BIOLOGY K.C.S.E PAPER 231/3 2006 PRACTICAL MARKING SCHEME

1 (a) Cervi	cal regio	on/ neck region	(1 mk)
(b) K M	- -	Atlas Axis	
(c)	N) Wide	- e neural	Cervical vertebra canal	(3 mks)
	Abse Sma	ence of (11 neural	Centrum I spine	(3 mks)
(d)	spina Odor	al cord ntoid pr	ocess	(3 mks)
(e)	S T	- Fac - For	ets for articulation passage of blood vessels	(2 mks)
(f)	Occi	pital co	ndyle	(1 mk)
(g)	U Y R	- - -	Post zygapophysis Odontoid process Centrum	(3 mks)
2.	(a)	(i)	The stem from L_1 is firm/ hard/stiff The stem from L_2 is soft	(2 mks)
		(ii)	Solution L_1 is hypotonic to the cell sap Water moved into the stem cells by osr Cells of the stem become turgid; Solution L_2 is hypertonic Water moves out of the cells by osmos	nosis
			(5 mks)
	(b)	(i)	Material in L_1 - The slit opens wider, ar Material in L_2 The strips remain close t	nd they bend backwards. together (3 mks)
		(ii)	In L ₁ cells in the inner surface/ cut surf	face enlarged more because

(ii) In L_1 cells in the inner surface/ cut surface enlarged more because they took in more water; (by osmosis) than the outer cells which have cuticle.

(a)	(i)	Set A -	Normal conditions/ in light	
	(ii)	Set B -	In the dark	
	(iii)	Set C -	Subjected to unilateral light	(3 mks)
(b)	SET A	Δ	SET B	
	(i)	Green plants	Pale yellow plants	
	(ii)	Large leaves	Small leaves	
	(iii)	Short stems	Long stem	
	(iv)	Thick stems	Thin stems	(4 mks)
(c)	(i)	Etiolation		(1 mk)
	(ii)	To reach light		(1 mk)
(d)	Positiv	ve phototropism	ı	(1 mk)
(e)	(i)	Auxins migra	te to the dark side	
	(ii)	Causing faster	growth of cells on the dark s	ide
	(iii)	Resulting in th	ne curvature of the shoot towa	rds the source of
		light		(3 mks)

3.

BIOLOGY K.C.S.E PAPER 231/3 2007 PRACTICAL MARKING SCHEME

- 1. (a)
- 3 (a) Leaves with serrated margin/ toothed/ saw like/ teeth like
- 4 (b) Leaves opposite
- 5 (a) Leaves pinnate (3 mks)

(b)	Specimen	Identity	Steps followe	d
	Р	Compositae	1b, 5a, 6a	
	Q	Nyctaginaceae	1a, 2a, 3b	
	R	Commelinaceae	1a, 2b	
	S	Bigoniaceae	1b, 5b	
	Т	Papilioncea	1b, 5a, 6b	
	U	Malvaceae	1a, 2a, 3a,4a	
	V	Verbenaceae	1a, 2a,3a, 4b	
				(12 mks)

2.

3.

(a)	Food Substance: Star	ch	(1 mk)		
	Procedure: add (2) dr	ops of iodine to solution P	(1 mk)		
	Observation: Bluish b	black/ blue/ black	(1 mk)		
	Conclusion: Starch p	resent	(1 mk)		
(b)	Food substance: Redu	ucing sugar	(1 mk)		
	Procedure: (1 ml) of solution P, add equal amount of Benedict's solution/S				
	Warm/ heat/ boil the	mixture	(2 mks)		
	Observation: Green to	o yellow to Orange/ Brown	(1 mks)		
	Conclusion: Reducing	g sugar present	(1 mk)		
(c)	Procedure: place a dr	op of solution P into a filter p	paper. Gently dry over flame		
	(2 mks)				
	Observation: No perm	nanent translucent spot/ mk	(1 mk)		
	Conclusion: Lipids at	osent	(1 mk)		
(a)	J -	Lungs			
	К -	Gills	(2 mks)		

