NAME:ADM NO:.....

SIGNATURE:.....INDEX NO:....

232/1 PHYSICS PAPER 1 SEPTEMBER 2021

KASSU JET EXAMINATION - 2021

Kenya Certificate of Secondary Education Physics Paper 1

Instructions to candidates

- This paper consists of two sections A and B.
- Answer **ALL** the questions in sections A and B in the spaces provided.
- ALL working MUST be clearly shown.
- Mathematical tables and silent electronic calculators may be used.
- Take: Acceleration due to gravity $g = 10 \text{ ms}^{-2}$.
- Atmospheric pressure = 76 cmHg
- Density of mercury $\equiv 13600 \text{ kg/m}^3$

F of examiners use only				
SECTION	QUESTION	MAX MARKS	CANDIDATE'S	
			SCORE	
Α	1 – 11	25		
В	12 – 17	55		
TOTAL				

For examiners use only

SECTION A (25 MARKS)

Attempt all the questions in this section.

1. The figure below shows a measuring cylinder with some water in it.

A metal cube of mass 18g is submerged in it. Given that the density of the metal is 4.167 g/cm³, indicate the new level of the liquid. (2 mks)

2. Explain how temperature affects surface tension. (2 mks) 3. A drop of blue ink is introduced at the bottom of a beaker containing water. It is observed that after sometime, all the water in the beaker turns blue. Name the process that takes place. (1 mk) 4. The figure below shows a uniform metre rule pivoted at the 20cm mark. It is balanced by a weight of 3.5N suspended at the 5cm mark. 20cm Sim 35N Determine the weight of the metre rule. (3 mks) 2 for marking schemes inbox 0724351706

5. The diagram below shows a sketch graph of resultant force against velocity for a body falling through air.

7. Three identical springs A, B and C are used to support 25.5N weights as shown below.

If the weight of the horizontal bar is 2.5N, determine the extension of each spring given that 6N causes an extension of 2 cm. (3 mks)

8. The diagram below shows the effect of heat from the heater on two surfaces surface.

10. Figure below shows a u-tube upon which a gas has been enclosed on one end with mercury in it. Calculate the pressure of the gas.

SECTION B (55 MARKS)

Attempt all 12. (a) (i)	the questions in this section. Define the term angular velocity (ω).	(1 mk)
(ii)	A body in a circular path is said to be accelerating a speed. Explain.	and yet it moves in a constant (1 mk)

(c) A stone of mass 500g is attached to a string of length 50cm which can break when the tension exceeds 20N. The stone is whirled by a student until the string breaks at a point 100 cm above the ground. (Take g, as 10 m/s ²).			
(i)	In what position does the string break.	(1 mk)	
(ii)	Calculate the angular velocity at which the string breaks.	(3 mks)	
 (iii) Time taken by the stone to reach the ground.	(3 mks)	
•••••			
(iv) Distance from the feet of the student to the point the stone stroke	s the ground. (2 mks)	

13. (a)	3. (a) A hydraulic lift is used to raise a load of 100 kg through a height of 2.0 m. the radius the effort piston is 1.6cm while the load piston has a radius of 8.0cm. If the machine 75% efficient; calculate:		
	(i)	the velocity ratio.	(2 mks)
	•••••		
	•••••		
	(ii)	mechanical advantage	(1 mk)
	(iii)	effort required	(1 mk)
	•••••		
	•••••		
	(iv)	energy wasted in using the machine	(2 mks)
	•••••		
	•••••		
(b)	A blo veloci	ck and tackle pulley system is used to lift a mass of 200 kg. ity ratio of 5, and efficiency of 80%;	. If the machine has a
	(i)	Sketch in the space provided below the possible arrangen	nent of the system.

(2 mks)

- - (b) A wooden block resting on a horizontal bench is given an initial velocity, U, so that it slides on the coach surface for a distance, d, before coming to a stop. The values of, d, were measured and recorded for values of initial velocity. The figure below shows a graph of U² against d.

(i) Determine the slope of the graph.

