KAPSABET HIGH SCHOOL

2112hoS

MAKING SCHEME

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	22	
2. PART (I).	10	
3. PART (II).	08	
TOTAL SCORE	40	

1. Procedure A

Table 1
Award a total of 5mks distributed as follows:-
(a) Complete table 1 mk
(i) Complete table with 3 titration done 1 mk
(ii) Incomplete table with 2 titration done $1 / 2 \mathrm{mk}$
(iii) Incomplete table with only one titration done 0 mk

Penalties

- Wrong arithmetic/substraction
- Inverted table
- Burette reading beyongd $50.0 \mathrm{~cm}^{3}$
- Unrealistic titre value i.e below $1.0 \mathrm{~cm}^{3}$

NOTE: Penalise $1 / 2 \mathrm{mk}$ for EACH to a maximum penalty of $1 / 2 \mathrm{mk}$.
(b) Use of decimals (Tied to the $1^{\text {st }}$ and $2^{\text {nd }}$ row only) 1 mk
(i) Accept either 1 or 2 decimals used CONSISTENTLY, otherwise penalize fully.
(ii) If 2 decimals places are used the $2^{\text {nd }}$ decimal place must be a O or 5 otherwise penalize FULLY.
(c) Accuracy 1 mk

Compare candidates titre value with the school value (SV)
Conditions
(i) If at least one value is within $\pm 0.1 \mathrm{~cm}^{3} \quad 1 \mathrm{mk}$
(ii) If NO value is within $\pm 0.2 \mathrm{~cm}^{3}$ of SV but at least one is within \pm $0.2 \mathrm{~cm}^{3}$ of $\mathrm{SV} \quad 1 / 2 \mathrm{mk}$
(iii) If NO VALUE is within $\pm 0.2 \mathrm{~cm}^{3}$ of SV 0 mk
(d) Principle of averaging 1 mk

Values averaged must be shown and must be within ± 0.2 of each other.

NOTE:
(i) If 3 values are possible but only 2 are averaged 0 mk
(ii) If 3 titration are done, are in consistent and yet averaged Omk
(iii) If only 2 titrations are done, are inconsistent and averaged 0 mk

Penalties

(i) Penalise $1 / 2 \mathrm{mk}$ for wrong arithmetic if error is outside ± 2 units in the $2^{\text {nd }}$ decimal place.
(ii) Accept rounding off of answer to 2 decimal place, otherwise penalize $1 / 2 \mathrm{mk}$ for rounding
to 1 decimal place or to a whole number where 2 or more decimal places were obtainable.

NOTE: Accept answer if it works out exactly to 1 decimal place to a whole number.
(e) Final answer (tied to correct average titre)

Compare the candidates CORRECT AVERAGE TITRE with school value SV
(i) If it is within $\pm 0.1 \mathrm{~cm}^{3}$ of $\mathrm{SV} \quad 1 \mathrm{mk}$
(ii) If it is not within $\pm 0.1 \mathrm{~cm}^{3}$ of SV but it is within $\pm 0.20 \mathrm{~cm}^{3}$ of SV $\quad 1 / 2$ mk
(iii) If it is beyond $\pm 0.20 \mathrm{~cm}^{3}$ of SV 0 mk

SUMMARY

Complete table CT 1
Decimals DEC 1
Accuracy AC 1
Principles of averaging PA 1
Final answer FA 1
Total marks A 5mks

Procedure

CALCULATIONS

A (ii)
RFM of $\mathrm{K}_{2} \mathrm{CO}_{3}=(39 \mathrm{x} 2)+12+(16 \mathrm{x} 3)$

$$
=138
$$

Conc. Of solution $P=\underline{5.56}=0.040289855$
138
$\cong 0.0403 \mathrm{moldm}^{-3}$

Conditions/ Penalties
(i) 5.56 must be transferred intact, otherwise penalize and award NO MARK for the final answer if a "strange" figure is used.
(ii) Accept round off answer to 3 decimal places, otherwise penalize $1 / 2 \mathrm{mk}$
(iii) Ignore arithmetic error if within ± 2 unit in the $3^{\text {rd }}$ decimal place, otherwise penalize $1 / 2 \mathrm{mk}$ for wrong answer
(iv) Units may not be shown, but if shown MUST be correct, otherwise penalize $1 / 2 \mathrm{mk}$ for wrong units.

A (iii) FIRST PRINCIPLES
Moles of $\mathrm{K}_{2} \mathrm{CO}_{3}$ used

```
= answer (ii) x 25` 1/2
1000
```

Ratio 1:1
Moles of Acid used $=\underline{\text { Ans(ii) } \times 25 \sqrt{1 / 2}}$
1000
Concentration of acid in solution P
$=$ Ans (ii) $\times 25 \times 1000 \checkmark 1 / 2$
1000 titre
$=$ correct answer $\checkmark \quad 1 / 2$
$\underline{M_{A} V_{A}}=\underline{1} \quad \checkmark 1 / 2$
$M_{B} M_{B} \quad 1$
$=\mathrm{M}_{\mathrm{A}}=$ Answer (ii) $\times 25 \checkmark 1 / 2$
Titre
$=$ Correct answer $\sqrt{ } 1 / 2$

A (iv)
Concentration of acid in solution P
$=$ Answer (ii) x $10 \checkmark 1 / 2$
= Correct answer $\checkmark 1 / 2$
Or
Answer (iii) x $250{ }^{1 / 2}$
25
$=$ Correct answer $\sqrt{ } 1 / 2$

Or $M_{P} V_{P}=M_{Q} V_{Q}$
$=$ answer (iii) x $250 \times 1 / 2$

$$
=\text { Correct Answer } \checkmark 1 / 2
$$

NOTE: (i) Accept the concept of Dilution but the marking point is where answer (iii) is multiplied by the dilution factor.

