BIOLOGY

K.C.S.E PAPER 231/3 2006
 PRACTICAL
 MARKING SCHEME

1 (a) Cervical region/ neck region
(b) $\mathrm{K} \quad-\quad$ Atlas

M - Axis
N - Cervical vertebra (3 mks)
(c) Wide neural canal

Absence of Centrum
Small neural spine
(3 mks)
(d) spinal cord (3 mks)
Odontoid process
(e) S - Facets for articulation (2 mks)
T - For passage of blood vessels
(f) Occipital condyle
(1 mk)
(g) U - Post zygapophysis

Y - Odontoid process
R - Centrum (3 mks)
2. (a) (i) The stem from L_{1} is firm/ hard/stiff

The stem from L_{2} is soft (2 mks)
(ii) Solution L_{1} is hypotonic to the cell sap

Water moved into the stem cells by osmosis
Cells of the stem become turgid;
Solution L_{2} is hypertonic
Water moves out of the cells by osmosis making the cells flaccid (5 mks)
(b) (i) Material in L_{1} - The slit opens wider, and they bend backwards.

Material in L_{2} The strips remain close together (3 mks)
(ii) In L_{1} cells in the inner surface/ cut surface enlarged more because they took in more water; (by osmosis) than the outer cells which have cuticle.
3.

(a)	(i)	Set A -	Normal conditions/ in light
	(ii)	Set B -	In the dark
(iii)	Set C	Subjected to unilateral light $\quad(3 \mathrm{mks})$	

(b) SET A
(i) Green plants
(ii) Large leaves
(iii) Short stems
(iv) Thick stems
(c) (i) Etiolation
(ii) To reach light
(d) Positive phototropism

SET B

Pale yellow plants
Small leaves
Long stem
Thin stems (4 mks)
(e) (i) Auxins migrate to the dark side
(ii) Causing faster growth of cells on the dark side
(iii) Resulting in the curvature of the shoot towards the source of light (3 mks)

BIOLOGY

K.C.S.E PAPER 231/3 2007
 PRACTICAL
 MARKING SCHEME

1. (a)

3 (a) Leaves with serrated margin/ toothed/ saw like/ teeth like
4 (b) Leaves opposite
5 (a) Leaves pinnate
(b) Specimen

P Compositae
Steps followed

Q Nyctaginaceae
1b, 5a, 6a

R Commelinaceae
1a, 2a, 3b
S Bigoniaceae
1a, 2b

T Papilioncea
1b, 5b

U Malvaceae
1b, 5a, 6b
V Verbenaceae
1a, 2a, 3a, 4a
1a, 2a, 3a, 4b
2.
(a) Food Substance: Starch

Procedure: add (2) drops of iodine to solution $\mathrm{P} \quad$ (1 mk)
Observation: Bluish black/ blue/ black (1 mk)
Conclusion: Starch present (1 mk)
(b) Food substance: Reducing sugar

Procedure: (1 ml) of solution P , add equal amount of Benedict's solution/S
Warm/ heat/ boil the mixture (2 mks)
Observation: Green to yellow to Orange/ Brown (1 mks)
Conclusion: Reducing sugar present (1 mk)
(c) Procedure: place a drop of solution P into a filter paper. Gently dry over flame (2 mks)
Observation: No permanent translucent spot/ mk (1 mk)
Conclusion: Lipids absent (1 mk)
3.
(a) J

- Lungs
K - Gills
(2 mks)
(b) Gaseous exchange/ External respiration
(c)

$\star \mathrm{X}$	-	Ring of cartilage	
$\star \mathrm{Y}$	-	Lung	
$\star \mathrm{Z}$	-	Heart $\quad(3 \mathrm{mks})$	

(d) (i) 1: Gill rakers

2: Gill arch/ bar
3. Gill filament
(3 mks)
(ii)

* Rake like/ projections for trapping solid particles
* Rake like/ pointed / tooth like/ needle like projections for trapping/ sieving/ filtering solid particles form reaching and damaging the filaments
* Many/ numerous/ long filaments to increase surface area for gaseous exchange (4 mks)

BIOLOGY

K.C.S.E PAPER 231/3 2006 MARKING SCHEME PRACTICAL

1. (a) A. Liver
B. Stomata
C. Spleen
D. Small intestine/ Eleum
G. Duodenum
(b) E Stores feaces/ undigested material/ indigestible materials

