KAPSABET HIGH SCHOOL

POST MOCK 2024

PHYSICS

232/1 (THEORY)
PAPER 1
TIME: 2 HOURS

NAME	SIGN
INDEX NO	ADM NO

Kenya Certificate of Secondary Education.

INSTRUCTIONS TO STUDENTS

- (a) Write your name and adm number in the spaces provided above
- (b) Attempt ALL questions in sections A and B.
- (c) All your answers must be written in the spaces provided in this question paper.
- (d) All working must be clearly shown
- (e) Non programmable silent electronic calculators and KNEC mathematics table may be used except where stated otherwise

For Examiner's Use Only

Section	Question	Maximum Score	Candidates' Score
A	Q1 – Q12	25	
В	Q13	9	
	Q14 Q15	11	
	Q15	9	
	Q16	10	
	Q17 Q18	10	
	Q10	6	
		80	

SECTION A (25 MARKS)

Answer all the questions in this section

1. Figure 1 below shows a scale of vernier calipers when measuring the width of a meter rule.

What is the actual width of the meter rule if the calipers has a zero error of +0.6mm.?(2mks)

2.A clinical thermometer has a constriction in the bore just above the bulb.	State the use of the
constriction.	(1mk)
•••••••••••••••••••••••••••••••	•••••
••••••	• • • • • • • • • • • • • • • • • • • •

3.Figure 2 below shows air trapped by a column of t6he mercury in a U-tube. The atmospheric pressure is 76 cm Hg.

At what pressure in mmHg is the enclosed air?	(3mks)

4. A girl of mass 50 Kg runs developed in this time	s up a flight of he	ight 4m in 4 se	econds . Calculate	e the power she (2mks)
••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••				
••••••				
•••••	••••	•••••	•••••	•••••
5. Name the transducer in the	following energy co	onversions.		(1 mls)
i).Kinetic to electrical				(1mk)
•••••				
ii).Solar to heat				(1mk)
6.Figure 3 below shows do moving body.	ots produced on a	tape pulled thro	ugh a ticker tim	er by a
2 cm	•	•	5 cm	• •
The frequency of the ticker –t	imer is 50 Hz. Calcı		•	
	•••••			
••••••	••••		• • • • • • • • • • • • • • • • • • • •	•••••

7.Figure 4 below shows an ammeter used to measure current through the conductor .The student used the lower scale.

State the reading from the meter (1mk)

8. Figure 5 below shows a uniform rode AE which is 40 cm long. It has a mass of 2Kg and pivoted at D. If 2N is acting at point E, and 30N force is passed through a frictionless pulley

Find the force X acting at end A.	(3Mks)

9. Convert -200°C into Kelvins	(1mk)
	•••••
10.Figure 6 below shows two identical springs constant 3N/cm supporting a load of	30N.
Determine the extension of each spring	(3mks)
	•••••
	•••••
11. Explain why a bus should not carry standing passengers.	(1mk)
12. State TWO reasons mercury is preferred as a barometric liquid and not water .	(2mks)
•••••••••••••••••••••••••••••••••••••••	

• • •

SECTION B (55MARKS) Answer all questions in this section

13. a) Define the term efficiency as used in machines.	(1mk)
b) Figure 7 below shows the cross –section of a wheel and axle of cm respectively used to lift a load. Use it to answer the question	
Load 150N	
Determine the i. Mechanical advantages (M.A) of the system	(2mks)
ii. Velocity ratio (V.R) of the system	(2mks)
iii. Efficiency of the machine	(2mks)
•••••••••••••••••••••••••••••••••••••••	•••••••••••

v. Give one reason why the above machine is not 100% efficient	(1mk)
e) State the law of conservation of energy	(1mk)
14. (a) In inelastic collision, kinetic Energy is lost. Explain.	(1mk)
(b). A Trailer of mass 30 tonnes travelling at a velocity of Km/her rams or	
stationery bus of mass 10 tonnes. The two move together after impact. Dete	ermine the
common velocity at which they move after impact.	(3 Mks)
	••••••
(c) A stone is thrown vertically upward with an initial velocity of 30 M/s	
Determine the maximum height reached.	(2mks)
	••••••••
i. Time taken to come back to the point of projection	(2mks)
	•••••
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •

(d) The figure 6 below shows a body being pulled by a constant force of 10N for 4m over wooden surface. The co-efficient of friction is 0.03.

Find the acceleration of the body	(3mks)
••••••	
•••••	
•••••	
•••••	
•••••	
15. (a) State Hooke's law	(1mk)
••••••	
•••••	
••••••••••••••••••••••••	•••••••••••

(b) A graph of force (y-axis) against (x-axis) is provided. Use it to answer questions below.

i).Work done in stretching the spring by 3cm. (3mks)

ii).Spring constant .Give your answer in SI Units. (3mks)

i).State two factors that affect the spring constant.	(2mks)
6. (a) Give reason why ink is likely to ooze a pen when one is up i	n an airplane. (1mk)
The figure below is a simple hydraulic machine used to raise heavy $F = 120N$ Load Oil Oil	y loads.
alculate; The pressure exerted on the oil by the force applied at A	(2mks)
	•

	The load raised at B	(2mks)
	Give two properties which make the oil suitable for u	
•••	••••••••••••	•••••
	The barometer reading at the base of the mountain is cm/Hg. If the densities of air and mercury are 1.25kgm-3 are Calculate the height of the mountain.	nd 13,600kgm-3 respectively. (3mks)
•••		•••••••••••••••••••••••••••••••••••••••
17.	(a) Distinguish between streamline and turbulent flow.	(2mks)
•••		
(b	Figure below shows two light sheets of paper arranged as	s shown B

18. a) State the principal of moments (1ml	••••••
(e) State any TWO assumptions made when deriving the equation of continuity	(2mks)
(d) State the Bernoulli's principle	(1mks)
$V_2 = 2.5 \text{ms}^{-1}$ 0.056cm ²	
$V_1 = 0.6 \text{ms}^{-1}$	
(c) Figure 12 below shows an incompressible fluid moving through a tube of varied of section area. If the area of the small tube is 0.05m2, Calculate the area of large cm2.	
•••••••••••••••••••••••••••••••••••••••	•••••••
•••••••••••••••••••••••••••••••••••••••	••••••
Explain the observation made when air is blown at the same time at point A and B.	(2mks)

b) A uniform metal strip is 3.0cm wide, 0.5 cm thick and 100 cm long. The density of is 2.7 g/am ² . Determine	f the metal
is 2.7 g/cm3. Determine (i) The weight of the Metal strip.	(2mks)
	••••••
••••••	
••••••	
•••••••••••••••••••••••••••••••••••••••	
The strip is placed on a pivot and kept in equilibrium by forces in the figure belo	w.
20cm 15cm	
\mathbf{F}	
(ii) Determine the value of F .	(3mks)
••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
•••••••••••••••••••••••••••••••••••••••	•••••••