KCSE 2024 REGIONAL MOCKS

PHYSICS

The PDF Comprises of A Compilation of 4 Top Joint National Mocks Administered across the 47 Counties for KCSE Class of

November 2024

Visit or website
www.kenyaeducators.co.ke KENYA EDUCATORS CONSULTANCY

Table of Contents

1.	Nairobi \& Central Joint National mocks 2024
2.	Nyanza \& Western Joint National mocks 2024
3.	Coastal \& Eastern Joint National mocks 2024
4.	Rift Valley \& North Eastern Joint National mocks 2024

Confidential!!!

Success to all KCSE 2024 Candidates

KENYA EDUCATORS CONSULTANCY

\qquad ADM NO.
DATE \qquad
232/1
PHYSICS
PAPER 1
CLASS OF KCSE 2024
TIME: 2 HOURS

THE NAIROBI \& CENTRAL REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO CANDIDATES

- Write your name, school and index number in the spaces provided above.
- Write the date of examination and sign in the spaces provided above.
- This paper consists of two sections, Section A and B.
- Answer ALL the questions in section A and B in the spaces provided.
- ALL answers and working MUST be clearly shown.
- Mathematical tables and electronic calculators may be used.
- Take acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}^{2}$

FOR EXAMINER'S USE ONLY:

Section	Question	Maximum score	Candidate's score
A	$1-12$	25	
B	13	12	
	14	11	
	15	10	
	16	12	
	17	10	
	TOTAL	80	

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

1. Figure 1 below shows a micrometer screw gauge being used to measure the diameter of a metal rod. The thimble scale has 50 divisions.

Fig. 1
Find the diameter of the metal rod.
(1 mark)
2. A man of mass 72 kg jumps from a small boat on to the lake shore with a forward velocity of $9.0 \mathrm{~ms}^{-1}$.
If the mass of the boat is 216 kg , calculate the initial backward velocity of the boat. (3 marks)
3. Explain briefly how the temperature in a green house is kept higher than outside. (2 marks)
\qquad
\qquad
The diagram shown in figure 2 below is an arrangement of three pulley wheels used to help in lifting loads. Use it to answer questions 4 and 5.

Fig. 2
4. Complete the diagram to show how the rope goes round the wheels, position of the load and the effort.
(2 marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

5. Write down the velocity ratio (VR) of the system.
(1 mark)
6. State how temperature affects the speed of sound in air.
(1 mark)
\qquad
7. State two facts which show that heat from the sun does not reach the earth surface by convection.
\qquad
\qquad
8. The diagram in figure 3 below shows water with negligible viscosity flowing steadily in a tube of different cross-section area. If at a point A, the cross section area is $120 \mathrm{~cm}^{2}$ and the velocity of water is $0.40 \mathrm{~ms}^{-1}$, calculate the velocity at B where cross section area is $4.0 \mathrm{~cm}^{2}$?
(3 marks)

Fig. 3
9. A motor uses an electrical energy at a rate of 200 W and raises a mass of 25 kg through a vertical distance of 20 m in 0.5 minutes. Determine the efficiency of the motor. (3 marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

How long will it take 240V, 3000W electric immersion heater to raise the temperature of 150 litres of water in a well-lagged calorimeter made of copper of mass 20 kg from 15° to $70^{\circ} \mathrm{C}$? (3 marks)
10. The diagram shown in the Figure 4 below shows a system in equilibrium with the rule horizontal.
AB is a uniform rule of length 1.0 m and weight 1.8 N . Calculate the weight of the block X. (3 marks)

11. State the reason why a trailer carrying heavy loads has many wheels.
(1 mark)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

SECTION B (55 MARKS)

Answer ALL the questions

12. A student in Anestar Girls set up an experiment to study the acceleration of a trolley using ticker tape timer. The timer made 50 dots per second on the tape. Dots A to E measured 2.5 cm apart and dots E to I measured 4.5 cm apart.
a) Using a scale drawing show the dots A, B C, D, E, F, G and I as they appeared on the tape. (3 marks)
b) Determine the velocity of the trolley from:
i) A to E.
(2 marks)
ii) E to I.
(2 marks)
c) Calculate the acceleration of the trolley.
(2 marks)
d) What end of the tape was fixed onto the trolley?
(1 mark)
e) State two precautions that the student should take before she takes her final samples of the dots.
(2 marks)

232

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

\qquad
\qquad
13. a) i) What is Brownian motion?
(1 mark)
ii) Describe with the aid of a diagram, the apparatus you could set up in order to demonstrate

Brownian motion of smoke particles suspended in air.
(5 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) An oil drop has a volume of $0.01 \mathrm{~mm}^{3}$ when it is placed on the surface of some water, it spreadsout to form a circular patch of area $500 \mathrm{~cm}^{2}$
i) Calculate the thickness of the oil film.
ii) What two assumptions have you made in the answer b(i) above.
(2 marks)
14. a) i) Distinguish between inelastic and elastic collisions.
(2 marks)
\qquad
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

iii) A particle A of mass M moving with an initial velocity, u , makes a head-on collision with another particle B of mass $2 \mathrm{M}, \mathrm{B}$ being initially at rest. In terms of u, calculate the final velocity of A if the collision is perfectly inelastic.
b) The diagram in Figure 5 below shows a sphere moving in a viscous liquid in a tall measuring cylinder.

i) Show on the diagram the forces acting on the sphere.
(3 marks)
ii) Sketch a graph showing the variation of velocity with time in figure 6 below.

Show on the graph the terminal velocity, V_{T}.
(2 marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

A mass of 1 kg is attached to a cord of length 50 cm . It is whirled in a circle in a vertical plane at 10 revolutions per second as shown in the figure below.

a) Find the tensions in the cord when the mass is at:
i) Highest point of the circle A.
(2 marks)
ii) Lowest point of the circle B.
(2 marks)
b) i) Describe an experiment to determine specific heat capacity of aluminium block with two holes
drilled in it to accommodate a thermometer and an electric heater. (5 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

ii) An immersion heater rated 90 W is placed in a liquid of mass 2 kg . When the heater is switched on for 15 minutes, the temperature of the liquid rises from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. Determine the specific heat capacity of the liquid. (3 marks)
15. a) The figure below shows a block of mass 25 g and density $200 \mathrm{~kg} / \mathrm{m}^{3}$ submerged in a certain liquid and suspended from a homogenous horizontal beam by means of a thread. A mass of 2 kg issuspended
from the beam as shown in the figure below.

i) Determine the upthrust force acting on the block.
(3 marks)
ii) Calculate the density of the liquid.
(3 marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

b) i) State the law of floatation. (1 mark)
ii) The figure below shows a piece of aluminum suspended from a string and completely immersed in a container of water. The mass of the aluminium is 1 kg and its density is $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Calculate the tension in the string.

NAME \qquad ADM NO. \qquad
DATE \qquad
232/2
PHYSICS
PAPER 2
CLASS OF KCSE 2024
TIME: 2 HOURS

THE NAIROBI \& CENTRAL REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

1. State the property of light suggested by the formation of shadows.
(1 mark)
2. The figure below shows a sharp pin fixed on a cap of leaf electroscope. The electroscope is highly charged and then left for sometime.

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

Explain why the leaf collapses.
(2 marks)

The figure below shows an object O placed infront of a plane mirror.

On the same diagram, draw rays to locate the position of the image I as seen from the eye E. (2 marks)
4. (a) State the basic law of magnetism.

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

(b) The figure below shows how magnets are stored in pairs with keepers at the ends.

Explain how this method of storing helps in retaining magnetism longer. (2 marks)
5. Why is a convex mirror better than plane mirror when used as a driving mirror? (1 mark)
6.

The figure 2 shows a circuit diagram with cells in parallel. Each cell has e.m.f of 1.5 V and internal resistance of 0.5Ω and the resistance of the bulb is 6Ω each. Determine the ammeter reading when the switch is closed.
(3mks)

Fig2
7. An appliance is rate $2.5 \mathrm{KW}, 240 \mathrm{~V}$ a.c 50 Hz . Explain the meaning of the rating(figures) on this appliance.
(2mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

8. The following are electromagnetic waves. Arrange them according to their increasing frequency. Gamma rays, microwaves, ultra-violet, TV waves and blue light. (1mk)
9. Distinguish between a transformer and induction coil. (2mks)
10. Distinguish between a transverse and a longitudinal wave.
(b) Determine the frequency of the wave shown below.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

11. An electric heater rated $240 \mathrm{~V}, 3000 \mathrm{~W}$ is to be connected to a 240 V mains supply, through a 10A fuse. Determine whether the fuse is suitable or not.
(3 marks)
(c) State one reason why ultrasound is preferred to audible sound in echosounding. (1 mark)
12. An electric heater rated $240 \mathrm{~V}, 3000 \mathrm{~W}$ is to be connected to a 240 V mains supply, through a 10A fuse. Determine whether the fuse is suitable or not.
(3 marks)
13. Kiai noticed that any time he a light from his car and close the door holding the metallic hand he get a slight shock. Explain.
(2mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

SECTION B (55 MARKS)

Answer all the questions from this section in the spaces provided.

14. A transformer with 2000 turns in the primary circuit and 150 turns in the secondary circuit has its primary circuit connected to a 800 Va.c. source. It is found that when a heater is connected to the secondary circuit it produces heat at the rate of 1000 W . Assuming 100\% efficiency, determine the:
(i) Voltage in the secondary circuit.
(2 marks)
(iii) Current in the secondary circuit.
(iv) State the type of transformer represented above.
(b) (i) State the reason why long distance power transmission is done at a very high voltage and using thick cables.

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

(ii) Calculate the cost of using the following appliances in one month (30 days) of the company rate is Ksh. 9.50 per unit.
I A 2000 W water heater for 2 hours per day.
II A 75 W bulb for 10 hours per day.
III An 1500 W electric iron for 1 hour per day. (3 marks)
(iii) Find the total monthly bill for the above household if in addition to the energy consumed, the power company charges each consumer. I A standing charge of Ksh. 200.