F It contains/ harbours/ store bacteria which produces enzymes/ cellulose which digest cellulose/ digestion of cellulose bacteria that digest cellulose.
(c) Diagram
(d) (i) Male
(ii) Presence of the prostate gland/ testes/ seminal vesicles
(e) (i) $\quad 9(\mathrm{~cm}) / 15(\mathrm{~cm}) \quad=0.6 / 3 / 5 \quad 9.1 \mathrm{~cm} / 1(\mathrm{~cm})=0.606$
$9.2 \mathrm{~cm} / 15(\mathrm{~cm})=x 0.613$
NB: Units must be given
NB: mg x $0.6-0.613$
(ii) Length on photo $14.6+0.1=14.5 \mathrm{~cm} / 14.60 \mathrm{c} / 14.7$
(iii) At mg x $0.6={ }^{14.5 \mathrm{~cm} / 0.6}=24.16 \mathrm{~cm} /{ }^{14.6 \mathrm{~cm} / 0.6}=24.33 \mathrm{~cm}$

147 cm

$$
\overline{0.606}=24.257 \mathrm{~cm}
$$

at $\mathrm{mg} \times 0.61=14.5 \mathrm{~cm}$

$$
0.61=23.77 \mathrm{~cm} \quad 14.6 \mathrm{~cm} / 0.61=23.934
$$

14.7 cm
$0.61=24.098$
(iv) at $\operatorname{mg} \times 0.613=14.5 \mathrm{~cm} / 0.613=23.654$
$14.7 \mathrm{~cm}=24.098$
0.61
14.7/0.613 $=23.980$

Length range $=23.654-24.5 \mathrm{~cm}$
2.

Substance	Food substance being tested for	Procedure	Observations	Conclusion
S	Proteins	To food substance/ S add sodium hydroxide; add copper sulphate solution	Colour changes to purple/ violet	Protein present
T		Colour changes to (light) purple; violet because its for the extreme	No Colour change/ Remains blue present protein	Protein absent
U				

NB. Wrong spelling of reagent or percentage and also observation and conclusion Wrong chemical formula by underlining
3.

Specimen	Mode of dispersal	Adaptive features
K	Animals (s)	Hooks, persistent calyx alome sauce with hook
L	Animal (s)	Fleshy/ juicy/ succulent
M	Wind	(parachute of hairs/ pappus/ hairy/ hairlike projection
N	Wind	Winged (perricap)/ winglike extension
P	Animal/ animal	Fleshly; juicy
Q	Self mechanism/ self explosive mechanism	Lines of dehiscence/ lines of weaknesses

b). ii) Axile/central; axil/axial. Free central
c). Seed/endocarp.

BIOLOGY

K.C.S.E PAPER 231/3 2009
 MARKING SCHEME

PRACTICAL

2.
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Substance } & \begin{array}{l}\text { Food substance being } \\
\text { tested for }\end{array} & \text { Procedure } & \text { Observation } & \text { Conclusion } \\
\hline \text { P } & \text { Reducing sugar } & \begin{array}{l}\text { Add Benedict's } \\
\text { solution hat / boil / } \\
\text { warm in hot water } \\
\text { bath) }\end{array} & \begin{array}{l}\text { Green to yellow to } \\
\text { orange/ brown }\end{array} & \begin{array}{l}\text { Reducing sugar } \\
\text { present }\end{array} \\
\hline \text { Q } & \text { Reducing sugar } & \begin{array}{l}\text { Add Benedict's } \\
\text { solution. Heat/ } \\
\text { Boil/ warm in hot } \\
\text { water bath) }\end{array} & \begin{array}{l}\text { No colour change/ } \\
\text { blue colour } \\
\text { remains }\end{array} & \begin{array}{l}\text { Reducing sugar } \\
\text { absent/reducing } \\
\text { sugar present after } \\
\text { hydrolysis }\end{array} \\
\hline & \text { Non Reducing sugar } & \begin{array}{l}\text { Add dilute } \\
\text { hydrochloric acid } \\
\text { ix, boil, cool Add } \\
\text { sodium hydrogen } \\
\text { carbonate until } \\
\text { fizzing stops add } \\
\text { benedict's heat }\end{array} & \begin{array}{l}\text { Green to yellow to } \\
\text { orange/ brown }\end{array} & \begin{array}{l}\text { Presence of non } \\
\text { reducing sugars/ } \\
\text { reducing sugar } \\
\text { present after }\end{array}
$$

hydrolysis Rej.

