
Page 1 of 117

Contents

1. DATA REPRESENTATION IN A

COMPUTER

 Introduction

Concepts of data representation in digital

computers

Data representation in electronic circuits

Data representation on magnetic media

Data representation on optical media

Reason for use of binary system in

computers

Bits, bytes, nibble and word

Types of data representation

Number systems and their representation

Further conversion of numbers from one

number system to another

Symbolic representation using coding

schemes

Binary arithmetic operations

Representation of signed binary numbers

Binary addition

Binary subtraction

2.DATA PROCESSING

Introduction

Data col1ectIon

Data Input

Processing

Output

Description of errors in data processing

Transcription errors

Computational errors

Algorithm or logical errors

Data integrity

Data processing methods

Manual data processing

Mechanical data processing

Electronic data processing

Computer files

Elements of a computer file

Logical and physical files

Types of computer processing files

Master file

Transaction (movement) file

Reference file

Backup file

Report file

Sort file

File organisation methods

Sequential file organisation

Random or direct file organisation

Serial file organisation

Indexed-sequential file organisation

method

Electronic data processing modes

On-line processing

Real-time processing

Distributed data processing

Time-sharing

Batch processing

Multiprocessing

Multiprogramming

Interactive processing

ELEMENTARY PROGRAMMING

PRINCIPLES

Introduction

Computer programming

Description of terms used in

programming

Source program

Object code

Translators

Levels of programming languages

Low-level languages

High-level languages

Advantages and disadvantages of low-

Level and high-level languages

Advantages and disadvantages of low

level languages

Advantages and disadvantages of high

level languages

Program development

Problem recognition

Problem definition

Program design

Program coding

Program testing and debugging

Implementation and maintenance

Program documentation

Development of algorithms

Page 2 of 117

Pseudocode

Program flowcharts

Comparison between a pseudocode and

a flowchart

Program control structures

Sequence

Selection

CASE construct

Iteration (looping)

Designing more complex algorithms

SYSTEM DEVELOPMENT
Introduction

Description of a system

Soft systems

Hard systems

Some characteristics of systems

Information system

Why develop new information systems?

Role of information system analyst

Project management

Theories of system development

Traditional approach

Rapid application development (RAD)

The structured approach

Stages of system development

Case scenario

Problem recognition and definition

Information gathering

Requirements specification

System design

System construction

System implementation,

System maintenance and review

System documentation

Reports on fact finding,

Requirement specification,

System flowchart,

Table/file structures description

Sample data,

Output reports,

User manual,

PROGRAMMING WITH VISUAL

BASIC

Introduction

Definition of Visual Basic

Starting Microsoft Visual Basic

Features of Visual Basic Integrated

Development Environment (IDE)

window

The standard toolbar

Forms and controls

Project window

Properties window

Code editor window

Form layout window

The Visual Basic toolbox

Saving a Visual Basic project

Opening an existing project

Visual Basic fundamental concepts

Data types

Constants

Variables

Variants

Scope

User defined data types

Using suffixes to declare variables and

constants

Mathematical operators

The assignment statement

The Print statement,

Library functions,

Program comments,

Converting a numeric string to a value

Converting a value to a string,

Control structures,

The IF... THEN selection

IF... THEN.. .ELSE selection

Nested IF selection

The Case construct

Looping construct

Working with graphical objects

Modules and procedures

Declaring general subroutines

Creating menus, message and dialog

boxes

Drop down menus

Message boxes

Dialog boxes

List boxes and combo boxes

List boxes

Combo boxes

Visual Basic data structures

Page 3 of 117

Arrays

Records

Data files

Linking Visual Basic forms to a database

 Using the Recordset object to

manipulate a database

Creating a Visual Basic executable file

6. APPENDIX I

Introduction to database design

Defining attributes

Creating the database

Defining a file/table structure

Setting the primary key and foreign key

Automating your database application

Creating a switchboard

Creating Macros

Creating Visual Basic for application

(VBA) module

Securing your database from

unauthorized access

Setting up the startup options

Conclusion

APPENDIX II

Coding schemes

Binary Coded Decimal (BCD)

Standard Binary Coded Decimal

ASCII and EBCDIC

Page 4 of 117

DATA REPRESENTATION IN A COMPUTER

Chapter outline

1.1 Introduction

1.2 Concepts of data representation in digital computers

1.3 Bits, bytes, nibble and word

1.4 Types of data representation

1.5 Binary arithmetic operations

Introduction

In Book 1 of this series, we learnt that computers are classified according to functionality,

physical size and purpose. We saw that when classified according to functionality, computers

can be analog, digital or hybrid. Digital computers process data that is in discrete form while

analog computers process data that is continuous in nature. Hybrid computers, on the other hand

can process both discrete and continuous data.

In digital computers, the user input is first converted and transmitted as electrical pulses that can

be represented by two distinct digits' l' and '0' before processing. These two digits are referred to

as binary digits or in short bits.

Although two graphs can look different in their appearance, they may repeat themselves at equal

time intervals. Electronic signals or waveforms of this nature are said to be periodic. Generally, a

periodic wave representing a signal can be described using the following parameters.

1. Amplitude (A)

2. Frequency (f)

3. Periodic time (T)

Amplitude (A): Amplitude is the maximum value a wave can attain. For example, the amplitude

of waves in Figure 1.1 is 1.

Frequency (f): Frequency of a wave is the number of cycles made by the wave in one second. It

is measured in units called hertz (Hz). 1Hz is equivalent to 1 cycle/second.

Periodic time (T): The time taken by a signal to complete one cycle is called periodic time.

Periodic time, T, is given by the formula T = 1/f where f is the frequency of the wave.

When a digital signal is to be sent over analog telephone lines e.g. e-mail, it has to be converted

to analog signal. This is done by connecting a device called a modem to the digital computer.