II Fuel cost levy at 70 cents per unit. (2 marks)
15. (a) State two ways in which one can increase the strength of an electromagnet. (2 marks)
(b) The following figure shows a conductor placed in a magnetic field. Indicate on the diagram the direction of motion of part AB of the conductor.
(2mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(b) A cell drives a current of 5 A through a 1.6Ω resistor. When connected to a 2.8Ω resistor, the current that flows in 3.2 A . Find E and r for the cell.
(4 marks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(c) Calculate the length of a nichrome resistance wire of cross-sectional area $7 \times 10^{-8} \mathrm{~m}^{2}$ required to make a resistor of 10 ohms . (Take resistivity of nichrome $\left.=1.10 \times 10^{-6} \Omega \mathrm{~m}\right)$.
(e) In figure below, calculate the p.d across resistor \mathbf{R}.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(ii) Current in the primary circuit.
16. The figure below shows rays of light entering a human eye which has a defect.

i) \quad Name the defect. $(1 \mathrm{mk})$
ii) State 2 possible causes of the defect. (1 mk)
b) Define the accommodation. (1 mk)
c) A small bright object O lies at the bottom of a beaker containing water of depth h cm . A convex lens of focal length 15 cm is held at the surface of water. The lens forms an image of O at 45 cm from the surface of water.

H
Object

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

Taking the refractive index of water to be $4 / 3$, determine:
(i) the apparent depth of the object(2 mks)
(ii) the real depth h , of the object (2mks)
d. A ray of light is incident at right angles to the face $A B$, of a right angled isosceles prism of Refractive index 1.6 as shown in the figure below.

If the prism is surrounded by a liquid of refractive index 1.40 , determine:
(i) The angle of incidence on the face BC.
(ii) The angle of refraction on the face BC.
17. State two ways through which the rate of evaporation of a liquid may be increased. (2 marks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

(b) A metal of mass 10 kg is heated to $120^{\circ} \mathrm{C}$ and then dropped into 2 kg of water. The final temperature of the mixture is found to be $50^{\circ} \mathrm{C}$. Calculate the initial temperature of the water. (Specific heat capacity of the metal and water is $450 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}$ and $4200 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}$ respectively). (3mks)
(c) Give the property of water which makes it suitable for use as a coolant in machines. (1 mark)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(d) Formation of ice on roads during winter in cold countries is known to hamper vehicles. State two ways in which the melting point of ice may be lowered to solve this problem.
(f) Some ether is put in a combustion tube and two glass tubes inserted into the tube through a cork as shown in the figure below. The combustion tube is then put into a small beaker containing some water and a thermometer dipped in the water. When air is blown into the ether as shown, the reading in the thermometer lowers. Explain this observation. (2 marks)

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

18. (a) An object is released to fall vertically from height of 100 m . At the same time another object is projected vertically upward with velocity of $40 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time taken before the objects meet
(3mks)
(ii) At what height do the objects meet?
(b) A string of negligible mass has a bucket tied at the end. The string is 60 cm long and the bucket has a mass of 45 g . The bucket is swung horizontally making 6 revolutions per second. Calculate
(i) The angular velocity
(ii) The angular acceleration
(iii) The tension on the string
(iii) The linear velocity (1mk)

NAME \qquad ADM NO.
DATE \qquad
232/3
PHYSICS
PAPER 3 (PRACTICAL)
CLASS OF KCSE 2024
TIME: 2 HOURS 30 MINUTES

THE NAIROBI \& CENTRAL REGIONS KCSE JOINT NATIONAL MOCK 2024 Kenya Certificate of Secondary Education (KCSE)

CONFIDENTIAL

QUESTION ONE:
Each candidate will require

- Half- metre rule
- Two metre rules (strictly wooden)
- A stop watch
- A piece of sewing thread (thin) 100 cm long.
- pendulum bob
- Two retort stand, two bosses and two clamps.
- A lens and a lens holder (focal length 10 cm)
- A candle stick
- A screen
- Screen with a cross-wire

QUESTION TWO

- Each candidate will require:
- A 100 cm nichrome wire mounted on a metre rule(swg 32)
- A switch
- An ammeter
- Two dry cells
- A cell holder
- A filament bulb of 2.5 v mounted on a holder
- Eight connecting wires (four with crocodile clips at one end)
- Voltmeter ($0-3 \mathrm{~V}$ or $0-5 \mathrm{~V}$)

NAME \qquad ADM NO. \qquad
DATE \qquad
232/3
PHYSICS
PAPER 3 (PRACTICAL)
CLASS OF KCSE 2024
TIME: 2 HOURS 30 MINUTES

THE NAIROBI \& CENTRAL REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO CANDIDATES:

(a) Write your name and admission number in spaces provided above.
(b) Sign and write the date of examination in spaces provided above
(c) Answer all the questions in spaces provided in the question paper.
(d) You are allowed to spend the first 15 minutes of $2 \frac{1}{2}$ hours allowed for this paper reading the whole paper carefully before commencing the work.
(e) Marks given for clear record of the observations actually made, their suitability accuracy and the use made of them.
(f) Candidates are advised to record their observations as soon as they are made.
(g) Non-programmable silent electronic calculators and KNEC Mathematical table may be used.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

1. This question consists of two parts A and B; attempt both parts.

PART A (15 MARKS)

You are provided with the following.

- Two metre-rules
- A stop watch
- A half metre-rule
- Two resort stands, two bosses and two clamps.
- Some sewing thread.
- A pendulum bob.

Proceed as follows:
(a) Clamp one metre rule horizontally on the two stands so that it is on a vertical plane. Suspend the second metre rule so that it balances on one point as shown in figure 1 below. Note the balance point as the centre of gravity of the metre rule.
Let this be point A.

(b) Set the length of the string on which the metre rule is suspended to be 30 cm . Tie a second support to the metre rule a distance D from the first string. Let the point of support be point B.
(c) Suspend the pendulum bob with a string a distance L from B and set the length of the string to 20 cm .
See figure 2 below.

Starting with a distance $\mathrm{D}=15 \mathrm{~cm}$, and distance $\mathrm{L}=25 \mathrm{~cm}$, displace the hanging metre rule on a horizontal plane and record the time taken for it to make 20 complete oscillations on table 1.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(d) Repeat part (c) above for other values of D and complete the table.

D(cm)	Time for 20 oscillations (s)	Periodic time (T) (s)	T^{2} $\left(s^{2}\right)$
15			
20			
25			
30			
35			
40			

Table 1
(6mks)
(e) On the grid provided, plot a graph of $\mathrm{D}(\mathrm{cm})$ against $\mathrm{T}^{2}\left(\mathrm{~s}^{2}\right)$ (5 mks)
(f) Determine the slope of the graph. (2mks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(g) Use your graph to determine the periodic time when the length of distance D is 33 cm . (2mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

PART B. 5 MARKS

(b) You are provided with the following apparatus:

- Candle
- Lens
- Lens holder
- Metre rule
- Screen with a crosswire
- Screen.

Proceed as follows:
i. Arrange the apparatus as shown in the figure 2 below.

Fig 2
ii. Place the cross-wire before the lens so that $\mathrm{U}=28 \mathrm{~cm}$. The lit candle should be placed close to the cross-wire.
iii. Adjust the position of the screen until a sharp image is cast on the screen.

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

iv. Measure and record the value distance, V , in the table
v. Repeat the same procedure for the other values in the table.

$\mathbf{U}(\mathrm{cm})$	$\mathbf{V}(\mathrm{cm})$	$M=\frac{V}{U}$
30		
36		

(3 mks)
Table 2
vi. Given that the focal length f of the lens satisfies the equation $f=\frac{V}{1+M^{\prime}}$ determine the average value of the focal length, f. (2 mks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. You are provided with the following.

- A switch
- A 100 cm nichrome wire mounted on a metre rule.
- An ammeter
- 2 dry cells
- A cell holder
- A bulb of 2.5 V mounted on a holder.
- Eight connecting wires (four with crocodile clips at one end)
- Voltmeter (0-3 or 0-5V)

PROCEED AS FOLLOWS.

(a) Connect the apparatus provided as shown in the circuit in figure 3 below. Fig 3

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

(b) Place the sliding contact x at $L=20 \mathrm{~cm}$ from P then switch on and take both current and voltage reading. Record the reading in table 3 above.
(c) Repeat the above experiment by placing the sliding contact x at each point $40 \mathrm{~cm}, 60 \mathrm{~cm}, 70 \mathrm{~cm}$ and 80 cm from P. Record your readings and complete table 3.

Length L (cm)	I (A)	P.d (V)	$\mathbf{1 (m A)}$	P.D (mV)	$\log \mathrm{I}$ $(m A)$	LogV(mV)
20						
40						
60						
70						
80						

Table 3
(8mks)
(d) Plot a graph of $\log I$ against $\log V$.
(5mks)
(e) Determine the slope of the graph.
(3mks)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(f) The relationship between I and P.D is given by the equation.
$\log \mathrm{I}=\mathrm{n} \log \mathrm{V}+\log \mathrm{K}$ where K and n are constants. Determine using the graph the value of:
i) $\quad \mathrm{K}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii) n
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COMPLIANT)

NAME \qquad ADM NO.
DATE \qquad
232/1
PHYSICS
PAPER 1
CLASS OF KCSE 2024
TIME: 2 HOURS

THE NYANZA \& WESTERN REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

Instructions to candidates

(a) Write your name and Admission number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) This paper consist of two section \boldsymbol{A} and \boldsymbol{B}.
(d) Answer all the questions in section \boldsymbol{A} and \boldsymbol{B} in the spaces provided.
(e) All working must be clearly shown.
(f) Mathematical tables and electronic calculators may be used.
(g) This paper consists of 10 printed pages.
(h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For examiners use only.

Question	Maximum score	Candidate's score
$1-11$	25	
$12-15$	55	
Total	80	

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

SECTION A (25 MARKS)

1. The figure below shows part of a measuring cylinder containing a certain liquid.

Use this information to answer question 1 and 2
State the accuracy of the measuring cylinder (1mk)
2. What is the volume of the liquid in the measuring cylinder?
(1mk)
3. An oil drop of radius 1 mm forms an oil patch of radius 1.33 m on a clean water surface. If the oil spreads to make one molecule thick, estimate the size of the oil molecule.
(3mks)
4. The figure below shows a uniform wooden plank of length 2 m and weight 5 N . The plank is balanced at a distance d from one end by a mass of 1.5 kg . Determine the distance d.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

5. Oil is leaking from a car as it travels along a straight road. One drop falls on the ground every two seconds. The figure below shows the pattern of the drop on the ground (the figure is drawn to scale)

i. Describe the motion of the car.
(1mk)
ii. Determine the acceleration of the car.
(2mks)
6. A ball is thrown from the top of a cliff 20 m high with a horizontal velocity of $10 \mathrm{~ms}^{-1}$. Calculate the distance from the foot of the cliff to where the ball strikes the ground.
(2mks)
7. The figure below is a gas jar completely filled with water and covered with a wire gauze.