(3 mks)

(ii) Given that $U^2 = 20$ kd, where K is a constant for the bench surface, determine the value of K from the graph. (3 mks)

	(iii)	State how the value of K would be affected by a change in the r bench surface.	oughness of the (2 mks)
	•••••		
	·····	$c = 0.001 + c + c = -1 + 1 + -10 + c^2 + 10$	······
	(c) A car mome	entum after it has moved 400m from the starting point.	(4 mks)
			•••••
	•••••		•••••
	•••••		
	•••••		
	•••••		
	•••••		
5.	300g of ic 60 ⁰ c. it's (Take: Sp	ce at 0^{0} c is dropped into a copper calorimeter containing warm wa observed that only 80% of ice melted. Decific heat capacity of water = 4200 Jkg ⁻¹ k ⁻¹	ater of mass 60g at
	(a) Deter	eat capacity of copper $= 400 \text{ JK}^{-1}$)	(1 mk)
	(a) Deter	mine the milar temperature of the mixture.	(1 mk)
	(b) Deter	mine the heat lost by calorimeter.	(2 mks)

(c) Determine the heat lost by warm water.	(2 mks)
	•••••
	•••••
(d) Determine the specific latent heat of fusion of ice.	(3 mks)
	••••••
	•••••
	•••••
 (e) It's observed that if the temperature if warm water used was 80°c, then a have melted. What would be the final temperature of the mixture? Use t specific latent heat of fusion obtained in (d) above. 	all the ice could the value of (3 mks)
	•••••
	••••••
6. (a) A concrete block of value, V, is totally immersed in sea water of density expression for the upthrust on the block.	y, S. Write an (1 mk)
 (b) A certain solid of volume 50 cm³ displaces 10 cm³ of kerosene (density When floating. Determine the density of the solid. 	800 kg/m ³). (4 mks)
	•••••
0 for marking schemes inbox 0724351706	

(c)	State the condition necessary for a body to float in a fluid.	(1 mk)
 . (a)	A mercury thread 200 mm long traps a gas in a long glass tube. The length column is 100 cm when the tube if held horizontally. The atmospheric pre 750 mmHg. Calculate the length of the gas column when the tube is held with the open end facing downwards.	n of the gas ssure is vertically wit (3 mks)
(b)	State Boyle's law.	(1 mk)
		••••••
(c)	250 cm^3 of a gas is collected at a pressure of 900 mmHg and 27^0 c tempera Determine the volume of this gas if the pressure is reduced to 500 mmHg temperature 19^0 c.	tture. and (2 mks)
		••••••••••••••••
		•••••••

NAME		ADM.NO	CLASS
INDEX NO <u>.</u>	SIGNATURE:	_	
	DATE:		
232/2 PHYSICS Paper 2 2 Hours			

KASSU J.E.T.EXAMINATION 2021

Instructions to Candidates

1. Write your name, index number, class and admission number in the spaces provided above.

- 2. This paper consists of **TWO** sections: Sections **A** and **B**.
- 3. Answer **ALL** the questions in sections **A** and **B** in the spaces provided.
- 4. ALL working **MUST** be clearly shown.
- 5. Mathematical tables and electronic calculators may be used.

For Examiner's Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
А	1-10	25	
	11	10	
	12	13	
В	13	08	
	14	12	
	15	12	
TOTAL SCORE		80	

This paper consists of 12printed pages.

Students should check the question paper to ensure that all the pages are printed as indicated and no questions are missing.

SECTION A: (25 MARKS)

1. In figure 1 two mirrors M1 and M2 are inclined at right angles to each other.

Diagram drawn to scale

Figure 1

Trace the reflection of the ray through the two mirrors and find the angle between the incident ray and reflected ray of mirror M2. (2 marks)

- 2. When rod X was rubbed with material Y it was observed that the material acquired a negative charge.
 - a) State the charge on rod X after rubbing (1 mark)
 - b) Explain how rod X acquired the charge stated in (a) above. (1 mark)

3. An iron ring is placed between two magnets as shown in **figure 2.**

Figure 2.

(a)Sketch the magnetic field pattern between the poles and mark the neutral point, Xon the diagram . (2 marks)

(b) State one application of the concept tested above. (1mark).

4. A charge of 180 Coulombs flows through a lamp every minute. Calculate the number of electrons involved. (Take charge of an electron $e_r = 1.6 \times 10^{-19}$ C). (2 marks)

5. Table 1 shows radiations and their respective frequencies.

Type of radiation	Yellow light	Gamma rays	Radio waves	Micro waves
Frequency (Hz)	1 x 10 ¹⁵	1 x 10 ²²	1 x 10 ⁶	1 x 10 ¹¹
Table 4				

Table1

a) Arrange the radiation in order of increasing energy.

(1 mark)

b) State the reason why radio waves signals are easier to receive than TV signals in a place surrounded by hills. (1 mark)

6. Figure 3shows a metal rod PQ connected to a d.c supply and placed between two magnets.

Figure 3

a) Indicate on the diagram the direction of force on rod **PQ** and magnetic field pattern between the two magnetic poles only. (2 marks)

b) State **one** way in which the direction of force can be made to change. (1mark)

7. An explosion in a quarry takes place at a distance of 70m from an observer. An echo from a cliff 50m beyond the source of the explosion is heard by the observer 0.5 seconds after he sees the flash from explosion. Calculate the velocity of sound in air. (3 marks)

8. (a) **Figure 4**below shows the path of a ray of light through a triangular prism **ABC** of refractive index 1.50. is parallel to **AC**.

figure 4

Determine the angle of incidence on the side **AC**.