Reducing sugar

present

Rej Reducing

sugar present\end{array}\right]\)| |
| :--- |

Deny for wrong spelling of benedict's solution

- In the table, mk reducing sugar, add benedict's solution, heat any once
- Led non- reducing sugar under play indication se

3. (a) Mk 11st three clockwise from top

First labeled on one or more seedlings
(b) i. epigeal germination
(ii) Cotyledons above ground/ soil
(c) W- Grow in dark/ insufficient light/ absence of light

X- Grown in light/ sufficient light/ adequate light
(d) (i) Etiolation
(ii) To reach light/ search/ look / get/ obtain/ seek light

W
X
(e) - Long intermode/ stems/ tall plant

- Thinner stem
- Small leaves
- Short intermodes/ stem/ plant
- Thicker stem
- Yellow or light green leaves
- Big/ large leaves
- Green leaves/ stems/ cotyledons/

FESTUS SEGERA'S SOFT COPY HUB: 0720121995
(f) Seedlings subjected to unilateral/ unidirectional source of light causing auxins to migrate / diffuse to the dark side of the shoot/ high concentration of auxins on dark side; causing faster growth on that side than the lit side/ faster cell elongation/ faster cell enlargement/ faster cell growth on the side than the lit.

BIOLOGY

K.C.S.E PAPER 231/3 2010
 MARKING SCHEME

 PRACTICAL1. (a)

	Procedure	Observations	Conclusion
Iodine test	Add (a few drops of) iodine (to liquid in the beaker);	No change in colour/Brown/yellow lorange colour of iodine retained;	Starch absent;

	Procedure	Observations	Conclusion
Iodine test	Add (a few drops of) iodine (to contents of visking tubing);	Solution acquires a blue black colour/blue/black/bluish Black colour;	Starch present;
Benedict's test	(To 2 ml of the liquid from the beaker), (2 ml of) Benedict's solution is added. The mixture is heated/boiled/warmed in water bath;	The solution acquires a yellow/orange/brown/ reddish brown colour;	Reducing sugar is present;

(2 mks)
Observations and conclusion that is repeated to be awarded once in (a) and (b).
(c) The visking tubing in semi-permeable/selectively permeable; allowing (the small) reducing sugar molecules to diffuse/move pass through; but (not the large molecule of) starch; (3 mks)

NB. (i) spelling of reagents must be correct.
(ii) Quantities of reagents and test materials if stated must bear correct units e.g. $\mathrm{ml} / \mathrm{cm}^{3}$
(iii) Procedure for Iodine to be awarded once in(a) and (b) Procedures, observations and conclusion for Benedict's Test to be awarded once in (a)/or (b).
(iv) Award if student refers to Iodine as solution E, Benedict's solution as solution F and contents of visking tubing as L .
(v) Deny all mks if student writes a wrong food substance in the Test column e.g. Non-reducing sugar.
2. (a) String Chamber Blood vessel Blue right ventricle; pulmonary artery; Green left ventricle; (branches of)

Cream 1 right auricle/atrium left
(b) (Inter-ventricular) Septum;
aorta; vena cava; pulmonary vein (8 mks) (1 mk)
(c) 4 is thicker than 5 , because the latter (forms the wall of the chamber that) pumps blood to the lungs and

4 (forms the wall of the chamber that) pumps blood to all the other parts of the body; Distance be compared i.e. longer if the parts are not named. (1 mk)
(d) $\mathrm{X} \quad$ Vein(s);

Reason: It has thin walls/ less muscular walls;

Y Artery (Arteries);
Reason: It has thick walls/more muscular walls;
(e)

NB: (i) Accept any point of the region mked.
(ii) Labelling rules to be adhered to e.g. continuous line, no arrow head to structure.

Q Marginal;
R Axial/axile/central;
S Central; (3 mks)
(b)

(c) 6 Epicarp/Exocarp;
(c) $\begin{array}{lll}6 & \text { Epicarp/Exocarp; } \\ & 7 & \text { Seed; Ace cotyleone(s) }\end{array}$
(2 mks)
(5 mks)
8 Edocarp;
9 Mesocarp;
10 Remain of flower stalk/pedicel/fruit stalk;
(d) Q

Self (dispersal)/self explosive/explosion (mechanisms/explosive mechanism/self Dispersed);

Reason Presence of sutures/lines of weakness/dehiscence (along which it splits);
T By animal(s)/animal dispersed;
Reason The fruit is fleshly succulent/brightly coloured/fleshy mesocarp (and animals eat and drop the seed on another place far away from the mother plant); (4 mks)

BIOLOGY

K.C.S.E PAPER 231/3 2011
 PRACTICAL
 MARKING SCHEME

1.