Conditions

(i) For wrong transfer of answer (iii) penalize $1 / 2 \mathrm{mk}$ otherwise for strange figure used penalize fully.
(ii) Answer MUST be as expected, otherwise penalize $1 / 2$ mark for wrong answer
(iii) Accept rounding off answer to at least 3 decimal places, otherwise penalize $1 / 2 \mathrm{mk}$
(iv) Penalize $1 / 2 \mathrm{mk}$ for wrong answer if the arithmentic error is outside ± 2 units in the $3^{\text {rd }}$ decimal place.
(v) Units may be given, but if given MUST be correct, otherwise penalize $1 / 2 \mathrm{mk}$ for wrong units used.

B PROCEDURE

Table 2 (4mks)
Award a total of 4 marks distributed as follows
(a) Complete table 1 mk

Penalties /conditions
(i) Penalise $1 / 2 \mathrm{mk}$ ONCE for any space not filled subject to at least 5 readings being given otherwise penalize fully
(ii) Penalize $1 / 2 \mathrm{mk}$ ONCE FOR UNREALISTIC temperature reading (less than $10^{\circ} \mathrm{C}$ or greater than $40^{\circ} \mathrm{C}$) as initial temperature.
(iii) If temperature readings are ALL constant, penalize $1 / 2 \mathrm{mk}$ on complete table.
(b) Use of decimals 1 mk

Accept temperature readings and award 1mk ONLY IF CONSISTENTLY given either as whole number or to 1 decimal place, otherwise penalize fully.

NOTE: the decimal place has either to be 0 or 5
(c) Accuracy 1 mk

Compare the candidates FIRST initial temperature reading with the school value (SV) if within ± 2.0, award 1 mk otherwise penalize FULLY.
(d) Trend $\quad 1 \mathrm{mk}$

Accept a continuous rise in temperature values up to a maximum for $1 / 2 \mathrm{mk}$. Followed by a continous drop in the values for another $1 / 2 \mathrm{mk}$.

B GRAPH (1) (Award of TOTAL of 3 marks distributed as follows.
I. Labelling of axis $\quad 1 / 2 \mathrm{mk}$

Award $1 / 2 \mathrm{mk}$ ONLY if both axes are correctly labelled (i.e temperature vertical axis volume horizontally)

Penalties:- Penalise FULLY for inverted axes Penalize FULLY if wrong units are used otherwise ignore if units are omitted/ not used.

Penalize fully if only one axis is correctly labelled.
II. SCALE $\quad 1 / 2 \mathrm{mk}$

Conditions
(i) Area covered by plots should be at least $4 \frac{1}{2}$ of big squares on both horizontal and vertical axes.
(ii) Scale intervals MUST be consistent

NOTE: Penalise fully if any of the above conditions is not met.
III. PLOTTING 1 mk
(i) If 6 to 7 points correctly plotted award 1 mk
(ii) If 4 to 5 points correctly plotted award $1 / 2 \mathrm{mk}$
(iii) If lesss than 5 points correctly plotted award 0 mk
(iv) If scale interval changes, mark plots (if any) with the first scale interval and treat the rest of the plots are wrong.
IV. THE LINE 1 mk
(i) Accept 2 straight lines intersecting on extrapolation for 1 mk
(ii) Accept 2 straight lines not extrapolated (wheteher joined or not) for $1 / 2$ mk
B. (ii)
I. Maximum change in temperature $=\Delta T \checkmark 1 \mathrm{mk}$

Conditions

(i) Accept the correct value of $\Delta \mathrm{T}$ from an extrapolated graph with or without showing for 1 mk
(ii) Award $1 / 2 \mathrm{mk}$ for correct showing on an EXTRA POLATED graph if reading for $\Delta \mathrm{T}$ is wrong or missing.
(iii) Award no mark where reading is given for graph not extrapolated.