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

a) State the observation when the set-up is suddenly invented.
(1mk)
b) Explain the observation made in (a) above.
(2mks)
8. A glass block is suspended from a spring balance and held inside a beaker without touching the beaker. Water is added gradually into the beaker. The figure below shows the variation of the upthrust on the block with depth of water in the beaker.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

State the reasons for the observation at Y
(2mks)
9. What force is needed to stop a 500 kg car moving at $180 \mathrm{~km} / \mathrm{h}$ in 12.5 seconds?
(3mks)
10. A hole of diameter 1.0 mm is made in the side of a water pipe. If the pressure of the flow is maintained at $3.0 \times 10^{6} \mathrm{Nm}^{-2}$, calculate the force with which the water jets out of the hole.

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

11. Explain why a glass container with thick glass walls is more likely to crack than one with a thin wall when a very hot liquid is poured into them. (2mks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

SECTION B (55 MARKS)

12. (a) Using the pulley system shown a mass of 10 kg is raised 2 m by an effort of 80 N

i. How much potential energy does the load gain.
(2mks)
ii. How far does the effort end move in order to raise the load by 2 m ?
(2mks)
iii. How much work is done by the effort?
(2mks)
iv. What is the efficiency of these pulleys?
(2mks)

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

v. If all the wasted energy is used to lift the bottom pulley, how much does the pulley weigh?
(2mks)
(b) The figure below shows a wheel and axle being used to raise a load W by applying an effort E. the radius of the large wheel is R and that of small wheel is r as shown

i. Show that the velocity ratio (VR) of this machine is given by R / r
ii. Given that $\mathrm{r}=5 \mathrm{~cm}$ and $\mathrm{R}=8 \mathrm{~cm}$, determine the effort required to raise a load of 20 N if the efficiency of the machine is 80%
(3mks)
13. (a) A litre of gas at a temperature of $0^{0} \mathrm{C}$ and pressure $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ is suddenly compressed of half its volume and its temperature rises to $273{ }^{\circ} \mathrm{C}$. Calculate the new pressure of the gas

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(b) Give two differences between boiling and evaporation (2mks)
(c) A 1800 watts heater and a thermometer were immersed in a 1.0 kg of a liquid in a copper calorimeter. Temperature was recorded after every one minute. The results obtained are in the table below.

Temperature $^{\circ} \mathrm{C}$	30	36	40	45	49	54	57
Time (in min)	3	4	5	6	7	8	9

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

i. Plot a graph of temperature against time.
(5mks

									-		-			-					-								
																			-								
																			-								
																			,								
																			-								
																			-								
																			\bigcirc								
																			-								
-				,					-										-								
																			-								
																			-	-							
											-								-								
																			-								
																			-								
				-															-				-				
																			\bigcirc				-				
																			\bigcirc								
				,															-				-				
																			-				-				
-																			-				-				
																			-				-				
																			,				-				
				-															-				-				
																			\bigcirc								

ii. Use the graph to determine.
I. The room temperature
(1mk)

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

II. The specific heat capacity of the liquid take:

Specific heat capacity of copper $=400 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$
Mass of copper calorimeter $=100 \mathrm{~g}$
14. (i) State the law of floatation
(ii) A balloon made up of a fabric weighing 80 N has a volume of $1 \mathrm{X} 10^{7} \mathrm{~cm}^{3}$. The balloon is filled with hydrogen of density $0.09 \mathrm{kgm}^{-3}$. Calculate the greatest weight in addition to that of the hydrogen and its fabric which the balloon can carry in air of average density $1.25 \mathrm{kgm}^{-3}$
(b) The diagram below shows the same metal block weighted in air, water and liquid X.

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

(i) Calculate the density of the metal.
(3mks)
(ii) Water level before the solid was immersed.
(2mks)
(iii) Density of the liquid X (3mks)
15. (a)(i) Differentiate between centripetal and centrifugal forces.
(iii) What provides the centrifugal force needed to make a car travel round in a bend of unbanked road. (1mk)
(b) Below is a diagram of an aircraft of mass 2000 kg together with the pilot performing some air maneuvers in a vertical plane?

MINISTRY OF EDUCATION (KNEC COMPLIANT)

- r-

If the radius of the circular path is 40 m and the aircraft is moving at a velocity of $200 \mathrm{~ms}^{-1}$. Calculate
(i) The external force F_{1} provided by the air at point C.
(ii) The external force F_{2} provided by the air at point B. (3mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

NAME \qquad ADM NO.
DATE \qquad
232/2
PHYSICS
PAPER 2
CLASS OF KCSE 2024
TIME: 2 HOURS

THE NYANZA \& WESTERN REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

Instructions to candidates

1. Write your name and Admission number in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above.
3. This paper consist of two section \boldsymbol{A} and \mathbf{B}.
4. Answer all the questions in section \boldsymbol{A} and \boldsymbol{B} in the spaces provided.
5. All working must be clearly shown.
6. Mathematical tables and electronic calculators may be used.
7. This paper consists of 13 printed pages.
8. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For examiners use only.

Question	Maximum score	Candidate's score
$1-12$	25	
$13-17$	55	
Total	80	

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

SECTION A (25 MARKS)

ANSWER ALL QUESTIONS IN THIS SECTION IN THE SPACES PROVIDED.

1. Figure 1 shows a ray of a light incident on a plane mirror.

Figure 1

The plane mirror is then rotated clockwise through an angle of 200 keeping the incident ray fixed. Determine the new angle of reflection by drawing. (2mks)
2. The figure below shows a current carrying conductor passing between two cardboards. Show the direction of the deflection on each compass on the cardboard.

3. An object O is placed in front of a concave mirror and on the principal axis, as shown in the figure below. Complete the light ray diagram to locate the position of the image. (3mks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

4. Give a reason why lecture theatre halls are covered with soft perforated materials. (1mk)
5. State one factor which does not change as water waves move from shallow deep end. (1mk)
\qquad
\qquad
6. The figure below show a CRO screen display trace when the Y -amplification control and time base settings are 100 mV and $0.8 \mathrm{~ms} / \mathrm{cm}$ respectively.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Calculate:
a. The peak potential difference.
b. The frequency of the signal.
7. Two similar razor blades were placed on a wooden block and the other on an iron block as in figure 7 .
Figure 7.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

It was observed that the razor blade on the wooden block is attracted by the magnet while that on the iron block was not. Explain.
8. The figure below represents a ray of light falling normally on the curved surface of a semi-circular plastic block at X , meeting the opposite face at an angle of incidence of 30° and emerging into the air at an angle of 40°.

Calculate refractive index of the plastic.
(3mks)
9. A bar magnet is moved into a coil of insulated copper wire connected to a centrezero galvanometer, as shown in the figure below.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Show on the diagram the direction of induced current in the coil.
10. Determine the cost of using an electric heater rated 3 kW for 12 hours given that the cost of electricity per kilowatt hour is sh 8.00.
11. An electric heater rated $240 \mathrm{~V}, 3000 \mathrm{~W}$ is to be connected to a 240 V mains supply, through a 10A fuse. Determine whether the fuse is suitable or not.
(3mks)
12. The chart below shows an arrangement of different parts of the electromagnetic spectrum

Radio	A	Infrared	Visible	B	X-Rays	Gamma Rays

State one use of the radiation represented by B. (1mk)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

SECTION B (55MARKS)

13. (a) The figure below shows how a student set up a circuit using 3 identical bulbs X, Y and Z each rated " $12 \mathrm{~V}, 2.0 \mathrm{~A}$ "

iii. When operating normally, calculate the resistance of one of the bulbs. (2mks)
iv. Calculate the effective resistance of the three bulbs.
(2mks)
v. What will be reading of the ammeter?
(2mks)
vi. Draw a circuit diagram showing the three bulbs connected in such a way that they would all work at the same brightness especially if they are not identical.
(2mks)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(b) When the switch S is kept open in the circuit shown below the voltmeter reads 1.5 V . When the switch is closed, the readings drops to 21.3 V and the current through the resistor is 0.5 A .

vi. What is the e.m.f of the cell?
(1mk)
vii. What is the terminal voltage of the cell?
(1mk)
viii. Calculate the value of R
(2mks)
14. The Figure below is of an x-ray tube

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

iii. Explain how x-rays are produced by the tube.
(4mks)
\qquad
\qquad
\qquad
\qquad
iv. Explain briefly the energy changes that take place when the x-ray tube is operating. (3mks)
\qquad
\qquad
\qquad
\qquad
v. Why is it necessary to maintain a vacuum inside the tube?
(2mks)
\qquad
\qquad
\qquad
vi. The accelerating voltage of an x-ray tube is 12 V . Calculate the speed of the electron on reading the anode. (Charge to mass ratio of an electron $\frac{e}{m e}=$ 1.76×10^{11} (3mks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

15. (a) A strong positive charged rod is brought close to the cap of a charged electroscope from a high position. It is observed
i. State the charge on the electroscope.

(1mk)

ii. Explain this observation.
(2mks)
(b) A parallel- plate capacitor is connected to an electroscope as shown in fig 7. Below

Figure 7

State and explain the behavior of the leaf when the distance (d) between the plates is increased
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(c) Figure 8 shows an arrangement of capacitors to a 12 V d.c. supply

Determine
i. Effective capacitance (3mks)
ii. Charge across the $8 \mu \mathrm{~F}$ capacitor.
(3mks)
16. (a) Define the term monochromatic light (1mk)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(b) The table below shows values of stopping potentials, V_{2} and their curves pending frequencies for a metal surface monochromatic light is shone on it.

