KAPSABET HIGH SCHOOL

CHEMISTRY (PRACTICAL)

21/2hoS

Name	Index Number
Class Candidates	Signature
Date	

INSTRUCTIONS TO THE CANDIDATES:-

- a) Write your name and index number in the spaces provided above.
- b) Answer ALL the questions in the spaces provided in the question paper
- c) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ¹/₄ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- d) Mathematical tables and silent electronic calculators may be used
- e) All workings MUST be clearly shown where necessary.

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	22	
<u>2.</u> PART (I).	10	
<u>3.</u> PART (II).	08	
TOTAL SCORE	40	

This paper consists of 8 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicate and no questions are missing

1. You are provided with;

- A dibasic acid labeled solution A
- Solution **B** containing 5.56g per litre of potassium carbonate
- Aqueous sodium hydroxide labeled solution C

You are required to determine the:

- Concentration of solution A in moles per litre

- Molar heat of neutralization of solution C with sodium hydroxide labeled solution C

A Procedure I

Using a pipette filler, place 25cm^3 of solution **A** into a 250ml volumetric flask. Add water to make 250cm^3 of solution label this solution **D**. Place solution **D** in a burette. Clean the pipette and use it to place 25.0cm^3 of solution **B** into a conical flask. Add2 drops of methyl orange indicator provided and titrate with solution **D**. Record your results in table 1. Repeat the titration two more times and complete the table.

Table 1

Ι	II	III

(4mks)

Calculate the:

i) Average volume of solution **D** used

(1mk)

.....

ii) Concentration of potassium carbonate in solution **B** (K = 39.0, O = 16.0, C = 12.0)

(1mk)

iii) Concentration of dibasic acid in solution D (2mks)
iv) Concentration of dibasic acid in solution A (1mk)

B. Procedure II

Clean the burette and fill it with solution C. Clean the pipette and use it to place 25.0cm³ of solution A into a 100cm³plastic beaker. Measure the initial temperature of this solution and record it in table 2.

From the burette, place 5cm^3 of solution **C** into the beaker containing 25.0cm^3 of solution **A**, stir the mixture carefully and record the highest temperature of the mixture in table 2. Place another 5cm^3 of solution **C** into the mixture in the beaker, stir carefully and record the highest temperature of this mixture in table 2. Continue this procedure of placing 5cm^3 portions of solution **C** and complete table 2

Table 2

Total volume of solution C added (cm ³)	0	5	10	15	20	25	30
Volume of solution A (cm ³)	25	25	25	25	25	25	25
Temperature (⁰ C)							

(3mks)

i) On the grid provided, draw a graph of temperature (vertical axes) against volume of

solution C used.

(3mks)

ii) From the graph, determine

The highest temperature change, ΔT

(1mk)

I

.....

.....

	II	The volume of solution C required to react with 25cm ³ of solu	tion A .
(1mk)			
iii)	Calcul	ate the	
	Ι	The number of moles of solution A used	(1mk)

Molar heat of neutralization of A with sodium hydroxide solution labeled C (Assume the specific heat capacity of the solution is 4.2Jg⁻¹K⁻¹ and density of solution is 1.0g cm⁻³)

(2mks

Question 3. PART(I).

You are provided with solid **G** and **H**. Carry out the tests and record your observation and inferences in spaces provided.

(a) Place all solid G in a clean boiling tube. Add about 10cm³ of distilled water and shake well.

Observations	Inferences
(1mk	x) (1mk)

Divide the solution into 4 portions.

(i) To the first portion add 2-3 drops of sodium hydroxide until in excess. (ii) To

Observations	Inferences
(1mk)	(1mk)

the second portion add 2-3 drops of aqueous ammonia until excess. (iii) To the third

Observations	Inferences
(1mk)	(1mk)

portion add 3 drops of dilute hydrochloric acid,.

Observations	Inferences
(1mks)	(1mks)

(iv) To the fourth portion, add 3 drops of Lead (ii) nitrate solution followed by dilute nitrate followed by dilute nitric acid.

(1mk)

Question 3. PART (II).

You are provided with solid **H**. Carry out the tests below. Record your observations and inferences in the spaces provided.

a) Place a half of solid **H** in a clean metallic spatula and ignite it on Bunsen burner flame.

(1mks)

b) Put the remaining portion of solid H in aboiling tube and add about 12cm³ of distilledwater. Shake to dissolve.

i)To about 2cm³ of solution J in a test tube add 2 to 3 drops of bromine water.

Observations	Inferences	
(1mk)	(1mks)	

ii) To about 2cm³ of solution **H** in a test tube, add about 1cm³ of acidified

Potassium dichromate (IV). Warm gently and allow it to stand for a minute.

Observation	Inference
(1mk)	(1mks)

iii) To about 2cm³ of solution **H** in a test tube, add a small amount of solid

Sodium hydrogen carbonate.

Observation	Inference
(1mk)	(1mks)