(b)	Gaseo	ous exe	(1 mk)			
(c)	* * *	X Y Z	- - -	Ring of c Lung Heart	artilage (3 mks)	
(d)	(i)	1: G 2: G 3. G	ill rakeı ill arch/ ill filarr	rs ' bar ient	(3 mks)	

- (ii)
- ✤ Rake like/ projections for trapping solid particles
- Rake like/ pointed / tooth like/ needle like projections for trapping/ sieving/ filtering solid particles form reaching and damaging the filaments
- Many/ numerous/ long filaments to increase surface area for gaseous exchange (4 mks)

BIOLOGY K.C.S.E PAPER 231/3 2006 MARKING SCHEME PRACTICAL

(a) A. Liver B. Stomata C. Spleen Small intestine/ Eleum D. G. Duodenum Stores feaces/ undigested material/ indigestible materials (b) Е It contains/ harbours/ store bacteria which produces enzymes/ cellulose F which digest cellulose/ digestion of cellulose bacteria that digest cellulose. Diagram (c) (d) Male (i) (ii) Presence of the prostate gland/ testes/ seminal vesicles $^{9(cm)}/_{15 (cm)}$ $^{9.1\text{cm}}/_{1 \text{ (cm)}} = 0.606$ $= 0.6 / _{3/5}$ (e) (i) 9.2 cm / 15 (cm) = x 0.613NB: Units must be given NB: mg x 0.6 – 0.613 Length on photo 14.6 + 0.1 = 14.5 cm/ 14.60c/14.7(ii) At mg x $0.6 = {}^{14.5 \text{ cm}}/{}_{0.6} = 24.16 \text{ cm}/{}^{14.6 \text{ cm}}/{}_{0.6} = 24.33 \text{ cm}$ (iii) 147 cm 0.606 = 24.257 cm at mg x 0.61 = 14.5 cm 14.6cm/0.61=23.934 0.61 = 23.77cm <u>14.7cm</u> 0.61 = 24.098at mg x $0.613 = {}^{14.5 \text{ cm}} / {}_{0.613} = 23.654$ (iv) <u>14. 7 cm</u> = 24.098 0.61 14.7/0.613 = 23.980Length range = 23.654 - 24.5 cm

FESTUS SEGERA'S SOFT COPY HUB: 0720121995

1.

Substance	Food substance being tested for	Procedure	Observations	Conclusion
S	Proteins	To food substance/ S add sodium hydroxide; add copper sulphate solution	Colour changes to purple/ violet	Protein present
Т			No Colour change/ Remains blue	Protein absent
U		Colour changes to (light) purple; violet because its for the extreme	(trace) protein present	

NB. Wrong spelling of reagent or percentage and also observation and conclusion Wrong chemical formula by underlining

3.

Specimen	Mode of dispersal	Adaptive features	
K	Animals (s)	Hooks, persistent calyx	
		alome sauce with hook	
L	Animal (s)	Fleshy/ juicy/ succulent	
М	Wind	(parachute of hairs/ pappus/	
		hairy/ hairlike projection	
N	Wind	Winged (perricap)/	
		winglike extension	
Р	Animal/ animal	Fleshly; juicy	
Q	Self mechanism/ self explosive	Lines of dehiscence/ lines	
	mechanism	of weaknesses	

b). ii) Axile/central; axil/axial. Free central

c). Seed/endocarp.

FESTUS SEGERA'S SOFT COPY HUB: 0720121995

2.