Stopping potentials, Vs	1.2	0.88	0.60		0.78
0.12 Frequency (xx $\left.10^{14} \mathrm{~Hz}\right)$	7.5	6.7	6.0	5.2	4.8

III. Plot a graph of stopping potentials. Vs against frequency. (4mks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

From the graph determine

IV. Thresh hold frequency
(1mk)
V. The Planck's constant, h (take $=1.6^{-19} \mathrm{x} 10 \mathrm{C}$) (2mks)
VI. The work function
(2mks)
17. (a) Study figure 8 and answer the following questions.

Figure 8

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

(i) State the charge on plate X
(1mk)
(j) Identify the radiation A and B
(1mk)

A
B \qquad
(k) A nuclear reaction is represented by the following equation. $\underset{192}{a} x \longrightarrow \quad{ }_{b}^{234} y+$ Alpa particle

Determine the value of a and b.
(2mks)
iv. -

A radioactive source has an activity of $810 \mathrm{c} / \mathrm{s}$ and after 63 hours the count rate falls to $110 \mathrm{c} / \mathrm{s}$. If the background count is $10 \mathrm{c} / \mathrm{s}$, determine the half -life of the source. (3mks)
(b)(i) Draw using appropriate symbols the circuit diagram of a junction diode in reverse bias.
(1mk)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(ii) Extrinsic semiconductors are made through a process called doping. Explain how doping produces an n-type semi-conductor. (2mks)
(iii) Distinguish between a semiconductor and a conductors. (2mks)
\qquad ADM NO.
DATE \qquad
232/3
PHYSICS
PAPER 3 (PRACTICAL)
CLASS OF KCSE 2024
TIME: 2 HOURS 30 MINUTES

THE NYANZA \& WESTERN REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

CONFIDENTIAL

QUESTION ONE

- A biconvex lens of focal length 15 cm
- A lens holder
- A metre rule
- A white screen
- A candle illuminating crosswires mounted on a circular hole
- A matchbox

QUESTION TWO

- A voltmeter (0-5V range)
- a $25 \mathrm{~V}, 2200 \mu \mathrm{f}$ capacitor (Terminals should be labeled for candidates)
- A switch
- Five connecting wires, two with crocodile clips
- Two new size D dry cells with a cell holder
- Some cotton thread -1 m long (1 piece), 0.5 m long (2 pieces)
- Triangular prism(approximately $3.8 \mathrm{~cm} \times 3.8 \mathrm{~cm}$ equilateral $60^{\circ}, 60^{\circ}, 60^{\circ}$)
- A metallic 50 g mass
- Hot water (provide a pool of boiling water to be shared)
- Cold water (tap water)
- Plastic Beaker (at least 250 ml)
- Thermometer $-10^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$
- A stopwatch
- A metre rule
- A stand, boss and clamp

MINISTRY OF EDUCATION (KNEC COMPLIANT)

NAME \qquad ADM NO.
DATE \qquad
232/3
PHYSICS
PAPER 3 (PRACTICAL)
CLASS OF KCSE 2024
TIME: 2 HOURS 30 MINUTES

THE NYANZA \& WESTERN REGIONS KCSE JOINT NATIONAL MOCK 2024
 Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO CANDIDATES

(a) Write your name and admission number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) Answer ALL the questions in the spaces provided in the question paper.
(d) You are supposed to spend the first 15 minutes of the $2^{1 ⁄ 2}$ hours allowed for this paper reading in the whole paper carefully before commencing your work.
(e) Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
(f) Candidates are advised to record their observations as soon as they are made.
(g) Non-programmable silent electronic calculators may be used.
(h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
(i) Candidates should answer the questions in English.

For Examiner's Use Only

Question 1

	I	ii	iii	iv	v	vi
Maximum Score	8	5	3	2	1	1
Candidate's Score						

Question 2

	b	d	e	f	h	I	j	k	l
Maximum Score	1	3	5	1	2	2	1	3	2
Candidate's Score									

GRAND TOTAL

232

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Question One

. 1 You are provided with the following apparatus;

- A candle (source of light illuminating cross wires mounted on a circular hole)
- A convex lens
- A lens holder
- One meter rule
- A whole screen

Set the apparatus as shown in the diagram below

Illuminate the object cross wires using the candle provided when the distance between crosswires and screen $S=60 \mathrm{~cm}$.

By moving the lens away from the crosswires obtain a focused clear image of the object (crosswires) on the screen. Measure and record the distance V , between the lens position L_{1} and the clear image on the screen.

Keeping the distance S fixed i.e. $S=60 \mathrm{~cm}$ move the lens further away from the object until another sharp image but diminished image of the cross wires is obtained on the screen. Measure and record the distance between the new lens position L_{2} and the sharp diminished image. Record this as V_{1}. Repeat the procedure for other values of S shown in the table.
i) Complete the table (8marks)

$\mathrm{S}(\mathrm{cm})$	60	65	70	75	80	85	90
$\mathrm{~V}(\mathrm{~cm})$							
$\mathrm{V}_{1}(\mathrm{~cm})$							
$\mathrm{d}=\mathrm{V}-\mathrm{V} 1(\mathrm{~cm})$							
$\mathrm{S}^{2}\left(\mathrm{~cm}^{2}\right)$							
$\mathrm{d}^{2}\left(\mathrm{~cm}^{2}\right)$							
$\mathrm{S}^{2}-\mathrm{d}^{2}\left(\mathrm{~cm}^{2}\right)$							

MINISTRY OF EDUCATION (KNEC COMPLIANT)

ii) Plot a graph of $\mathrm{s}^{2}-\mathrm{d}^{2}$ against S
iiii) Determine the gradient (k) of the graph
iv) Given that $K=4 f$ where f is the focal length of the lens used, determine the value for f (2marks)
v) State the advantage the method used above to determine the focal length of a lens has over the other methods.

```
(1mark)
```

vi) Focus the window frame or any distant object and obtain a rough estimate of the focal length of the lens.
(1mark)

Question 2

This question consists of two parts, A and B. Attempt both parts.

Part A

You are provided with the following
\checkmark A voltmeter
\checkmark A capacitor
\checkmark A switch
\checkmark A stopwatch
\checkmark Five connecting wires
\checkmark Two cells and a cell holder

Proceed as follows;

a) Connect the circuit as shown in the figure below.

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

Ensure the terminals of the capacitor and those of the battery are correctly connected. (Positive to positive and negative to negative)
b) Close the switch, read and record the maximum voltage V_{o} across the capacitor. $\mathrm{V}_{\mathrm{o}}=$ \qquad volts. [1 mark]
c) While the voltmeter shows the maximum voltage V_{o} open the switch and start the stopwatch simultaneously. Stop the stopwatch when the voltage has dropped from V_{o} to 2.5 V . Read and record in the table 2 the time taken.
d) Reset the stopwatch and close the switch. Repeat the procedure in (c) to measure and record the time taken for the voltage to drop from V_{o} to each of the other values shown in table 2.
(3marks)

Table 2

Voltage (V)	2.5	2.25	2.0	1.75	1.50	1.25
Time, t(s)						

e)i)On the grid provided, plot a graph of voltage, V (y-axis) against time, t. [4 marks]
ii) Use the graph to determine the time, t at which $\mathrm{V}=\mathrm{Vo} / 2$
$\mathrm{t}=$ \qquad seconds [1 mark]
f) Determine the resistance R of the voltmeter given that $\mathrm{t}=0.693 \mathrm{CR}$ where C is the capacitance of the capacitor.
[1 mark]

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Part B

You are provided with the following;
\checkmark A triangular glass prism
\checkmark A metre rule
\checkmark A 50 g mass
\checkmark Some hot water
\checkmark Some cold water
\checkmark Some thread
\checkmark A thermometer
\checkmark One stand, one boss and one clamp
\checkmark A beaker

Proceed as follows;

g) Using a piece of thread suspend the metre rule from the clamp on the stand and adjust the position of the thread until the metre rule balances horizontally. Note this position, O of the thread. (This position of the thread must be maintained throughout the experiment).
h) Using another piece of thread suspend the glass prism from the metre rule at a point 35 cm from O. Suspend the 50 g mass on the opposite side of O using another piece of thread. Adjust the position of the thread attached to the 50 g mass until the metre rule balances once more.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

i) Determine the distance L_{1}, between O and the point of support of the 50 g mass.

$$
\mathrm{L}_{1}=
$$

\qquad cm
ii) Use the principle of moments to determine the weight W_{1} of the prism in air. (Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$)
[1 mark]
iii) Put cold water into the beaker (approximately $3 / 4$). With the prism at 35 cm from O , determine the distance L_{2} of the 50 g mass at which the rule balances when the prism is fully submerged in cold water.

(I) $\mathrm{L}_{2}=$ \qquad cm
(II) Determine the weight W_{2} of the prism in cold water.

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

j) Measure and record the temperature T, of the cold water when the system is balanced.
\qquad ${ }^{\circ} \mathrm{C}$.
k) Now pour out the cold water and replace with hot water. Balance the metre rule with the prism fully submerged in hot water. (Ensure that the prism is still supported at 35 cm
from O)
i) Determine the distance L_{3} of the point of support of the 50 g mass when the prism is submerged in hot water.

L3 $=$ \qquad cm
[1 mark]
ii) Measure and record the temperature of the hot water.
$\mathrm{T}_{2}=$ \qquad ${ }^{\circ} \mathrm{C}$.
iii) Determine the weight W_{3} of the prism in hot water.

1) Determine the constant k for the water given that

$$
\frac{K=\left(W_{1}-W_{2}\right)-\left(W_{1}-W_{3}\right)}{\left(W_{1}-W_{3}\right)\left(T_{2}-T_{1}\right)}
$$

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

Name Index No

Adm. No. \qquad Candidate's Signature \qquad
PHYSICS

Paper 1

(THEORY)

CLASS OF KCSE 2024

2 hours

THE COASTAL \& EASTERN REGION KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS

Write your name and admission number in the space provided
Sign and write the date of the examination in the space provided above
This paper consists of two sections A and B.
Answer all the questions in the spaces provided.
All workings must be clearly shown.
Mathematical tables and silent electronic calculators may be used.
For examiner's use only

SECTION	QUESTION	TOTAL MARKS	CANDIDATE'S SCORE
A	$1-13$	25	
B	14	14	
	15	10	
	16	11	
	17	10	
	18	10	GRAND TOTAL

TOTAL CANDIDATE'S SCORE

\square
Section A + section B

This paper consists of 10printed pages

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

SECTION A (25 MARKS)

1. The figure below shows a micrometer screw gauge. What is the reading shown on the figure. (2 marks)

2. State pressure law.
(1 mark)
\qquad
\qquad
\qquad
3. State two factors that affect stability of a body.
(2 marks)
i)
ii)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

4. The diagram below shows a uniform wooden plank of length 4 m and weight 10 N . The plank is held at equilibrium by a weight of 40 N placed at one end as shown below.

