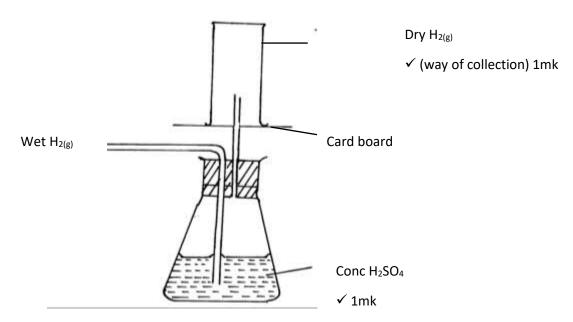
## KAPSABET HIGH SCHOOL


## CHEM PP2 MARKING SCHEME

|                | 1.(i)             | Noble gases $\sqrt{1}$                                                                                                                         |  |  |  |  |
|----------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                | (ii)              | $D_2SO_4\sqrt{1}$                                                                                                                              |  |  |  |  |
|                | (iii)             | (a) Y $\sqrt{1}$                                                                                                                               |  |  |  |  |
|                |                   | (b) E $\sqrt{1}$                                                                                                                               |  |  |  |  |
| √1 acc         | (iv)<br>cept tran | (iv) Ionic bond $\sqrt{1}$ – Because B reacts by losing an electron (s) which are gained by pt transfer of electrons from a metal to non metal |  |  |  |  |
|                | (v)               | $D//M \sqrt{1}$ Any $\frac{1}{2}$ mark each                                                                                                    |  |  |  |  |
|                | (vi)              | Because E reacts by gaining an extra electron which reduces √1 the electrostatic                                                               |  |  |  |  |
|                | electro           | pull by the positive nucleus making the ionic radius increase. Or incoming con causes increased repulsion wtte                                 |  |  |  |  |
|                | (vii)             | At Period III Group IV                                                                                                                         |  |  |  |  |
|                | (viii)            | Because of the increase in the strength of the molecular bonds in the oxide of L as                                                            |  |  |  |  |
|                |                   | compared to that of G. $\sqrt{1}$ w.t.t.e                                                                                                      |  |  |  |  |
| the            | (ix)              | C has a smaller atomic $\sqrt{1}$ radius than I because of the increase in the strength of                                                     |  |  |  |  |
|                |                   | Nucleur foce of attraction in C as the number of protons increase $\sqrt{1}$ w.t.t.e                                                           |  |  |  |  |
|                | (x)               | 1st ionization energies increases from $J-L$ across the period due to addition of an                                                           |  |  |  |  |
|                |                   | extra proton in the nucleus increasing the attraction of the valency electrons $\sqrt{}$                                                       |  |  |  |  |
| 2 a) i)<br>1mk | A solu            | tion that cannot dissolve any more of the solute at that particular temperature. ✓                                                             |  |  |  |  |
|                |                   | ntific technique used to separate substances due to their differences in their temperature. ✓ 1mk or w.t.t.e                                   |  |  |  |  |
|                | b) i) o           | n the scanned graph                                                                                                                            |  |  |  |  |
| ii) x=         | 100g/10           | 00ml, y=40g/100ml                                                                                                                              |  |  |  |  |
| iii) 5°c       |                   |                                                                                                                                                |  |  |  |  |
|                |                   |                                                                                                                                                |  |  |  |  |

- iv) type of hardness that cannot be removed by boiling
- 3. a) (i) Fractional distillation ✓ 1mk
  - (ii) Argon//neon/xenon//krypton ✓ 1mk
  - b) A Sulphur√1mk
    - B Ammonia gas √1mk
    - C sulphur (vi) oxide ✓ 1mk
    - D Ammonium sulphate ✓ 1mk
  - c) (i) Finely divided iron ✓ 1mk
    - (ii) Vanadium (v) oxide ✓ 1mk
  - (iii) The catalysts <u>fasten</u> ✓ 1mk the Haber & contact processes by <u>lowering the activation energy</u> ✓ 1mk of the reactions//the <u>rate of production</u> is increased.

d) (i) 
$$H_2SO_{4(aq)} + 2NH_{3(g)} \longrightarrow (NH_4)_2SO_{4(aq)} \checkmark 1mk$$
  
(ii) Formula mass of  $(NH_4)_2SO_4 = 2(14+4) + 32 + 4(16)$   
 $= 132 grams \checkmark \frac{1}{2} mk$   
% of  $N = \frac{28}{132} \times 100 \checkmark 1mk$   
 $= 21.212\% \checkmark \frac{1}{2} mk$ 