K pectoral fin
L Dorsal fin
M
Anal fin
N
Pelvic fin
b) the size of scissors on the photograph is 4.6 the length of fish on the photograph is 13.6
$\mathrm{Mg}=\quad$ Image length
Actual length

Actual lengths of fish is $\frac{13.6 \times 12.5}{4.6}=36.96 \mathrm{~cm}$
3mks
ci) Yawing -Dorsal fin

3 mks
ii)Pitching -Pectoral fin; Pelvic fin

3mks
di) R Gill rakers

S Gill bar
T Gill filaments
ii)R Sharp / numerous / pointed /arranged closely in a row to trap solid that can damage the filament

S-Riding /firm to hold gill filaments in place

T- Numerous to increase surface area for gaseous exchange / thin to reduce the distance for gaseous exchange /vascularized to transport respiratory gases away from the respiratory surface / moist to dissolve oxygen for diffusion

3mks
Total $=16 \mathrm{mks}$
a)Leaf D -Class dicortyledonae

Reason - Network of veins / presence of petiole

Leaf E- Class monocotyledonae
Reason - Parallel venation /presence of leaf sheatlth
b)Broad and flat to offer a large surface area for photosynthesis 4 mks

Thins to reduce distance over which carbon IV oxide diffuses to reach the mesophyll cells
Rich supply of veins to transport water to photosynthetic cells
Presence of chlorophyll to absorbed light for photosynthesis
Ci)

U Xylem
V Phloem
W Cambium
ii

Ross section of \mathbf{F}

I. No pith
II. Vascular bundles scattered
III. Vascular bundles numerous
IV. Cambium absent
V. Cortex absent
VI. Small vascular bundles

First (5mks)
Total $=15 \mathrm{mks}$

Cross section of \mathbf{G}

pith present
vascular bundles in a ring
Vascular bundles few
Cambium present
Cortex present
large vascular bundles

PROCEDURE	OBSERVATION	CONCLUSION					
Iodine solution /solution J (Added to the food sample drop by drop while shaking)	blue black colour formed	starch present in food					
sample			$	$	benedicts solution/solution K added to the food sample in test tube in equal amounts.	solution changes colour to green, yellow and then orange /brown	more reducing sugar present in food sample
:---	:---	:---					

The test tube is then placed in a hot water bath		
burettes reagent/solution L added to the food sample drop by drop while shaking;	colour of reagent retained	protein absent int eh food sample

BIOLOGY

K.C.S.E PAPER 231/3 2012
 PRACTICAL
 MARKING SCHEME

1. (a) (i) Epigeal germination;
(ii) Hypocotyle grows faster; raising the cotyledons above the ground level;
(2 mks)
b) Protection of the embryo/plumule/plumule and radicle;

Food storage;
Photosynthesis;
c) Emergence of the hypocotyle exposes it to light;

Light stimulates migration of auxins to the lower side of the hypocotyle;
High concentration of auxins; on the lower side;
Stimulates faster rate of growth than on the upper side;
Faster elongation of the lower side straightens the seedlings;
2. a) i)Rhizopus/Bread mould/cassava mould/ugali mould/mould/mucor; Rhizopus spp \backslash
(ii) By spores/sporulation/sporulation; (Hi)

$$
\operatorname{Mg} \mathbf{x 5}-\mathrm{x} 25 \underline{\text { Drawing }(\mathbf{P})}
$$

1. Continuous outline

$$
\begin{aligned}
& \mathrm{L}=5 \max 2 \mathrm{mks} \mathrm{D} \\
& =1 \underline{\mathrm{mg}=1} \\
& \mathrm{Max}=3 \mathrm{mks}
\end{aligned}
$$

2. Use of double lines

FESTUS SEGERA'S SOFT COPY HUB: 0720121995
3. Stolon/Rhizoid not a must
(b) (i) Dicotyledonae;

Net/Reticulate venation/network venation; Floral parts in 5s/fours/five sepals/five petals;
Broad leaf lamina/bract; Presence of leaf paticle;
(1 mk)
Conspicuous bracts/ petals/ sepals/brightly coloured petals/bracts;;
Tabular corolla;
Landing stage/corolla stage/platform;
First correct three (3 mks)

	$\mathrm{F}(\mathrm{pH} 5)$	$\mathrm{G}(\mathrm{pH} 7)$	$\mathrm{H}(\mathrm{pH} 9)$
Volume of solution + portion of potato	$2.2+0.2 ;$		
Volume of solution + portion of potato + foam	$4.2 \pm 0.5 ;$		
Volume of foam	$2.0+0.5 ;$		