Determine the distance d. (3 marks)
\qquad
\qquad
\qquad
5. Figure below shows a non-viscous fluid that is not compressible moving through a pipe of varied cross-sectional area.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

If the area of the narrow region is $0.05 \mathrm{~m}^{2}$, calculate diameter of the wider region.
(3 marks)
6. State one use of thermal expansion.
(1 mark)
7. State two factors that affect melting point of a substance.
(2 marks)
i)
ii)
8. A body is projected vertically upwards from the top of a building. If it lands on the base of the building. Sketch the velocity-time graph for motion.
(2 marks)

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

9. State a reason why transfer by radiation is faster than by conduction. (1 mark)
10. The pulley system in the figure below supports a load of 50N.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Given that the efficiency of the system is 80% calculate the effort, E . (3 marks)
11. The figure below shows a glass container with cross-section area of $50 \mathrm{~cm}^{2}$.

When a wooden block of mass 120 g is immersed into the water it floats while fully submerged and the water level rises by 4 cm , determine the density of the water.
(3 marks)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

12. Define the term momentum.
(1 mark)
13. What is a pitch of a screw.
(1 mark)
\qquad
\qquad

SECTION B

14. The figure below shows the motion of a trolley on ticker timer. The ticker has a frequency of 100 Hz .

a) i) Calculate the initial velocity between A and B. (3 marks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

ii) Calculate the final velocity between C and D .
(3 marks)
\qquad
\qquad
\qquad
iii) Calculate the acceleration of the trolley during the motion. (3 marks)
\qquad
\qquad
\qquad
b) Figure below shows a force-distance graph for a car being towed on a level ground.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

i) Calculate the total work done.
(3 marks)
\qquad
\qquad
\qquad
ii) If the velocity just before reaching point C is $0.6 \mathrm{~m} / \mathrm{s}$. Calculate the power developed by the engine
at this point.
(2 marks)
\qquad
\qquad
\qquad
15. a) A metal ball of mass 100 g is dipped into boiling water at $100^{\circ} \mathrm{C}$ and then placed in a calorimeter containing 80 g of water at $20^{\circ} \mathrm{C}$. After stirring, the temperature of the mixture stabilizes at $23.4^{\circ} \mathrm{C}$. Ignoring the heat gained by the calorimeter, determine the specific heat capacity of the metal. (Specific heat capacity of water $=4200 \mathrm{j} / \mathrm{Kg} \mathrm{K}$).
(4 marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

b) The cooling curve below is for a pure substance.

i) What is the melting point of the substance. (1 mark)
\qquad
\qquad
\qquad
ii) State two factors that affect boiling point of a substance.
i)
ii)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

iii) At what part of the curve is the substance.

Solid only?

Liquid only?

Solid and Liquid?
(3 marks)
16. a) State Newton's second law of linear motion.
b) The legal speed limit on motorways is approximately $30 \mathrm{~m} / \mathrm{s}$. In an incident on a motorway, a car of mass 900 kg leaves a skid mark 75 m long when stopping. The maximum deceleration of the car when skidding is approximately $10 \mathrm{~m} / \mathrm{s}^{2}$.
i) Show that before the incidence, the car must have been travelling above the legal speed limit.
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COMPLIANT)

ii) Calculate for this skid, the maximum average braking force between each of the four tyres and the road.
(3 marks)
iii) When the motorway is wet, the braking force provided by each wheel is reduced to 50% of the calculated in (ii) above. What is the effect of this reduced breaking force on stopping distance, explain your answer. Assume that the speed of the car before breaking is the same in both cases.
(2 marks)
\qquad
\qquad
\qquad
c) A student carried out an experiment to measure static friction using identical wooden blocks arranged as shown in the figure.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

State and explain which spring balance will indicate a smaller reading when the block just starts to move.
\qquad
\qquad
\qquad
17. a) Give a reason why people experience nose bleeding when they climb tall mountains. (1 mark)
\qquad
\qquad
\qquad
b) The diagram shows a person raising a concrete block from a river bed by using two pulleys.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

As shown in the diagram, the top of the block is 6.0 m below the water surface. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration of free fall is $10 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the water pressure acting on the top of the block.
(3 marks)
c) The block is raised through water. At one part, the water pressure acting on the top of the block $4.5 \times 10^{4} \mathrm{pa}$. The area of the top of the block is $0.015 \mathrm{~m}^{2}$. Calculate the downward force exerted by the water on top of the block
(3 marks)
d) When the block is clear of the water, it is raised a further 4.0 m . The weight of the block is 550 N . Calculate the work on the block as it is raised the 4.0 m through air. (3 marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

18. The figure below shows part of an experiment set up to estimate the diameter of an oil molecule.

i) Describe how the oil patch is formed.
(2 marks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

ii) What is the role of the Lycopodiumpowder.
c) An oil drop of average diameter 0.7 mm spreads out into a roughly circular patch of diameter 73.5 cm on the surface of water in a trough.
i) Calculate volume of the drop in mm^{3}. Take $(\square=22 / 7)$
ii) Calculate the area of the patch in mm^{3}.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

ii) Calculate the thickness of the oil molecule and express your answer in standard form. (2 marks)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

Name Index No

Adm. No \qquad Candidate's Signature \qquad

PHYSICS
Paper 2
(THEORY)
CLASS OF KCSE 2024
2 hours

THE COASTAL \& EASTERN REGION KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

Instructions to candidates

- This paper consists of two sections A and B.
- Answer all the questions in the two sections in the spaces provided after each question
- All working must be clearly shown.
- Electronic calculators, mathematical tables may be used.
- All numerical answers should be expressed in the decimal notations.
- This paper consists of 14 printed pages and check to ensure all the pages are there.

SECTION	QUESTION	MAX MARKS	CANDIDATE'S SCORE
A	$1-11$	25	
B	12	10	
	13	13	
	14	11	
	15	11	
	16	10	
TOTAL			

MINISTRY OF EDUCATION (KNEC COMPLIANT)

SECTION A (25 MARKS)

Answer all the questions in the space provided

1. Figure $\mathbf{1}$ below shows a ray of light reflected from a mirror.

Figure 1
30°

Complete the ray diagram and find the new angle of reflection after it is rotated 10° anticlockwise with the incident ray fixed.
(2marks)
2. Three electric bulbs are connected in series with a battery of two dry cells and a switch. At first the bulbs light brightly.
(a) State a reason why they gradually light dim. (2marks)
(b)The switch is put off for sometimes. Explain why the bulbs again shine brightly. (1mark)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

3. A positively charged rod is brought near the cap of a lightly charged electroscope. The leaf first collapses and as the rod comes nearer, the leaf diverges.
(i) What is the charge on the electroscope?
(ii) Explain the behavior of the leaf. (2marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. Figure 2 below shows a bar magnet attracting steel pin as shown

Figure 2

State and explain what would happen when a North pole of a bar magnet is brought near the tips of steel pin X and Y. (2marks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

5. Determine the equivalent resistance between P and Q for the following resistors shown in Figure 3.
Figure $3^{(2 m a r k s)}$

6. Figure 4 below shows a wave profile for a wave whose frequency is 5 Hz .

\qquad
\qquad
\qquad
\qquad
7. An electromagnetic radiation whose wavelength is greater than that of microwaves has a wavelength of 306.1224 m . Take speed of light in air, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(a) Identify the radiation. (1mark)
(b) Calculate its frequency.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. Two heating coils A and B connected in parallel in a circuit produces power of 36 W and 54 W respectively. What is the ratio of their resistance?(2marks)
9. State two conditions necessary for total internal reflection to occur. (2marks)
\qquad
\qquad
\qquad
\qquad
10. Define coherent source of a wave. (1mark)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

11. Figure 5 below show a conductor carrying electric current place between two magnetic poles.

Figure 5

Complete the diagram by sketching the magnetic field and also show the direction of the force on the conductor.

Section B (55 marks)

Answer ALL the questions in the spaces provided
12. (a) State one factor that affects the force between two charged bodies.
(1mark)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(b) To investigate charge distribution on metallic surfaces, electric charges were collected from different parts of the surfaces using a proof plane as shown in figure 6 below:

Figure 6

The proof plane was then placed on the cap of a neutral electroscope.
(i) State and explain the leave divergence of the electroscope as the proof plane is placed at various points round the spherical surface in figure (i) above.
(ii) State with reason which part of the conductor in figure (ii) gave the greatest deflection of the electroscope. (2marks)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(c) Figure 7 shows a $10 \mu \mathrm{~F}$ capacitor being charged from a 12 V battery by connecting the switch terminal on R . The switch is then connected to S to discharge the $4 \mu \mathrm{~F}$ capacitor.

Figure 7

Determine the resultant potential difference between the two capacitors. (3marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) State two uses of capacitors.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

13.(a) State Faradays law of electromagnetic induction. (1mark)
(b) Figure 8 below shows a simplified circuit of a generator.

Figure 8

(i) Identify parts X and Y .

X:

Y: \qquad
(ii) State two ways of making the bulb light brighter. (2marks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(c) An a.c generator produces an e.m.f of 50.0 V which is used to operate a circuit that requires a minimum of 250.0 V . If the power of the generator is 200 W , determine the:
(i) Current generated by the a.c source.
\qquad
\qquad
\qquad
\qquad
(ii) Current supplied to the circuit by the transformer assuming 100\% efficiency.
\qquad
\qquad
\qquad
\qquad
(iii) Ratio of turns in the coils of the transformer, primary: secondary.
\qquad
\qquad
\qquad
\qquad
(d)Explain how power loses in a transformer are minimized. (2marks)
(i) Eddy currents
\qquad
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(ii) Hysteresis losses
14.(a) A disc of a siren with 100 holes is rotated at constant speed making 0.5 revolutions per second. If air is blown towards the holes, calculate:
(i) The frequency of the sound produced.
(ii) The wavelength of the sound produced, if the velocity of sound is $340 \mathrm{~m} / \mathrm{s}$.
\qquad
\qquad
\qquad
\qquad
(b) A ship sends out an ultrasound whose echo is received after 5 seconds. If the wavelength of the ultrasound in water is 0.05 m and the frequency of the transmitter is 50 KHz , calculate the depth of the ocean.
(3marks)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(c) A ray of light is incident at right angles to the face AB , of a right angled isosceles prism of refractive index 1.6 as shown in Figure 8 below.