- (iii) Use as a fertilizer √1mk
- 4. a) I: The outlet delivery tube should not dip into the Zinc/dilute Sulphuric acid mixture in the round buttoned flask. ✓ 1mk
- II: The use of heat is not required ✓ 1mk b)



ii) 
$$H_{2(g)} + \frac{1}{2} O_{2(g)}$$
 ht  $H_2O_{(g)}\checkmark$  balancing $\frac{1}{2}$  mark states  $\frac{1}{2}$  mark

d) 
$$Zn_{2(s)} + H_2SO_{4(aq)}$$
  $\longrightarrow$   $ZnSO_{4(aq)} + H_{2(g)}$  balancing ½ mk states ½ mk

1vol 1 vol 
$$\left[\frac{6.54}{R}\right]$$
  $\left[\frac{2.4}{24}\right]$ 

Therefore, 
$$\left[\frac{6.54}{R}\right] = \frac{2.4}{24}$$
,  $\checkmark 1 \text{mk}$  where  $R = R.A.M$  of Zinc
$$R = \frac{24 \times 6.54}{2.4}$$
Or  $R = 65.4 \checkmark 1 \text{mk}$ 

- e)  $H_{2(g)}$  is used in balloons by meteorologists  $\checkmark 1 \text{mk}$ 
  - It is used as rocket fuel ✓ 1mk

5.

- (a) Heating copper (ii) oxide  $\sqrt{1mk}$
- (b) Black solid would turn brown  $\sqrt{1mk}$
- (c)  $CuO_{(s)} + CO_{(g)} \longrightarrow Cu_{(s)} + Co_{2(g)} \sqrt{1 \frac{1}{2}} mk$
- (d)  $2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)} \sqrt{1 \frac{1}{2}} mk$
- (e) It is poisonous  $\sqrt{1mk}$
- (f) (i) Reducing agent Carbon(ii) oxide  $\sqrt{1mk}$  (ii) Oxidisingagent -Copper (ii) oxide  $\sqrt{1mk}$
- (g) Hydrogen / ammonia gas (Any one)  $\sqrt{1mk}$
- (h) There would be no observable change  $\sqrt{1mk}$ . This is because sodium is higher than carbon in the reactivity series and therefore has higher affinity of oxygen  $\sqrt{1mk}$

6.

- a) Concentrated sulphuric (vi) acid  $\sqrt{lmk}$
- b) It is denser than air  $\sqrt{1mk}$
- c) It turns red then white.  $\sqrt{lmk}$  It turns white / it gets bleached  $\sqrt{lmk}$

d) 
$$Cl_{2(g)} + H_2O_{(l)}$$
  $\longrightarrow$   $HOCl_{(aq)}+$   $HCl_{(aq)}\sqrt{1mk}$ 

e) PCl<sub>3</sub> 
$$\sqrt{1mk}$$
 PCl<sub>5</sub>  $\sqrt{1mk}$ 

f) A yellow deposit of sulphur is formed / seen  $\sqrt{1mk}$  Chlorine oxidizes sulphideions to solid sulphur  $\sqrt{1mk}$ 

g)

- Manufacture of hydrochloric acid  $\sqrt{1mk}$
- Manufacture of bleaching agents such as chlorate used in the cotton and paper industries

- Chlorine is used in the treatment of water and sewage plants
- Manufacture of chloroform as an anaesthetic
- Manufacture of solvents such as trichloroethane

Any one

| <u>7.</u> |  |
|-----------|--|
| ` `       |  |

- a) A Filtration  $\sqrt{1 \frac{1}{2}} mk$ B - Absorption  $\sqrt{1 \frac{1}{2}} mk$ M - Isolation of water  $\sqrt{1 \frac{1}{2}} mk$ D - Cooling  $\sqrt{1 \frac{1}{2}} mk$
- b) Liquids NaOH (aq) / KOH (aq)  $\sqrt{1mk}$ Substance T – Ice / water  $\sqrt{1mk}$
- c) To increase surface area forcooling  $\sqrt{1} \ mk$
- d) (i) Oxygen is used to remove impurities during steel making  $\sqrt{1} \ mk$ 
  - (ii) Is used in cutting and welding of metals  $\sqrt{1}$  mk
- e)  $2H_2O_{2(1)}$   $MnO_{2(S)}$   $2H_2O_{(1)}+$   $O_{2(g)}$   $\sqrt{1}$  mk
- f) (i) R -Rusting occurred  $\sqrt{1} \frac{1}{2} mk$  because of air and water being present  $\sqrt{\frac{1}{2}} mk$ 
  - S No rusting  $\sqrt{\frac{1}{2}} mk$  Water is absent  $\sqrt{\frac{1}{2}} mk$
  - T No rusting  $\sqrt{\frac{1}{2}} mk$  Air is absent  $\sqrt{\frac{1}{2}} mk$
  - (ii) To prevent rusting  $\sqrt{lmk}$

To increase aesthetic value of the metal