(3marks)

Sketch rays on the diagram to show the position of object

(2 marks)

9.In an experiment to <u>study interference in sound waves two identical</u> loudspeakers are connected to an audio frequency generator so that they act as coherent sources L₁ and L₂ as shown in **figure 6.**

Figure 6

An observer walking several metres ahead and a long a line to $L_1 L_2$ identifies pointsAandA₁as the first positions of loud sound on either side after the loud sound at the middle position **O** between the two sources. (2 marks)

(a) Exp	lain the meaning of the term coherent source.	(1 mark)
(b) Nai	me the type of interference occurring at the points ${\sf O,A}$, and ${\sf A_1}$.	(1 mark)
10.	Distinguish the n-type and p-type semiconductors.	(1 mark)

SECTION B: 55 MARKS

11. a) **Figure 7** shows a source of α , β and r-radiation placed infront of a set of barriers A, B and C

A is a thick sheet of paper, B is a thin sheet of aluminium foil and C is a thin sheet of lead. Name the radiation detected in the regions marked X, Y and Z. (3 marks)

Χ.....

Υ.....

Ζ.....

b) The **figure 8** below shows the features of a diffusion cloud chamber used for detecting radiation.

Figure 8

i) Explain how radiation from the source is detected in the chamber. (4marks)

ii) What type of radiation can the device detect?

c) The count rate recorded for a certain source is 256 counts per second. What count rate is recorded 20 days later, if the half-life of the source is 5 days. (2marks)

12. (a) A house has five rooms each with 240V,60W bulbs. If the bulbs are switched on from 7:00pm to 10:30 pm;

(i) Calculate the power consumed in the month of April in Kilowatt-hours.(2marks)

(ii) Find the cost per month for lighting these rooms at Ksh6.70 per unit. (2marks)

(b) A student designed a transformer to provide power to an electric bell marked 24W,6V from a mains supply 240V. He wound coils, 50 turns and N turns on an iron ring core. When he connected the coil of 50 turns to the bell and N turns coil to the a.c source, he found out that the transformer was only 80% efficient.Find;

(i) The value of N.

(2marks)

(1mark)

(ii) The current in the primary coil.

(2marks)

(c) The figure 9 . shows a connection to the three- pin plug.	
Figure 9 (i) Name the cables A, B and C and state their colours. A	(3marks)
В	
C	
(ii) Why is the fuse connected to cable C.?	(1mark)

- (iii) State one reason why in domestic wiring system appliances are connected in parallel.
 (1 mark)
- 13. Figure 10 Shows an electric circuit with four capacitors A,B,C and D8 μ F ,3 μ F,6 μ F and 15 μ F respectively connected to 12V battery.

(a) Determine ;

(i) the effective capacitance.(3 marks)(ii) the charge of capacitor D.(2 marks)(iii) the total energy stored.(2 marks)

(b) Explain **one** factor that determine the capacitance of a parallel plate capacitor.

(1 mark)

(b) **Figure 12**shows the voltage of an a.c. generator on the screen of a C.R.O.

If the time base calibration is 20 milliseconds/cm and the y- gain is 5V/cm , calculate;

(i) the frequency of the generator. (2 marks)

- (ii) the peak voltage of the generator. (2 marks)
- (c) A potential difference of 40kV is applied across an x-ray tube. Given that the charge of an electron is $1.6 \times 10^{-19}C$ and the mass of an electron is $9.1 \times 10^{-31}kg$ and Planck's constant = 6.63×10^{-34} Js;
 - (i) What is the effect of increasing the potential difference across the x-ray tube? (1 mark)
 - (ii) Calculate the velocity with which the electrons strike the target. (3 marks)
- 15. A Form 4 student carried out on experiment to investigate photoelectric effect. From the results a graph of stopping potential V_s (y-axis) against the inverse of the wavelength $\frac{1}{3}$ was plotted and was as shown below.

h = is (a)	e= 1 the Pla	$.6 \times 10^{-19}C$, charge of an electron inck's constant.	
(0)	(i)	The slope s of the graph.	(2 marks)
	(ii)	The Planck's constant h.	(2 marks)
	(iii)	The threshold wavelength λ_o	(2 marks)
	(iv)	The threshold frequency f_o	(2 marks)
	(v)	The work function W_o in electron volts (e.v)	(2 marks)
(b)	On th a me	ne same graph, sketch a graph which would be tal with greater threshold frequency, explain y	obtained if the student used our answer. (2 marks)
		This is the last printe	<u>d page</u>
Name:		Index No	/
23 for markir	ng schem	nes inbox 0724351706	