Figure 8

If the prism is surrounded by a liquid of refractive index 1.40, determine:
(i) The angle of incidence on the face BC.
\qquad
\qquad
(ii) The angle of refraction on the face $B C$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15.(a) Distinguish between principal focus and focal length of a concave lens.
\qquad
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(b)Figure 9 below shows sketches of a window frame and its image formed on a screen by a convex lens.

Figure 9
480mm

(i) State the nature of the image formed.
(ii) Calculate the linear magnification of the imaged formed. (2marks)
\qquad
\qquad
\qquad
\qquad
(iii) The imaged of the frame was produced 500 mm from the lens. Calculate the focal length of the lens.
\qquad
\qquad
\qquad
\qquad
(c) A student finds that at a distance of 25 cm , the words in a book looked blurred.
(i) What eye defect does the student suffering from? (1mark)

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(ii) In which direction does he/she move the book to be able to see the words clearly from the distance?
(1mark)
(iii) Which lens can be used to correct the eye defect? (1mark)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

16.(a) (i) Figure 10 shows a graph of $1 / v$ against $1 / u$ for a concave mirror. Use your graph to determine the focal length of the mirror. (2marks)

Figure 10

\qquad
(ii) Determine the image distance when the magnification is $\mathrm{m}=2$ for the concave mirror above.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(b) State one application of each of the following
(i) Convex mirror.
(ii) Parabolic mirror.
(c) A small object is placed 15 cm in front of a convex mirror of focal length 10 cm . Determine the position of the image. (3marks)

PHYSICS

Paper 3
(PRACTICAL)
CLASS OF KCSE 2024
2 hours

THE COASTAL \& EASTERN REGION KCSE JOINT NATIONAL MMOCK 2024

Kenya Certificate of Secondary Education (KCSE)

CONFIDENTIAL

Question 1.

- 2 dry cells
- Voltmeter
- Switch
- Ammeter
- Resistance wire(S.W.G 28) mounted on a mm scale
- Six connecting wires
- Convex lens ($\mathrm{f}=10 \mathrm{~cm}$) and lens holder
- A candle
- White screen
- A metre rule

Question 2

- Metre rule
- Knife edge
- One 50 g mass and a 100 g mass
- Three pieces of thread about 50 cm
- Some water in 100 ml beaker
- Paraffin(liquid L) in 100 ml beaker
- Tissue paper
- Rectangular glass block(n=1.5)
- Four optical pins
- A piece of soft board
- A plain sheet of paper
- 4 thumb pins

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Name \qquad Index No.

Adm. No. \qquad Candidate's Signature. \qquad

PHYSICS

Paper 3

(THEORY)
CLASS OF KCSE 2024
2 hours 30 minutes

THE COASTAL \& EASTERN REGION KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

Instructions to candidates

\checkmark Answer All the questions in the spaces provided in the questions paper.
\checkmark You are supposed to spend the first 15 minutes of the $2 \frac{1}{2}$ hours allowed for this paper reading the whole paper carefully before commencing your work.
\checkmark Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use of them.
\checkmark Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

For examiners use only

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

Question 1

PART A

You are provided with the following.

- A resistance wire PQ mounted on a mm scale
- An ammeter
- A voltmeter
- A switch
- Two new dry cells and cell holder
- Seven connecting wires at least two with crocodile clips Proceed as follows:
(a) Set up the circuit as shown in figure 1 below.

(b) Open the switch and record the voltmeter readings

E= \qquad .volts
(1mk)
(c) (i) Starting with $\mathrm{L}=70 \mathrm{~cm}$, read and record the readings of voltmeter in table 1 provided.

Table 1

Length L (cm)	70	50	40	30	20	10
Current I(A)						

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

P.d V(volts)						

(ii) Repeat step c (i) above for other values of L given in the table 1 above (5marks)
(d) Plot a graph of p.d (y-axis) against I (5marks)

(e) Given that the graph is govern by the equation $\mathrm{E}=\mathrm{V}+\mathrm{Ir}$, determine
(i) The e.m.f of the two cells in series
(2marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(ii) The internal resistance of the two cells
(2marks)

PART B

You are provided with the following

- A lens and lens holder
- A candle
- A screen
- A metre rule

Proceed as follows:
Set up the apparatus as shown in figure 2

(f) Starting with $\mathrm{U}=30 \mathrm{~cm}$, adjust the position of the screen to obtain a sharp image of the candle. Record the value of V in table 2
(g) Repeat the procedure in (f) for $\mathrm{U}=40 \mathrm{~cm}$. Complete the table.
(2marks)

$\mathrm{U}(\mathrm{cm})$	$\mathrm{V}(\mathrm{cm})$	$\frac{\mathrm{m}=\mathrm{V}}{\mathrm{U}}$
30		
40		

Table 2 tfbvg
(h) Given that the focal length of the lens satisfies the equation $f=V$ determine the average value of focal length f.

$$
1+\mathrm{m}
$$

(3marks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Question 2

PART A
You are provided with the following :

- A metre rule
- A knife edge
- One 50 g mass and a 100 g mass
- Some thread
- Liquid L in a beaker
- Tissue paper

Proceed as follows:
(a) Balance the metre rule on the knife edge and record the reading at this point
Balance point \qquad cm
For the rest of this experiment the knife edge must be placed at this position
(b) Set up the apparatus as shown in the figure 1. Use the thread provided to hang the masses such that the positions of the support can be adjusted.

Figure 1
The balance is attained by adjusting the position of the 100 g mass. Note that the distance X and D are measured from the knife edge and the 50 g mass is fully immersed in water. Record the values of X and D
X=. \qquad cm
D= \qquad cm

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Apply the principle of moments to determine the weight W_{1} of the 50 g mass in water and hence determine the uphrust U_{w} in water $\mathrm{W}_{1}=$. \qquad

$$
\mathrm{U}_{\mathrm{w}}=
$$

\qquad

Remove the 50 g mass from water and dry it using tissue paper.
(c) (i) now balance the metre rule when the 50 g mass is fully immersed in the liquid L. Record the value of distance X $X=$ \qquad (1mark)
(iii) Apply the principle of moments to determine the weight W_{2} of the 50 g mass in the liquid L and hence determine the uphrust U_{L} in the liquid.
$W_{2}=$. \qquad
$\mathrm{U}_{\mathrm{L}}=$ \qquad
(d) Determine the relative density R.D of the liquid L given that:

$$
\begin{equation*}
\mathrm{R} . \mathrm{D}=\mathrm{U}_{\mathrm{L}} \tag{1mark}
\end{equation*}
$$

U_{L}
(e) Find the density of liquid X in $\mathrm{kg} / \mathrm{m}^{3}$. (given that density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$) (1mark)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

PART B

You are provided with the following

- A rectangular glass block
- Four optical pins
- A piece of soft board
- A plain sheet of paper
- 4 thumb pins

Proceed as follows
(f) Place the plain sheet of paper on the soft board and fix it using the thumb pins provided.
Place the glass block at the centre of the sheet, draw its outline. Remove the glass block.

(g) Draw a normal at a point 2 cm from the end of the longer side of the block outline. This normal line will be used for the rest of the experiment. Draw a line at an angle of angle $\varnothing=25^{\circ}$ from the normal .Stick two pins p_{1} and p_{2} vertically on this line.

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(h) By viewing through the glass from the opposite side, stick two other pins p_{3} and p_{4} vertically such that they are in line with the images of the first two pins. Draw a line through the marks made by p_{3} and p_{4} to touch the outline. Extend the line $p_{1} p_{2}$ through the outline (dotted line) .Measure and record in the table the perpendicular distance d between the extended line and the line p_{3} and p_{4} Record this value in the table.
(i) Repeat the procedure in (g) and (h) for other values of θ shown in the table.

Θ (deg)	25	35	40	45	55	60	65
$\mathrm{~d}(\mathrm{~cm})$							

(3marks)
(j) (i) plot a graph of d against Θ (5mark)

(ii) Use the graph to estimate the value of d when $\theta=0$
(1mark)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Name Index No \qquad
Adm. No. \qquad Candidate's Signature. \qquad

PHYSICS
Paper 1
(THEORY)
CLASS OF KCSE 2024
2 hours

THE RIFT VALLEY \& NORTH EASTERN REGIONS KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

Instructions to candidates

- This paper consists of two sections A and B.
- Answer all the questions in the two sections in the spaces provided after each question
- All working must be clearly shown.
- Electronic calculators, mathematical tables may be used.
- All numerical answers should be expressed in the decimal notations.