BIOLOGY K.C.S.E PAPER 231/3 2009 MARKING SCHEME PRACTICAL

	BONE	IDENTITY OF	THE BONE WHERE FOUND
1.(a	i) K	- Humerus	Fore limb/foreleg/ front
			leg/ups arm/ upper fore limb
			rej Hand/ fore arm
	L	-Scapula/ should	ler blade Shoulder/ pectoral region
			Rej- pectoral giral
	Μ	- Femur	Hind limb/ hind leg/ thigh/
			Upper hind leg
	Ν	Tibia/ shin bone	Hind limb/ hind leg/ lower
			hind limb
	Р	Ulna – Radius	Forearm/ fore limb/ arm/
			Lower/ fore le/ front leg
		Rej only one ans	swer
(b)	1. Condyl	es Rej- Cendyle	
	2. Glenoid	l cavity	
	3. Head/ h	lead of femar	Rej. Head of humerous
	4. Patella	groove	Rej: groove alone due to omission
	5. Ulna/ sl	haft of Ulna/ shaft	
(c)			
(i) S	capula/ shoul	der blade	
(ii) l	Ball and sock	et ii tied to i	
	Posterior	end	
((i) Radiu	s and ulna	
((ii) Hinge	ii tied to i	
(e)]	Muscle attach	ment limit the moven	nent of radius and ulna/ limit the movement at the joint

(e) Muscle attachment limit the movement of radius and ulna/ limit the movement at the joint prevents overstretching O.W. He limits movement in more than one place.

2	
L	•

Substance	Food substance being	Procedure	Observation	Conclusion
	tested for			
Р	Reducing sugar	Add Benedict's	Green to yellow to	Reducing sugar
		solution hat / boil /	orange/ brown	present
		warm in hot water		
		bath)		
Q	Reducing sugar	Add Benedict's	No colour change/	Reducing sugar
		solution. Heat/	blue colour	absent/ reducing
		Boil/ warm in hot	remains	sugar present after
		water bath)		hydrolysis
	Non Reducing sugar	Add dilute	Green to yellow to	Presence of non
		hydrochloric acid	orange/ brown	reducing sugars/
		ix, boil, cool Add		reducing sugar
		sodium hydrogen		present after
		carbonate until		hydrolysis Rej.
		fizzing stops add		Reducing sugar
		benedict's heat		present
				Rej Reducing
				sugar present

Deny for wrong spelling of benedict's solution

- In the table, mk reducing sugar, add benedict's solution, heat any once
- Led non- reducing sugar under play indication se
- 3. (a) Mk 11st three clockwise from top

First labeled on one or more seedlings

- (b) i. epigeal germination(ii) Cotyledons above ground/ soil
- W- Grow in dark/ insufficient light/ absence of light
 X- Grown in light/ sufficient light/ adequate light

(d)	(i) Etiolation
	(ii) To reach light/ search/ look / get/ obtain/ seek light

 W
 X

 (e)
 - Long intermode/ stems/ tall plant
 - Short intermodes/ stem/ plant

 - Thinner stem
 - Thicker stem

 - Small leaves
 - Big/ large leaves

 - Yellow or light green leaves
 - Green leaves/ stems/ cotyledons/

 FESTUS SEGERA'S SOFT COPY HUB: 0720121995

stem/ cotyledons

seedlings

(f) Seedlings subjected to unilateral/ unidirectional source of light causing auxins to migrate / diffuse to the dark side of the shoot/ high concentration of auxins on dark side; causing faster growth on that side than the lit side/ faster cell elongation/ faster cell enlargement/ faster cell growth on the side than the lit.

BIOLOGY K.C.S.E PAPER 231/3 2010 MARKING SCHEME PRACTICAL

1. (a)			
	Procedure	Observations	Conclusion
Iodine test	Add (a few drops of) iodine (to	No change in	Starch absent;
	liquid in the beaker);	colour/Brown/yellow	
		/orange colour of	
		iodine retained;	
Benedict's test	(To 2 ml of the liquid from the	The solution acquires a	Reducing sugar
	beaker),(2 ml of) Benedict's	brick red colour;	is present;
	solution is added. The mixture is	Yellow/orange/brown/	
	heated/boiled/ warmed in a water	reddish brown. NB.	
	bath;	Colour sequence must	
		be correct	