Candidate's Signature _____ Date: _____

232/3

PHYSICS

Paper 3

(PRACTICAL)

TIME: 2 ¹/₂ hours

KASSU JET EXAMINATION

SEPTEMBER 2021

Kenya Certificate of Secondary Education

PHYSICS

Paper 3

TIME: 2¹/₂ HOURS

Instructions

- Write your name and index number in the spaces provided above. •
- Sign and write the date of examination in the spaces provided above.
- Answer ALL questions in the spaces provided in the question paper.
- You are supposed to spend the first 15 minutes of the $2\frac{1}{2}$ hrs allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Non-programmable silent electronic calculators and KNEC mathematical tables may be used *except where stated otherwise.*
- This paper consists of 9 printed pages. •
- Candidates should check the question paper to ascertain that all the pages are printed as • indicated and that no questions are missing.

Question 1	b	d	e	f	g	h (i)	(ii) I	Ι	TC	DTAL
Maximum Score	1	4	1	5	3	2	2	2		20
Candidate's Score										
	Dant		1.	~	4	Dowt		~ (i)	~ (;;)	TOTAL
	Part	a	D	С	a	Part	с	g (1)	g (11)	IOIAL
Question 2	Α					B				
Maximum Score		1	2	5	2		3	5	2	20
Candidate's Score										

For Examiner's Use Only

GRAND TOTAL

Question one

You are provided with the following:

- 2 new dry cells size D
- A cell holder
- A switch
- An ammeter
- A voltmeter
- 6 connecting wires at least three with crocodile clips
- Nichrome wire mounted on the metre rule labeld X
- A micrometer screw gauge (to be shared)

Proceed as follows

a. Connect the circuit as shown in the figure below

b. Measure the voltage, E of the dry cell before closing the switch E=......V

(1mark)

c. Adjust the length L of the wire 0.2m, close the switch S and read the value of current and record in the table below.

Length L(m)	0.2	0.3	0.4	0.5	0.6	0.7
Current, I(A)						
$\frac{1}{I}(\mathbf{A}^{-1})$						

d. Repeat the procedure in (c) above for the value of lengths given in the table

(3mks)

e. Calculate the values of $\frac{1}{I}$ and record in the table above. (1mk)

h.	(i) Measure the diameter dof the wire in three points used and find the average diameter. d_1 = d_2 = d_3 mm	(1mk)
	Average d=m	(1mk)
	(ii) Determine the cross section area, A of the wire	(2mks)
·、	Form the equation $\frac{1}{I} = \frac{kl}{AE} + \frac{Q}{E} : \qquad \text{determine}$	
1)	The value of k	(2mks)
ii)	The value Q	(2mks)
	Question 2 Part A	
	You are provided with the followingA metre rule	
	 Knife edge raising 20cm above bench One 50g mass and one 100g mass 	
	 One sog mass and one roog mass Some thread	
	 Some water in a beaker Liquid L in a beaker 	
	 Tissue paper 	
oceed	as follows:	
a)	Balance the meter rule on the knife edge and record the reading at this point. Balance point =m	(1mk)

For the rest of this experiment the knife edge must be placed at this position.

b) Set up the apparatus as shown in figure below. Use the thread provided to hang the masses such that the positions of support can be adjusted.

The balance is attained by adjusting the position of the 100g mass. Note that the distance x and d are measured from the knife edge and the 50 mass is fully submerged in the water. Record the values of x and d.

i) $x_1 = \dots$	cm	(1mk)

d =	cm	(1mk)
ii) Determine W_1 (weight of the object in water)		(2mks)

- iii) Determine the upthrust U_w in water of the 50g in water (1mk)
- c) Now balance the metre rule when the 50g mass is fully submerged in the liquid L.

$x_2 =cm$	(1mk)
-----------	-------

Apply the principle of moments to determine the weight W_2 of 50g mass in the liquid L and hence determine the upthrust U_L in the liquid.

W₂ (2mks)

U_L (1mk)

d) Determine the relative density R.D of the liquid L, given that

$$R.D = \frac{U_L}{U_w}$$
(1mk)

Part B

You are provided with the following

- A rectangular glass block
- Four optical pins
- A piece of soft board
- A plain sheet of paper
- Cellotape

You are also required to have your complete mathematical set.