II Volume of solution $\mathrm{T}=\mathrm{V} \mathrm{cm}^{3} 1 \mathrm{mk}$

CONDITIONS

i) Accept the CORRECT reading of V, with or without showing on an EXTRAPOLATED graph for 1 mk .
ii) Penalize $1 / 2 \mathrm{mk}$ for wrong units, otherwise ignore if units are omitted.
iii) Penalize FULLY for any reading of V given from a graph not extrapolated

B iii) I
Moles of Acid P $=\frac{\text { Ans A(iv) } \times 25}{1000} \checkmark 1 / 2$

$$
=\underline{\text { Ans(iii) IV }}
$$

CONDITIONS

i) Accept answer given to at least 4 decimal places,otherwise penalize $1 / 2 \mathrm{mk}$
ii) Penalize $1 / 2 \mathrm{mk}$ for wrong transfer of AnswerA(iv).
iii) Units may not be shown but if shown must be correct, otherwise penalize $1 / 2 \mathrm{mk}$ for wrong units

B iii) II
Heat evolved $=\mathrm{MC} \mathrm{\Delta T}$
NB: Award $1 \not 12 \mathrm{mk}$ for Answer B(ii) II $+25 \mathrm{X} 4.2 \times \Delta \mathrm{T} \checkmark 1 \mathrm{mk}$
Converting volume to mass $=$ Answer A $\sqrt[1]{2}$
Award $1 / 2 \mathrm{mk}$ for expression.
Therefore molar heat of neutralization

$$
=\frac{\text { Answer A } X 1}{\text { AnswerB(iii) } I 1000} \vee 1 \mathrm{mk}
$$

$=$ Correct Answer $\checkmark 1 / 2$
OR
Molar heat of neutralization
$=\frac{\text { AnswerB(ii) II +25x }}{\text { Answer B(iii) I }} \Delta \mathrm{T} \underset{1000}{1} \checkmark 2^{1 / 2}$
$1 / 2$ mark for conversion of volume to mass 2 mks for expression
= Correct. Answer $\sqrt{1 / 2}$

NOTE

i) Accept the correct transfer of ΔT even if rejected at B(ii) I, unless it was rejected as 'Strange".
ii) Penalize $1 / 2 \mathrm{mk}$ for wrong transfer of Ans B(ii) I or ΔT or both.
iii) Accept answer given to atleast 1 decimal place, Otherwise penalize $1 / 2 \mathrm{mk}$
iv) Penalise $1 / 2 \mathrm{mk}$ for wrong units or if not shown.
v) Accept the use of abbreviation i.e. $\mathrm{KJ} / \mathrm{mole}^{\mathrm{m}} \mathrm{KJmol}^{-1}$, $\mathrm{KJ} / \mathrm{mol}$. Or KJmol^{-1}.
vi) Negative sign expected on the "final answer" otherwise penalize $1 / 2 \mathrm{mk}$ if omitted.
vii) Where the division by 1000 is Not shown or implied, penalize $1 / 2 \mathrm{mk}$ on the "final answer"

NOTE: For all the calculation, penalize fully if the candidate continues working Beyond the expected answer.

Total - 22MKS
2a)

Observation	Inference.
a) Solid dissolves to form a colourless $\sqrt{ } 1$ solution.	Soluble salt $\sqrt{1 \mathrm{mk}}$
i) White precipitate $\sqrt{ } 1 / 2$ soluble in excess $\sqrt{ } 1 / 2$	$\begin{aligned} & \mathrm{Al}^{3+}, \mathrm{Pb}^{2+}, \mathrm{Zn}^{2+} \sqrt{ } \\ & \text { (} 3 \text { ions }-1 \mathrm{mk} \text {, } 2 \text { ions }-1 / 2 \mathrm{mk} \text {, } 1 \text { ion } \\ & -\mathrm{Omk} \\ & \quad \text { Penalize full } \\ & \text { for contradictory ion) } \end{aligned}$
ii) White precipitate $\sqrt{1 / 2}$ insoluble in excess $\sqrt{1 / 2}$	$\begin{aligned} & \mathrm{Al}^{3+}, \mathrm{Pb}^{2+} \sqrt{ }(2 \text { ions }-1 m k, \quad 1 \text { ion } \\ & -1 / 2 m k) \end{aligned}$
iii) No white precipitate $\sqrt{1 / 2}$	Al^{3+} confirmed $\sqrt{ } \mathrm{Or} \mathrm{Pb}^{2+}$ absent. Reject if not mentioned in a(i) and (ii) above.

3a)Observation	Inference
Melts into colourless liquid. $\checkmark 1 \mathrm{mk}$	Unsaturated organic compound.
	$\underline{\text { Accept }}$
Burns with a smoky/sooty flame	1. A long chain hydrocarbon 2. High- carbon - hydrogenation Drawings $\checkmark 1 \mathrm{mk}$
NB: Unsaturated tied to sooty and smoky	C \quad C or $-\mathrm{C} \equiv \mathrm{C}-$

b) Bromine water decourized/ yellow bromine water turns colourless. \checkmark 1 mk	Reject: Brown for colour of bromine Carbon to carbon double bond or triple bond. Penalize fully for any contradictory function group.
c) Orange colour of acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is retained/ acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ of does not turn into green Reject yellow colour for $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Absence of ROH. $\checkmark 1 \mathrm{mk}$
	Penalize fully for any for any contradictory
d) Effervescence / bubble of a gas $/$ Fizzing $\checkmark 1 \mathrm{mk}$	functional group e.g. RCOOH
Presence of $\mathrm{H}^{+} / \mathrm{RCOOH}$.	
1 mk	