	Procedure	Observations	Conclusion
Iodine test	Add (a few drops of) iodine	Solution acquires a blue	Starch present;
	(to contents of visking	black	
	tubing);	colour/blue/black/bluish	
		Black colour;	
Benedict's test	(To 2 ml of the liquid from	The solution acquires a	Reducing sugar is
	the beaker), (2 ml of)	yellow/orange/brown/	present;
	Benedict's solution is	reddish brown colour;	
	added. The mixture is		
	heated/boiled/warmed in		
	water bath;		

(2 mks)

Observations and conclusion that is repeated to be awarded once in (a) and (b).

- (c) The visking tubing in semi-permeable/selectively permeable; allowing (the small) reducing sugar molecules to diffuse/move pass through; but (not the large molecule of) starch; (3 mks)
- NB. (i) spelling of reagents must be correct.
 - (ii) Quantities of reagents and test materials if stated must bear correct units e.g. ml/cm³
 - (iii) Procedure for Iodine to be awarded once in(a) and (b) Procedures, observations and conclusion for Benedict's Test to be awarded once in (a)/or (b).
 - (iv) Award if student refers to Iodine as solution E, Benedict's solution as solution F and contents of visking tubing as L.
 - (v) Deny all mks if student writes a wrong food substance in the Test column e.g. Non-reducing sugar.

2. (a) String	Chamber	Blood vessel	(8 mks)
Blue	right ventricle;	pulmonary artery;	
Green	left ventricle;	(branches of)	
Cream	right	aorta; vena cava;	
1	auricle/atrium left	pulmonary vein	
(b) (Inter-ver	ntricular) Septum;		(1 mk)

(c) 4 is thicker than 5, because the latter (forms the wall of the chamber that) pumps blood to the lungs and

4 (forms the wall of the chamber that) pumps blood to all the other parts of the body; Distance be compared i.e. longer if the parts are not named. (1 mk)

(d) X Vein(s);

Reason: It has thin walls/ less muscular walls;

(4 mks)

Y Artery (Arteries);

Reason: It has thick walls/more muscular walls;

NB: (i) Accept any point of the region mked.
 (ii) Labelling rules to be adhered to e.g. continuous line, no arrow head to structure.

(1 mk) (a)

- Q Marginal;
 - R Axial/axile/central;
 - S Central;

(3 mks)

(b)

(c) 6 Epicarp/Exocarp;7 Seed; Ace cotyleone(s)

(5 mks)

(2 mks)

- 8 Edocarp;
- 9 Mesocarp;
- 10 Remain of flower stalk/pedicel/fruit stalk;
- (d) Q

Self (dispersal)/self explosive/explosion (mechanisms/explosive mechanism/self Dispersed);

- Reason Presence of sutures/lines of weakness/dehiscence (along which it splits);
- T By animal(s)/animal dispersed;

Reason The fruit is fleshly succulent/brightly coloured/fleshy mesocarp (and animals eat and drop the seed on another place far away from the mother plant); (4 mks)

BIOLOGY K.C.S.E PAPER 231/3 2011 PRACTICAL MARKING SCHEME

1.

Kpectoral finLDorsal finMAnal fin

N Pelvic fin

b) the size of scissors on the photograph is 4.6 the length of fish on the photograph is 13.6

Mg = Image length Actual length

Actual lengths of fish is $\frac{13.6 \times 12.5}{4.6} = 36.96$ cm	3mks
ci) Yawing –Dorsal fin	3mks
ii)Pitching –Pectoral fin; Pelvic fin	3mks

- di) R Gill rakers
 - S Gill bar
 - T Gill filaments

 ii)R Sharp / numerous /pointed /arranged closely in a row to trap solid that can damage the filament