SECTION	QUESTION	MAX MARKS	CANDIDATE'S SCORE
I	$\mathbf{1 - 1 2}$	25	
II	12	12	
	13	12	
	14	11	
	15	09	
TOTAL	16	11	
		80	

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

SECTION A (25 MARKS)

1. A spherical ball bearing of mass 0.0024 kg is held between the anvil and spindle of a micrometer screw gauge. The reading on the gauge when the jaws are closed without anything in between is 0.11 mm . Use this information and the position of the scale in the figure 1 below to answer the questions (a) and (b) below:

fig 1

a) What is the diameter of the ball bearing?
(1 mk)
\qquad
\qquad
b) Find the density of the ball bearing correct to 3 significant figures (2 mks)
\qquad
\qquad
\qquad
\qquad
2. The diagram below shows a wire loop with two threads tied across it. The loop is dipped into a soap solution such that the soap film covers it as shown in fig 2

Fig 2

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Region B is punctured such that the soap film in that section is broken. On the space alongside the diagram sketch the resulting shape of the wire loop. Give a reason for the shape.
3. The figure $\mathbf{3}$ below shows an arrangement to demonstrate diffusion through solids:-

The hydrogen gas is supplied for sometimes then stopped and the beaker removed. State and explain what is likely to be observed when the hydrogen gas supply is stopped (3 mks)
\qquad
\qquad
\qquad
4. Figure 4 shows two identical thermometers. Thermometer \mathbf{A} has a blackened bulb while thermometer \mathbf{B} has a silvery bulb. A candle is placed equidistant between the two thermometers

Fig. 4

MINISTRY OF EDUCATION (KNEC COMPLIANT)

State with a reason the observations made after some time (2 mks)
\qquad
\qquad
\qquad
5. A car being driven on a horizontal straight road accelerates uniformly from O to $20 \mathrm{~m} / \mathrm{s}$. In the first 10s. It continues at that speed for the next 40 s and then decelerates to a stop in 5 s . Sketch the velocity time graph for its motion. (2 marks)
6. A uniform metre rule is balanced at its centre. It is balanced by the $30 \mathrm{~N}, 5 \mathrm{~N}$ and the magnetic force between \mathbf{P} and $\mathbf{Q} . \mathbf{P}$ is fixed and \mathbf{Q} has a weight of 5 N

a) Ignoring the weight of the metre rule, calculate the value of the magnetic force between Q and $P(2 \mathrm{mks})$

Fig 5

b) Given that the lower end of Q is North pole, state polarity of the end of P facing Q .
7. (a) Give a reason why water is not suitable as a barometric liquid. (1 mk)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(b)Explain why a lift pump is unable to raise water from a borehole where the level of water is 20 m below the ground level.
(1 mks)
\qquad
\qquad
8. The diagram below shows a mass of 12 g hanged on a set of 6 identical springs.

When a mass of 12 g was hanged on spring A alone, its extension was 5 cm . Find the extension of the combination shown if each spring and each rod has negligible mass (2 mks)

$$
\text { fig } 6
$$

9. Sea water of density $1.04 \mathrm{~g} / \mathrm{cm}^{3}$ is being pumped into a tank through a pipe of uniform cross-sectional area of $3.142 \mathrm{~cm}^{2}$. If the speed of water in the pipe is $5 \mathrm{~m} / \mathrm{s}$, determine the mass flux in S.I unit.
(2 mks)
\qquad
\qquad
\qquad
\qquad

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Describe the motion of the body between points:

OA

AB
11. A quantity of air occupied $500 \mathrm{~cm}^{3}$ at $15^{\circ} \mathrm{C}$ when the pressure was 76 cmHg . At what temperature would it occupy $460 \mathrm{~cm}^{3}$ if the pressure was 85 cmHg ? (2 mks)

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

SECTION B (55 MARKS)

12.a) State the pressure law for an ideal gas.(1 mark)
c) The set up shows an arrangement to determine the relationship between temperature and pressure of a gas at constant volume.

i) Describe how the measurements are obtained in the experiment (3 marks)
ii) Explain how the results from the experiment can be used to determine the relationship between temperature and pressure (2 marks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

c) A bicycle tyre is pumped to a pressure of 2.2×10^{5} pa at $23^{\circ} \mathrm{C}$. After a race the pressure is found to be $2.6 \times 10^{5} \mathrm{pa}$. Assuming the volume of the tyre did not change, what is the temperature of the air in the tyre. (3 marks)
d) Air is trapped inside a glass tube by a thread of mercury 240 mm long. When the tube is held horizontally the length of the air column is 240 mm .

Assuming that the atmospheric pressure is 750 mmHg and the temperature is constant, calculate the length of the air column when the tube is vertical with open and down.
(3 marks)
13. (a) An object is released to fall vertically from height of 100 m . At the same time another object is projected vertically upward with velocity of $40 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time taken before the objects meet
(3mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(ii) At what height do the objects meet?
(2mks)
(b) A string of negligible mass has a bucket tied at the end. The string is 60 cm long and the bucket has a mass of 45 g . The bucket is swung horizontally making 6 revolutions per second. Calculate
(i) The angular velocity
(ii) The angular acceleration
(iii) The tension on the string
(2mks)
(iv) The linear velocity (1mk)
\qquad
\qquad
14. a) State Archimedes' principle.
(b) The figure 9 below shows a rectangular buoy of mass 4000 kg tethered to the sea-bed by a wire. The dimensions are $4 \mathrm{~m} \times 1.5 \mathrm{~m} \times 2.2 \mathrm{~m}$.

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Calculate the :-
(i) Weight of sea water displaced by the buoy (density of sea water $=$ $1100 \mathrm{~kg} / \mathrm{m}^{3}$)
(ii) Upward force exerted on the buoy by the water.
(iii) Tension in the wire $(2 \mathrm{mks})$
\qquad
\qquad
(c) A test tube of mass 10 g and uniform cross-sectional area $4 \mathrm{~cm}^{2}$ is partly filled with lead shots and floats vertically in water with 5 cm of its length submerged.

Find the:-
(i) Mass of the lead shots.
(2mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(ii) Length of the test tube that would be submerged in a liquid of density

$$
0.75 \mathrm{~g} / \mathrm{cm}^{3} .
$$

15. (a) State two differences between boiling and evaporation.
\qquad
\qquad
\qquad
(b) 1200 g of a liquid at $10^{\circ} \mathrm{C}$ is poured into a well-logged calorimeter. An electric heater
rated 1 KW is used to heat the liquid. The graph in fig 4 below shows the variation of temperature of the liquid with time.

Fig. 4

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

Use the graph to answer the following questions:
(i) What is the boiling point of the liquid?
(ii) How much heat is given out by the heater to take the liquid to the boiling point? (2 mks)
\qquad
\qquad
\qquad
(iii) Determine the specific heat capacity of the liquid stating any assumptions made. (2 mks)
\qquad
\qquad
\qquad
(iv) If 50 g of the liquid vapour was collected by the end of the $8^{\text {th }}$ minute, determine the specific latent heat of vaporization of the liquid. $(2 \mathrm{mks})$
\qquad
\qquad
\qquad
16. (a) (i)State Newton's second law of motion.
(ii) A striker kicks a ball of mass 250 g initially at rest with a force of 75 N . if the foot was in contact with the ball for 0.10 sec . Calculate the take off velocity of the ball. (2 mks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

(b)A bullet of mass 20 g moving at $400 \mathrm{~m} / \mathrm{s}$ strikes a block of wood of mass 3.5 kg initially at rest. The bullet sticks into the block and the two move off together on a horizontal surface, where a frictional retarting force of 4 N is acting between the block and surface.
(i) Determine the initial common velocity of bullet and wooden block.
\qquad
\qquad
\qquad
\qquad
(ii) What distance does the block move before coming to rest?
(c) Two immiscible liquids are poured in an open container to the levels shown in the diagram below.

Figure 11

If the densities of the liquids \mathbf{A} and \mathbf{B} are $1 \mathrm{~g} / \mathrm{cm}^{3}$ and $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ respectively and the atmospheric pressure 760 mmHg , find the total pressure acting upon solid \mathbf{C} at the bottom of the container. (Take density of mercury to be $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{g}=10$ N / Kg) (3 mks)
\qquad
\qquad
\qquad
\qquad

[^0]
MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Name Index No. \qquad
Adm. No. \qquad Candidate's Signature. \qquad

PHYSICS
Paper 2
(THEORY)
CLASS OF KCSE 2024
2 hours

THE RIFT VALLEY \& NORTH EASTERN REGIONS KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO CANDIDATES.

1) Write your name and index number in the spaces provided above.
2) Sign and write the date of examination in the spaces provided above.
3) This paper consists of section A and B.
4) Answer ALL questions in section A and B.
5) All your workings must be clearly shown as must be awarded for correct working even if the answer is wrong.
6) Non programmable silent scientific calculators and KNEC mathematical tables may be used.

FOR EXAMINERS' USE ONLY.

SECTION	QUESTIONS	MAXIMUM SCORE	ANDIDATES SCORE
A	$1-12$	25	
B	13	13	
	14	12	
	15	09	
	16	09	
	17	12	
		80	

This paper consists of 12 printed pages.
Candidates should check the question paper to ascertain that all pages are printed as indicated and no questions are missing

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

SECTION A (25MARKS)

Answer all the questions in this section

1. Figure (1) below shows two rays of light from an object reflected on a plane mirror

Fig 1.

Using proper ray construction, show the object position
(2marks)
2. The fig 2 below shows a ray of light incident on a glass prism

Fig2
Given that the critical angle for the grass is 39°, sketch on the diagram the path of the ray through the prism.
3.The diagram on figure 3 shows the National Grid system.

Fig3.
(a) What type of transformer is;
X.
Y.
4. State one advantages of using circuit breakers in the consumer unit than using fuse wire. (1marks)

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

5. The figuresbelow shows two waveforms representing the same wave motion.

Determine the velocity of the wave. (3mks)
6. Figure 4 . Below shows a 6 V battery connected to an arrangement of resistors.

Determine the current flowing through the 2Ω resistor.
(3marks)

Fig 6.
7. The figure 7 below shows the electromagnetic spectrum.

Fig 7.
(a)Identify A
(b)State one industrial use of B

MINISTRY OF EDUCATION (KNEC COMPLIANT)

8. The diagram (Fig 8) shows a positively charged acetate strip and a negatively charged polythene strip that are freely suspended.

acetate strip

polythene strip

Fig8.
Two rods X and Y are brought up in turn to these two strips. Rod X attracts the acetate strip but repels the polythene strip. Rod Y does not repel either the acetate strip or the polythene strip.
State the type of charge is on each rod.
(2mks)
X.
Y.
9. State two advantages of an alkaline accumulator over lead acid accumulator. (2mks)
\qquad
\qquad
\qquad
\qquad
10. Figure 9 below show a concave lens and object.

Fig 9.

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

Sketch the rays to show the image formed.
(2marks)
11. Two similar razor blades were placed on a wooden block and the other on an iron block as in figure 10.

Fig 10.
It was observed that the razor blade on the wooden block is attracted by the magnet while that on the iron block was not. Explain.
(2 marks)
\qquad
\qquad
\qquad
\qquad
12. The figure $\mathbf{1 1}$ below shows water waves about to pass through a gap. One wave front is shown after it has passed through the gap.