Award accuracy for volume of solution + portion of potato

* Values should be $\mathrm{F}<; \mathrm{G}<; \mathrm{H}$ and solution + potato + foam is $>$ solution + potato; 3 mks
Award correct subtraction for volume of foam $3 \times 1=3 \mathrm{mks}$
(b) The enzyme catalase; in the potato tissue breaks down hydrogen peroxide to water; and oxygen; (3 mks)
(c) More foam is produced at pH 9 ; which is optimum for catalase activity;

BIOLOGY

K.C.S.E PAPER 231/3 2013
 MARKING SCHEME
 PRACTICAL

1. (a) (i) Sternum;
(1 mk)
(ii) The internal intercostal muscles relax; pulling the ribs upwards; and outwards;

This increases the volume of the rib cage while pressure decreases;
Forcing air into the lungs;
(b) (i) Anterior/dorsal view;
(ii) Name - Neural canal;

Function - Passage of the spinal cord.
(iii) \mathbf{V} : It is thick and solid; for bearing the weight of the body (back)

S: It is long; to provide a large surface area for attachment of muscles;
(2 mks)
(c)

(i) Image width	$=9.8 \mathrm{~cm} ;$
(ii) Magnification	$=\frac{\text { Image length / width }}{\text { Actual length / width }} ;$
	$=\frac{9.8 \pm 0.1}{4.6 \pm 0.1}$
Mg	$=\times \underline{2.13} ;$
(iii) Actual length AB	$=\underline{10.4} \pm 0.1 ;$
	$=\underline{4.8826 \mathrm{~cm} ;}$

(1 mk)
(1 mk)
(2 mks)
(c)

$$
\text { (ii) } \begin{aligned}
\text { Magnification } & =\frac{\text { Image length } / \text { width }}{\text { Actual length } / \text { width }} ; \\
& =\frac{9.8 \pm 0.1}{4.6 \pm 0.1} \\
\mathrm{Mg} & =\times \underline{2.13} ; \\
\text { (iii) Actual length } \mathrm{AB} & =\underline{10.4} \pm 0.1 ; \\
& =\underline{4.8826 \mathrm{~cm} ;}
\end{aligned}
$$

(5 mks)

Food Substance Tested	Procedure	Observation	Conclusion
1. Reducing	\bullet Put $2 \mathrm{~cm}^{3}$ of C in a test tube; \bullet Add equal volume of Benedict's Solution. \bullet Put in a hot water bath/heat/ warm/boil;	No colour change/ blue colour remains/ colour of Benedict's solution remains/ persists;	Reducing sugars absent;
2. Reducing sugar	Put $2 \mathrm{cm3}$ of C in a test tube: Add a few drops of dilute hydrochloric acid. \bullet Place the test tube in a hot water bath for 3 minutes; \bullet Remove the test tube and cool in cold water. \bullet Add (NaHXCO, drop by drop until fizzing stops Add $2 \mathrm{~cm}^{3}$ of Benedict's Solution.	Colour changes to green bellow / orange /	Reducing sugars present;

	\bullet Place the test tube in a hoi water bath/heat/warm/boil;		
3. Proteins	\bullet Put $2 \mathrm{~cm}^{3}$ of C in a test tube: \bullet Add an equal amount of sodium hydroxide solution and shake. Add copper sulphate drop by drop, shaking well after each addition;	Colour changes to purple/violet/mauve;	Proteins present;

3.

. (a) Simple leaves go to 2 ;
(b) Compound leaves go to 4 ;
2. (a) Leaves net-veined/reticulate \qquad go to 3 ;
(b) Leaves parallel veined \qquad Commelinaceae;
3. (a) Leaves with serrated margins Malvaceae;
(b) Leaves with smooth (entire) margins Nystaginaceae;
4. (a) Leaves opposite \qquad go to 5;
(b) Leaves alternate \qquad Bignoniceae;
5. (a) Leaves pinnate .. Papilionaceae;
(b) Leaves trifoliate Compositae;

BIOLOGY
 K.C.S.E PAPER 231/3 2014
 MARKING SCHEME PRACTICAL

1.a) You are provided with solutions labeled \mathbf{Q} and \mathbf{R}, a substance labeled \mathbf{D} and a delivery tube fitted with a rubber bung/cork.
i) Label solution \mathbf{Q} as lime water
ii) Label solution \mathbf{R} as 10% sugar solution
iii) Add substance \mathbf{D} to the 10% sugar solution
iv) Tightly close/plug the boiling tube with the rubber bung/cork fitted with a delivery tube.
v) Dip the other end of the delivery tube in the test tube containing lime water.
vi) Put the boiling tube in the warm water bath at $40^{\circ} \mathrm{C}$ and allow the set up stand as shown in the diagram below.
vii) Observe the set up for about 15 minutes

i) State the observations made in thelime water

Bubbles/gas formed/effervescence
Lime water turns white/milky/cloudy/white ppt/white suspension
ii) Explain the observation made in the lime water.