S-Riding /firm to hold gill filaments in place

T- Numerous to increase surface area for gaseous exchange / thin to reduce the distance for gaseous exchange /vascularized to transport respiratory gases away from the respiratory surface / moist to dissolve oxygen for diffusion 3mks Total = 16 mks

a)Leaf D –Class dicortyledonae Reason – Network of veins / presence of petiole

Leaf E- Class monocotyledonae

Reason - Parallel venation /presence of leaf sheatlth

b)Broad and flat to offer a large surface area for photosynthesis 4mks Thins to reduce distance over which carbon IV oxide diffuses to reach the mesophyll cells Rich supply of veins to transport water to photosynthetic cells Presence of chlorophyll to absorbed light for photosynthesis

C i)

- U Xylem
- V Phloem
- W Cambium

Total = 15 mks

ii

Ross section of F

Cross section of G

I.	No pith	pith present
II.	Vascular bundles scattered	vascular bundles in a ring
III.	Vascular bundles numerous	Vascular bundles few
IV.	Cambium absent	Cambium present
V.	Cortex absent	Cortex present
VI.	Small vascular bundles	large vascular bundles
	First (5mks)	

PROCEDURE OBSERVATION CONCLUSION blue black colour formed Iodine solution /solution J starch present in food (Added to the food sample sample drop by drop while shaking) benedicts solution/solution K solution changes colour more reducing sugar added to the food sample in to green, yellow and present in food sample test tube in equal amounts. then orange /brown

The test tube is then placed in		
a hot water bath		
burettes reagent /solution L	colour of reagent	protein absent int eh food
added to the food sample drop	retained	sample
by drop while shaking;		

BIOLOGY K.C.S.E PAPER 231/3 2012 PRACTICAL MARKING SCHEME

- 1. (a) (i) Epigeal germination;
 - (ii) Hypocotyle grows faster; raising the cotyledons above the ground level;

(2 mks)

- b) Protection of the embryo/plumule/plumule and radicle; Food storage; Photosynthesis;
- c) Emergence of the hypocotyle exposes it to light;
 Light stimulates migration of auxins to the lower side of the hypocotyle;
 High concentration of auxins; on the lower side;
 Stimulates faster rate of growth than on the upper side;
 Faster elongation of the lower side straightens the seedlings;
- 2. a) i)Rhizopus/Bread mould/cassava mould/ugali mould/mould/mucor; Rhizopus spp
 - (ii) By spores/sporulation/sporulation; (Hi)

Mg x5 - x 25 <u>Drawing (P)</u>

1. Continuous outline

L = 5 max 2 mks D= 1 mg = 1

Max = 3 mks

2. Use of double lines

3. Stolon/Rhizoid not a must

(b) (i) Dicotyledonae;

Net/Reticulate venation/network venation; Floral parts in 5s/fours/five sepals/five petals; Broad leaf lamina/bract; Presence of leaf paticle; (1 mk)

Conspicuous bracts/ petals/ sepals/brightly coloured petals/bracts;; Tabular corolla;

Landing stage/corolla stage/platform;

First correct three (3 mks)

	F(pH5)	G(pH7)	H (pH 9)
Volume of solution + portion of potato	2.2 + 0.2;		
Volume of solution + portion of potato + foam	4.2 ±0.5;		
Volume of foam	2.0 + 0.5;		

Award accuracy for volume of solution + portion of potato

- Values should be F <; G <; H and solution + potato + foam is > solution + potato;
 3 mks
 Award correct subtraction for volume of foam
 3x1 = 3 mks
- (b) The enzyme catalase; in the potato tissue breaks down hydrogen peroxide to water; and oxygen; (3 mks)
- (c) More foam is produced at pH 9; which is optimum for catalase activity;