Proceed as follows:

a) Place the plain sheet of paper on the soft board and fix it using the cellotape provided. Place the glass block at the centre of the sheet, and draw its outline. Remove the glass block. See the figure below

Draw a normal at a point 2cm from the end of the longer side of the block outline. This normal line will be used for the rest of the experiment.

b) By viewing through the glass from the opposite side stick two other pins P_3 and P_4 vertically such that they are in line with the images of the first two pins. Draw a line through the marks made by P_3 and P_4 to touch the outline.

Measure and record in the table below the perpendicular distance **d** between the extended line and the line, P_3P_4 . See figure above.

c) Record this value in the table below and repeat the process for other angles shown in the table.NB: The sheet of paper with the drawing must be handed in together with this question paper.Ensure you write your name and index on the sheet paper.

	(3mks)									
O(deg)	25	35	40	45	55	60	65			
d(cm)										

f(i) On the grid provided, plot a graph of d (y –axis) against $\boldsymbol{\Theta}$

(5mks)

1 + + + + + + + + + + + + + + + + + + +			++++	+++++	*****				+++++		+++++++++	
+++++			+++++++++++++++++++++++++++++++++++++++	+++++	*****	+++++++	++++++		+++++	*****	+++++++++++++++++++++++++++++++++++++++	+++
			+++++++++++++++++++++++++++++++++++++++	+++++	*****	+++++++	+++++++		+++++	*****		+++
			+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++++++	++++++		+++++	++++++	++++++++	+++
			+++++++++++++++++++++++++++++++++++++++	++++++	*****	+++++++	+++++++	+++++++	+++++	*****	+++++++++++++++++++++++++++++++++++++++	+++
+++++		+++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++++	++++++		+++++	+++++	++++++++	+++
			+++++++++++++++++++++++++++++++++++++++		+++++	+++++++	+++++++		+		+++++++++	+++
+++++		++++++			++++	+++++++	++++++		+++++	+++++	+++++++	+++
												+++
												+++
												+++
					+++++							+++
												+++
				+++++			++++++					++1
			+++++++++++++++++++++++++++++++++++++++	+++++	+++++				+++++	+++++	┼┼┼╂┼┼	++1
			┼┼┼╉┼┼┤	+++++	+++++	+++++++	++++++	┼┼┼╋┼┼┾	+++++	+++++	┽┽┽╋┽┾	+++
++++			++++++++		+++++	++++++	+++++	+++++++	+++++	+++++	+++++++++	++1
++++	┝┼┼┼┼╄	┝┼┼┼╀┼	++++++		+++++	+++++++	++++++	+++++++	+++++	+++++	┼┼┼┼╀┼┼	+++
++++			++++		+++++		+++++++		+	+++++		+++
++++					++++		+++++		\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	+++++	+++++++	+++
												+++
												\downarrow
												+++
+++++			+++++++++++++++++++++++++++++++++++++++	+++++	*****	+++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	*****	+++++++++	+++
			+++++++++++++++++++++++++++++++++++++++		*****	+++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++	*****	+++++++++++++++++++++++++++++++++++++++	+++1
+++++		+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	*****	+++++++	++++++		+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++
+++++			+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++++	++++++		+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++1
+++++			+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++++++	+++++	+++++++	+ + + + + +	++++++	+++++++	+++
++++			+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++++	++++++		+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++
			+++++++++++++++++++++++++++++++++++++++		+++++	+++++++	+++++++		+		+++++++++	+++
++++	┝┼┼┼╀╄		++++++++		+++++	+++++++	++++++	┼┼┼╂┼┼┼	+++++	+++++	┼┼┼╂┼┼	+++
+			┼┼┼╀┼┼┤		++++	++++++	+++++	+++++++	+	++++	┼┼┼╀╂┼┼	++1
				+++++	+++++	++++++	++++++		+	+++++		+++
++++					++++		+++++++		+	++++		++1
					++++							++1
												++1
												++
												++1
												++1
					+++++					+++++		++1
	┝┼┼┼╂			+++++			++++++		+++++	+++++		++1
+++++	┝┼┼┼┼╂╴	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	╅┼┼┼╂	+++++++	++++++	┝┼┼╉┼┼┼	+++++	+++++	┼┼┼╂┼┼	++1
			++++	+++++	+++++		++++++		+++++	+++++		+++
++++			++++	+++++	+++++	+++++++	++++++		+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++
++++			+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++++	++++++		+++++	+++++	+++++++++++++++++++++++++++++++++++++++	++1
			++++++		+++++	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$						

(ii) Using the graph, estimate the value of d when $\Theta=0^{\circ}$

(2mks)