH | (3mks) | | | (ii) CH ₃ CH ₂ CH ₂ COOCH ₂ CH ₂ CH ₃ | | | | CH ₃ (iii) CH ₃ CHCHCHCH ₃ Cl Cl | | | 14. D | Describe how to prepare Ethane gas starting with soda lime | (3mks) | | 15. The diagram below shows how chlorine reacts with metals in the laboratory. Study it and answer the questions that follow. | | |---|--------| | Dry Chlorine gas Heat Dilute | | | (a) Name substance Q . (1m | k) | | (b) Give a reason why substance Q is not collected in the combustion tube P. (1m |
k) | | (c) Write chemical equation for the reaction that occurs in the conical flask containing Sodium hydroxide. (1mk) | |---| | 16. (a) Water sample is found to contain Mg ²⁺ ,Cl ⁻ , SO ₄ ²⁻ , and Ca ²⁺ . Identify the type of water hardness (1mk) | | | | (b) Which type of detergent is more suitable with the water sample above. Give a reason (2mks) | | | | (c) Permanent water hardness cannot be removed by boiling. Explain (1mk) | | | | 17. Starting with lead metal, write procedure on preparation of lead(II) nitrate crystals (3mks) | | | | 10 | | 18. The following chemical equat | tions show the effects of heat on nitr | rates. | |--|--|---| | $2B(NO_3)_{2(s)}$ $2ANO_{3(s)}$ $2CNO_{3(s)}$ a. Arrange elements A, F | $2ANO_{2(s)} + O_{2(g)}$ | e least reactive. (1 ¹ / ₂ mks) | | | | | | | | | | Give one example of element A, | B and C. | $(1^1/_2 \text{mks})$ | | | | | | | | | | | | | | | | | | requirements were used in an exp crystals were heated. | a boiling tube, a test-tube, a beaker periment to determine the type of charge present the set-up at the end of the factorial transfer factor | ange that occurred when the | | • • | xperiment was done, state the conclucopper (II) sulphate crystals when h | eated. (1mk) | | 20. (a). Distinguish between chr | romatography and a chromatogram. | (1mk) | | | 11 | | | | ADCADET DOVE WELL SCHOOL 2022 | | | (b) State the role of chromatography in the administration of international athletics competi (| tions. | |--|--------| | | | | 21. Study the polymer shown below. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$ | lmk) | | b) Identify two monomers that make up the polymer. (2) Give one use of the polymer (1mark) | 2mks) | | | lmk) | | (b) A gas occupies 450cm ³ at 27 ⁰ C. What volume would the gas occupy at 177 ⁰ C if its pressure remains constant? | 2mks) | | | | | 23. A colourless liquid was suspected to be water. State two ways to confirm. 12 | | | (i) | Purity of the water. | (1mk) | |---|--|--------| | | | | | (ii) | That the liquid was water. | (2mks) | | ••••• | | | | ••••• | | ••••• | | 24. Use | the following information to answer the questions that follow | | | | ΔH lattice $MgCl_2 = +2489$ kJ/ mol | | | | ΔH hydration $Mg^{2+} = -1891$ kJ/ mol | | | | $\Delta H_{\text{hydration}}$ Cl = -384 kJ/mol | | | | | | | a) (| Calculate the heat of solution of magnesium chloride. | (2mks) | | | | | | | | | | ••••• | | ••••• | | b) I | Draw an energy level diagram for the dissolving of magnesium chloride | (2mks) | | | | | | | | | | | | | | | | | | 25 : | | . 1 1 | | | solution of aqueous sodium hydroxide is added to a gas jar of nitrogen (IV) ox
State and explain the observation made | (2mks) | | | | | | • | | | | | | | | | 13 | | | | | | | ii) Write the chemical equation for the reaction above | (1mk) | |--|-------| | | | | | | | | |