BIOLOGY K.C.S.E PAPER 231/3 2013 MARKING SCHEME PRACTICAL

1. (a) (i)	Sternum	;			(1 mk)
(ii)	The inte	ernal intercostal muscle	es relax;	pulling the ribs upwards; and o	outwards;
	This inc	reases the volume of th	ne rib ca	ge while pressure decreases;	
	Forcing	air into the lungs;			
					(5 mks)
(b) (i)	Anterior	dorsal view;			(1 mk)
(ii)) Name -	Neural canal;			(1 mk)
	Functio	on - Passage of the spin	nal cord		(1 mk)
(iii	i) V: It i	s thick and solid; for b	earing th	he weight of the body (back)	(2 mks)
	S: It is	s long; to provide a larg	ge surfa	ce area for attachment of muscl	es;
					(2 mks)
(c)	(i)	Image width	=	9.8 cm;	
	(ii)	Magnification	=	Image length / width Actual length / width ;	
			=	$\frac{9.8 \pm 0.1}{4.6 \pm 0.1}$	
		Mg	= >	< <u>2.13</u> ;	
	(iii)	Actual length AB	=	$\frac{10.4}{2.13} \pm 0.1$;	
			=	<u>4.8826 cm</u> ;	

(5	mks)
$\langle \cdot \rangle$	11110)

Food Substance	Procedure	Observation	Conclusion
Tested			
1. Reducing	•Put 2 cm ³ of C in a test tube;	No colour change/ blue	Reducing
sugars	•Add equal volume of Benedict's	colour remains/ colour	sugars absent;
	Solution.	of Benedict's solution	
	•Put in a hot water bath/heat/ warm/boil;	remains/ persists;	
2. Reducing sugar	•Put 2 cm3 of C in a test tube: Add a few	Colour changes to green	Reducing
	drops of dilute hydrochloric acid.	/ yellow / orange /	sugars
	•Place the test tube in a hot water bath for	brown;	present;
	3 minutes;		
	•Remove the test tube and cool in cold		
	water.		
	•Add (NaHXCO, drop by drop until		
	fizzing stops		
	•Add 2 cm ³ of Benedict's Solution.		

	•Place the test tube in a hoi water		
	bath/heat/warm/boil;		
3. Proteins	•Put 2 cm^3 of C in a test tube:	Colour changes to	Proteins
	•Add an equal amount of sodium	purple/violet/mauve;	present;
	hydroxide solution and shake. Add		
	copper sulphate drop by drop, shaking		
	well after each addition;		

3.

1. (a) Simple leaves	go to 2;
(b) Compound leaves	go to 4;
2. (a) Leaves net-veined/reticulate	go to 3;
(b) Leaves parallel veined	Commelinaceae;
3. (a) Leaves with serrated margins	. Malvaceae;
(b) Leaves with smooth (entire) margins	Nystaginaceae;
4. (a) Leaves opposite	. go to 5;
(b) Leaves alternate	Bignoniceae;
5. (a) Leaves pinnate	Papilionaceae;
(b) Leaves trifoliate	Compositae;
	(10 mks)

BIOLOGY K.C.S.E PAPER 231/3 2014 MARKING SCHEME PRACTICAL

1.a)You are provided with solutions labeled Q and R, a substance labeled D and a delivery tube fitted with a rubber bung/cork.

- i) Label solution **Q** as **lime water**
- ii) Label solution **R** as 10% sugar solution
- iii) Add substance **D** to the 10% sugar solution
- iv) Tightly close/plug the boiling tube with the rubber bung/cork fitted with a delivery tube.
- v) Dip the other end of the delivery tube in the test tube containing lime water.
- vi) Put the boiling tube in the warm water bath at 40° C and allow the set up stand as shown in the diagram below.
- vii) Observe the set up for about 15 minutes

i) State the observations made in the lime water (2 mks)
 Bubbles/gas formed/effervescence
 Lime water turns white/milky/cloudy/white ppt/white suspension
 ii) Explain the observation made in the lime water. (2 mks)
 Gas produced is carbon (iv) oxide/ carbon dioxide/CO₂ which reacts with limewater