Gas produced is carbon (iv) oxide/ carbon dioxide/ CO_{2} which reacts with limewater $\mathrm{Ca}(\mathrm{oH})_{2}$ to form a (white ppt/calcium carbonate/ insoluble solid/ compound
2. You are provided with specimens labeled \mathbf{E} and \mathbf{F}
a) i) name the subvision to which the specimen belong.

Angiospermaphyta/ angiospermatophyta/angiospermine

(ii) Using observable features on the specimen, given two reasons for your answer in (a)(i) above (2 mks)

E- Presence of fruits/ flower/seed structure in fruits
F- Presence of veins in leaves
b) state the difference between the
i) leaves of specimens \mathbf{E} and $\mathbf{F}(5 \mathrm{mks})$

LEAF E
Ovate
Opposite
Nonsucculent
Serrated/saw like
Rough surface
Green
Thin
Broad

LEAF F
Lanceolate alternate succulent/fleshy smooth margin
smooth surface
purple
thick
narrow

Has (compact) leaf stalk parallel/veined
ii) stems of specimensE and \mathbf{F}

STEM E
Leaf opposite
Angular/cubical/rectangular/square

STEM F

leaf alternate round/cylindrical/circular/rounded

Pricky/prickly/thorny/spiny/spiky smooth
Woody/hard
herbaceous/soft
Green/grey
purple
c) using observable features on the specimen, state the adaptation of the stem of specimen \mathbf{E} to its habitat.(4 mks)

Prickly/thorny/spiny/prickly for protection against browsers animals/herbivorous
Hard/woody; for (mechanical) support
3. The photograph below shows two (A and B) skeletal limbs of a certain mammal

a) i) Which of the two (\mathbf{A} and \mathbf{B}) skeletons represents a forelimb?

A
ii) Statetwo features observable on the skeleton to confirm your answer in (a)(i) above (2 mks)
presence of scapula / shoulder blade presenceolecranon (process) / ulna /radius / ulna and radius / humerus
b) Name the bones labeled \mathbf{J}, \mathbf{K} and \mathbf{M}

J Radius

K Femur
M Metatarsal (s)
(1mk)
c) Which bone forms the second joint with the bone labeled \mathbf{K} ?
(1mk)
Pelvic (girdle) bone / hip (bone / girdle)
Innominate bone
iii) Name the physiological process that was being investigated
(1mk)
Respiration /aerobicrespiration /alcohol / fermentation aerobic respiration
iv)Write a word equation for the physiological process investigated

Respiration/ aerobic respiration

Glucose (sugar) + oxygen \Rightarrow / carbon (dioxide + water + energy)
v)Why was the warm water bath use din the experiment?

To provide optimum / best / most suitable temperature; for enzyme activity /action / reaction /function

Acc break down
b) Put a drop of the content in the boiling tube on amicroscope slide, Stain with a drop of methylene blue and cover with a cover slip

Observe it under a light microscope using low, medium and high power objective lenses
i) Draw and label one of the structures observed under the high power objective lens

Labeling 4 max

Continuous outline

Not wavy
Nucleus present
Diagram oval / not round
$\mathbf{R j}$. If compass is used
Many cells are drawn
ii) State the magnification of your drawing

iii) State the identity of substance D

Yeast/yeast cell / yeast cells / yeast bud /yeast budding / yeast substance / granite / powder /yeast parent cell / yeast fungus
(d) Name the type of joint formed at the part labelled \mathbf{H} and \mathbf{L}.

H- Glindingjoint/ sliding joint
L- Hinge joint
(e) Apart from the bones, state the function of any two other components of a joint.

COMPONENT	FUNCTION
Ligament	Attach a bone
cartilage	Shock absorber/reduce friction
Synovial fluid	lubrication
Synovial membrane	Secretes synovial fluid/enclose synovial fluid