Fig 11

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

(i) On the diagram, draw two more wave fronts that have passed through the gap. (1mark)
(ii)State two changes which would each make the wave fronts become more curved after passing through the gap.
(1 mark)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

SECTION B (55MARKS) ANSWER ALL THE QUESTIONS IN THIS SECTION.

13.(a) State what is meant by refractive index of a material.
(b) Figure 12 represents a ray of light falling normally on the curved surface of a semi-circular plastic block at X, meeting the opposite face at an angle of incidence of 30° and emerging into the air at an angle of 40°.
Fig 12

(i) State and explain what happens to the ray as it moves from:
I) Air to glass at X.
\qquad
II) From glass to air at O.
\qquad
\qquad
\qquad
(ii) Calculate refractive index of the plastic.
\qquad
\qquad
\qquad
\qquad
(iii) State the conditions to be satisfied for total internal reflection to occur. (2marks)
\qquad
\qquad
\qquad
\qquad

232

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(iv) Describe how the apparatus above could be used to find the critical angle experimentally.
\qquad
\qquad
\qquad
\qquad
(v)Calculate the critical angle for this plastic.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. (a) State what is meant by the term capacitance.
\qquad
\qquad
\qquad
(b) Distinguish between a paper capacitor and an electrolyte capacitor. (1marks)
\qquad
\qquad
\qquad
(c) State two factors that determine capacitance of a parallel plate capacitor (2mks)
\qquad
\qquad
\qquad
(d) Figure 10 below shows a network of capacitors in series.

12V
Fig 10.

MINISTRY OF EDUCATION (KNEC COMMPLIANT)

(i) Derive an expression for their effective capacitance C_{E} from first principles. (3marks)
(ii) Given that $\mathrm{C}_{1}=10.5 \mu \mathrm{~F}, \mathrm{C}_{2}=2 \mu \mathrm{~F}$ and $\mathrm{C}_{3}=3 \mu \mathrm{~F}$. Calculate effective capacitance C_{E} in (2) above and hence Determine the charge stored on each capacitor.
(3marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) State two applications of capacitors. (2marks).
\qquad
\qquad
\qquad
\qquad
\qquad
15.(a) Use the figure $\mathbf{1 1}$ below to answer the questions that follows.

Fig. 11

(i) Show the direction of the current on the turns when the switch S is closed. (1marks)
(ii) State the polarity at P

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(iii) Explain using domain theory what happens on the soft iron bar. (1marks)
(iv). If steel bar was used instead, what could be the difference? (2marks)
\qquad
\qquad
(b) The following diagram (figure 12), shows a part of an electric d.c motor.

Fig 12.

(i) On the diagram above show the direction of rotation of the coil. (1marks)
(ii) State the effect of increasing the number of turns of the rotating coil of an electric motor. (1marks)
(c)Sketch the magnetic field pattern around the conductor carrying current on figures 13 and 14 shown below.
(2marks)

Fig 13.
Fig 14

MINISTRY OF EDUCATION (KNEC COMPLIANT)

16(a) Distinguish between real image and a virtual image. (2mks)
\qquad
\qquad
\qquad
\qquad
(b) The distance between an objectand itsupright image produced by a curved mirror is 40 cm . the image is 3 times as tall as the object
(i) State the type of mirror used.
(ii) Determine the object distance
(iii) Determine the radius of curvature of the mirror
(iv) State one application of the mirror as used in (b) above
\qquad
\qquad

17(a) State Ohm's Law.

(1mk)
\qquad
\qquad
\qquad
\qquad
(b) Explain why a 12 V car battery is able to start the motor car engine while eight dry cells of 1.5 v each connected in series will not.
(2mks)
\qquad
\qquad
\qquad
\qquad
(c) In figure 15 the current in the circuit is 1.80 A

232

MIINISTRY OF EDUCATION (KNEC COMMPLIANT)

Fig 15
(i)Find the effective resistance between \mathbf{X} and \mathbf{Y}.
(3mks)
(ii)The p.d of the source.
(2mks)
(iii)Current through the 3Ω resistor (2mks)
(iv)Give two differences between a primary and a secondary cell
(2mks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Name \qquad Index No.

Adm. No. \qquad Candidate's Signature. \qquad
PHYSICS
Paper 3
(PRACTICAL)
CLASS OF KCSE 2024
2 hours 30 minutes

THE RIFT VALLEY \& NORTH EASTERN REGIONS KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

CONFIDENTIAL

QUESTION 1

Each candidate will require the following.

- A milliammeter.
- A voltmeter $(0-3 \mathrm{~V})$ or $(0-5 \mathrm{~V})$.
- A wire mounted on a mm scale (Nichrome wire SWG 32)
- A switch.
- A long wire with a crocodile clip at one end (crocodile clip to be used as a slider or jockey).
- A micrometer screw gauge (may be shared).
- 5 connecting wires, two with crocodile clips at the end.
- One new dry cell size D.
- Cell holder.

QUESTION 2

EACH STUDENT REQUIRES

\checkmark Micrometer screw gauge (shared between 4 students)
\checkmark Vernier callipers
\checkmark Masses

- 10 g
- $2-20 \mathrm{~g}$
- 50 g
- 100 g
\checkmark Helical spring ($K=0.08 \mathrm{~N} / \mathrm{cm}$)
\checkmark Metre rule or half metre rule
\checkmark Complete retort stand

MINISTRY OF EDUCATION (KNEC COMPLIANT)

Name \qquad Index No \qquad
Adm. No. \qquad Candidate's Signature. \qquad
PHYSICS
Paper 3
(PRACTICAL)
CLASS OF KCSE 2024
2 hours

THE RIFT VALLEY \& NORTH EASTERN REGIONS KCSE JOINT NATIONAL MOCK 2024

Kenya Certificate of Secondary Education (KCSE)

INSTRUCTIONS TO CANDIDATES

Answer all the questions in the spaces provided in this question paper.
You are supposed to spend the first 15 minutes of the $21 / 2 \mathrm{hrs}$ allowed for this paper reading the whole paper carefully before commencing your work.
Marks will be given for clear record of the observations actually made, their suitability, accuracy and the use made of them.
Candidates are advised to record their observations as soon as they are made.
Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

FOR EXAMINERS USE ONLY.

QUESTION 1

NO.	a, b	c	TOTAL
MAXIMUM SCORE	14	6	20
CANDIDATES SCORE			

QUESTION 2

	a	b	c	d	f	g	h	I
maxmum score	1	1	1	2	6	4	2	3
Candidate's scores								

GRAND TOTAL

MINISTRY OF EDUCATION (KNEC COIMPLIANT)

Question 1 (20 marks)

You are provided with the following
-Two dry cell
-One bulb
-Voltmeter (0-3V)
-Ammeter (0 - 1A)
-Amounted nicrome wire mounted on a millimeter scale
-Switch
-Seven connecting wire at least two with crocodile clips
-Micrometer screw gauge
Proceed as follows:
a) i). Set up the circuit as shown in the figure 1 below.

ii) With the crocodile clip at p, take the voltmeter reading and ammeter reading. Record v and 1 repeat the readings for $L=80,60,40,20$ and 0 cm respectively and complete the table below.

Length, L(cm)	100	80	60	40	20	0
Voltage, V(V)						
Current, I (A)						

iii). What changes do you observe on the bulb as L decreases from p ?
(1mrk)
iv).Plot a graph of ammeter reading ($\mathrm{y}=\mathrm{axis}$) against voltmeter readings. (5mrks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

v). Determine the slope of the graph at $\mathrm{V}=1$ volt.
(2mrks)
vi). What physical quantity is represented by the slope of the graph at any given point? (1mrk)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

b. (i) Given the apparatus in a (i) above, draw a diagram of the circuit you would use to determine the current through the resistant wire and the potential difference across. (1mrk)
ii).Set up the circuit you have drawn. Record the ammeter reading I and the wire reading V when $L=100 \mathrm{~cm}$ (2mks)
$V=$ \qquad $\mathrm{I}=$
iii). Using a micrometer screw gauge, measure the diameter of the wire. (1mrk)
$d=$ \qquad .m
iv). Calculate the quantity:
$\mathrm{p}=0.785 \frac{(\mathbf{V})}{\mathrm{I}} \frac{\mathbf{d}^{2}}{\boldsymbol{L}}$ and give its units, where L is one meter. (2mrks)

Question 2

You are provided with the following:-

- Vernier callipers
- Micrometer screw gauge
- Masses; $10 \mathrm{~g}, 20 \mathrm{~g}, 50 \mathrm{~g}$ and 100 g
- A helical spring
- Metre rule or half metre rule

Proceed as follows
(a) Determine the number of complete turns of the helical spring.

$$
\mathrm{N}=
$$

\qquad
(b) Measure the external diameter of the spring using the vernier callipers

$$
\mathrm{D}=\ldots \mathrm{m}
$$

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(c) Use the micrometer screw gauge to determine the diameter of the wire of the spring.
$\mathrm{d}=$ \qquad m
(d) Determine the value of m
(2 Marks)
$\mathrm{N}=\frac{0.4 D}{d m}$
(e) Suspend the helical spring vertically alongside the clamped half metre rule as shown in figure 1 below. Determine the length L_{0}, of the spring before loading it.

Figure 2
(f) Load the spring with a mass of 20 g and determine the new reading on the metre rule. (L) Record this in the table below.
(g) Calculate the extension $\mathrm{e}=\mathrm{L}-\mathrm{L}_{0}$ due to the mass of 20 g and record the value in the table given below. Repeat step f for other masses and complete the table.

Mass (g)	0	10	20	30	40	50	60	70	80	90	100
Weight (N)											
Reading (L) (cm)											
Extension e (cm)											
$\frac{1}{e}\left(\mathrm{~cm}^{-1}\right)$											

(6 Marks)

MIINISTRY OF EDUCATION (KNEC COMPLIANT)

(h) Plot a graph of weight (N) against $\frac{1}{e}\left(\mathrm{~cm}^{-1}\right)$ (4 Marks)

MINISTRY OF EDUCATION (KNEC COMPLIANT)

(i) Determine the slope (s) of the graph at a mass of 45 g
\qquad
\qquad
(j) Given that $\mathrm{m}=\frac{-255 T}{(S+60)^{2}}$

Determine the value of T where (S) is the slope at 45 g
\qquad
\qquad
\qquad

[^0]: **End **