Ca $(oH)_2$ to form a (white ppt/calcium carbonate/ insoluble solid/ compound

2. You are provided with specimens labeled E and F

Angiospermaphyta/ angiospermatophyta/angiospermine

(ii) Using observable features on the specimen, given two reasons for your answer

in (a)(i) above(2 mks)

E- Presence of fruits/ flower/seed structure in fruits

- **F-** Presence of veins in leaves
- b) state the difference between the
 - i) leaves of specimens **E** and **F** (5 mks)

LEAF E	LEAF F
Ovate	Lanceolate
Opposite	alternate
Nonsucculent	succulent/fleshy
Serrated/saw like	smooth margin
Rough surface	smooth surface
Green	purple
Thin	thick
Broad	narrow
Has (assume of) loof stally manallel/weined	

- Has (compact) leaf stalk parallel/veined
- ii) stems of specimensE and F

STEM E	STEM F
Leaf opposite	leaf alternate
Angular/cubical/rectangular/square	round/cylindrical/circular/rounded
Pricky/prickly/thorny/spiny/spiky_smooth	
Woody/hard	herbaceous/soft
Green/grey	purple

c) using observable features on the specimen, state the adaptation of the stem of specimen E to its habitat.(4 mks)
 Prickly/thorny/spiny/prickly for protection against browsers animals/herbivorous Hard/woody; for (mechanical) support

3. The photograph below shows two (A and B) skeletal limbs of a certain mammal

a) i) Which of the two (A and B) skeletons represents a forelimb? (1 mk)
A
ii) Statetwo features observable on the skeleton to confirm your answer in (a)(i) above (2 mks)
presence of scapula / shoulder blade

presenceolecranon (process) / ulna /radius / ulna and radius / humerus

b) Name the bones labeled **J**, **K** and **M**

J Radius	(1 m k)
K Femur	(1mk)
M Metatarsal (s)	(1mk)

- c) Which bone forms the second joint with the bone labeled K? (1mk)
 Pelvic (girdle) bone / hip (bone / girdle)
 Innominate bone
- iii) Name the physiological process that was being investigated (1mk)Respiration /aerobicrespiration /alcohol / fermentation aerobic respiration

iv)Write a word equation for the physiological process investigated(1mk)FESTUS SEGERA'S SOFT COPY HUB: 0720121995(1mk)

```
Respiration/ aerobic respiration
Glucose (sugar) + oxygen ⇒ / carbon (dioxide + water + energy)
```

v)Why was the warm water bath use din the experiment? (2mks)
To provide optimum / best / most suitable temperature; for enzyme activity /action / reaction /function
Acc break down

b) Put a drop of the content in the boiling tube on amicroscope slide, Stain with a drop of methylene blue and cover with a cover slip

Observe it under a light microscope using low, medium and high power objective lenses

i) Draw and label one of the structures observed under the high power objective lens (3mks)

Labeling 4 max Continuous outline Not wavy Nucleus present Diagram oval / not round Rj. If compass is used Many cells are drawn

ii) State the magnification of your drawing

x200 - x 675

eye pieces mg x 3, 4,5,7,10,15

Objective lenses x 40,45,50,60,65 FESTUS SEGERA'S SOFT COPY HUB: 0720121995

iii) State the identity of substance D	(1mk)
Yeast/yeast cell / yeast cells / yeast bud /yeast budding / yeast substance /	
granite / powder /yeast parent cell / yeast fungus	
(d) Name the type of joint formed at the part labelled H and L .	
H- Glindingjoint/ sliding joint	(1mk)
L- Hinge joint	(1mk)

(e) Apart from the bones, state the function of any **two** other components of a joint.

(4mks)

COMPONENT	FUNCTION	
Ligament	Attach a bone	
cartilage	Shock absorber/reduce friction	
Synovial fluid	lubrication	
Synovial membrane	Secretes synovial fluid/enclose synovial fluid	