This process of converting a digital signal to an analog signal is known as modulation. On the

receiving end, the incoming analog signal is converted back to digital form in a process known

as demodulation.

Concepts of data representation in digital computers

Since digital computers are the most widely used, this book seeks to explain in details how data

is represented in digital form.

Page 5 of 117

Data and instructions cannot be entered and processed directly into computers using human

language. Any type of data be it numbers, letters, special symbols, sound or pictures must first be

converted into machine readable form i.e. binary form. Due to this reason, it is important to

understand how a computer together with its peripheral devices handle data in its electronic

circuits, on magnetic media arid in optical devices.

Data representation in electronic circuits

Electronics components, such as the microprocessor, are made up of millions of electronic

circuits. The availability of a high voltage (on) in these circuits is interpreted as 'I' while a low

voltage (off) is interpreted as a '0'. This concept can be compared to switching on and off of an

electric circuit. (Figure 1.3). When the switch is closed, (Figure 1.3 (a)), the high voltage in the

circuit causes the bulb to light (' l' state). On the other hand, when the switch is open (Figure 1.3

(b)), the bulb goes off ('0' state).

Data representation on magnetic media

The presence of a magnetic field in one direction on magnetic media is interpreted as 'I', while

the field in the opposite direction is interpreted as '0'. Magnetic technology is mostly used on

storage devices which are coated with special magnetic materials such as iron oxide. Data is

written on the media by arranging the magnetic dipoles of some iron oxide particles to face in the

same direction and some others in the opposite direction. Figure 1.4 shows how data is recorded

on the surface of a magnetic disk. Note that the dipoles on the track are arranged in groups facing

opposite directions.

Data representation on optical media

In optical devices, the presence of light is interpreted as '1' while its absence is interpreted as '0'.

Optical devices use this technology to read or store data. Take an example of a CD-ROM. If the

shiny surface is placed under a powerful microscope, the surface can be observed to have very

tiny holes called pits. The areas that do not have pits are called land (Figure 1.5).

In Figure 1.5 (a) the laser beam reflects from the land which is interpreted as '1' while in Figure

1.5 (b) the laser beam enters a 'pit' and is not reflected. This is interpreted as '0'. The reflected

pattern of light from the rotating disk falls on a receiving photoelectric detector that transforms

the patterns into digital form.

Reason for use of binary system in computers

It has proved difficult to develop devices that can understand or process natural language

directly due to the complexity of natural languages. It is, however, possible to develop devices

that can understand binary language. Devices that read, process and output data in digital form

are used in computers and other digital devices such as calculators. Binary logic has therefore

simplified the technology needed to develop both hardware and software systems. Other reasons

for the use of binary are that digital devices are more reliable, small in size and use less energy as

compared to analog devices.

Bits, bytes, nibble and word

Page 6 of 117

The terms bits, bytes, nibble and word are used widely in reference to computer memory and

data size. Let us explain each term.

Bits: A bit can be defined as binary digits that can either be 0 or 1. It is the basic unit of data or

information in digital computers.

Byte: A group of bits (often 8) used to represent a character is called a byte. A byte is considered

as the basic unit of measuring memory size in computers.

A nibble: Half a byte, which is usually a grouping of 4 bits is called a nibble.

Word: Two or more bytes make a word. The term word length is used as a measure of the

number of bits in each word. For example a word can have a length of 16 bits, 32 bits, 64 bits

etc.

Types of data representation

Computers not only process numbers, letters and special symbols but also complex types of data

such as sound and pictures. However these complex types of data take a lot of memory and

processor time when coded in binary form. This limitation necessitates the need to develop better

ways of handling long streams of binary digits. Higher number systems are used in computing to

reduce these streams of binary into manageable form. This helps to improve the processing speed

and optimise memory usage.

Number systems and their representation

As far as computers are concerned, number systems can be classified into four major categories:

1. Decimal number system.

2, Binary number system

3. Octal number system.

4. Hexadecimal number systems.

Let us now consider each number system and its representation.

Decimal number system

The term decimal is derived from a Latin prefix deci which means ten. Decimal number system

has ten digits ranging from 0-9. Because this system has ten digits, it is also called a base ten

number system or denary number system,

A decimal number should always be written with a subscript 10 e.g. XIO

But since this is the most widely used number system in the world, the subscript is usually

understood and ignored in written work. However, when many number systems are considered

together, the subscript must always be put so as to differentiate the number systems.

The magnitude of a number can be considered using three parameters.

Page 7 of 117

1. Absolute value.

2. Place value or positional value.

3. Base value.

The absolute value is the magnitude of a digit in a number. For example, the digit 5 in 7458 has

an absolute value of 5 according to its value in the number line as shown in the Figure 1.6.

The place value of a digit in an number refers to the position of the digit in that number i.e.

whether "tens", "hundreds", "thousands" etc. as shown in Table 1.1.

Table 1.1

Thousands, 103 Hundreds, 102 Tens, 101 Ones, 10°

7 4 5 8

The total value of a number is the sum of the place value of each digit making the number. For

example, the total value of the digits in Table 1.1 can be worked out by as shown below:

7 x 1000 = 7 000

4x 100 = 400 400

5 x 10 = 50

8 x l = 8

Total = 7458

The base value of a number also known as the radix, depends on the type of number system that

is being used. The value of any number depends on the radix. For example the number 10010 is

not equivalent to 1002,

Binary number system

Binary number system uses two digits namely, 1 and 0 to represent numbers. Unlike in decimal

numbers where the place values go up in factors of ten, in binary system, the place values

increase by factors of two. Binary numbers are written as X2. Consider a binary number such as

10112. The right most digit has a place value of 1 x 2° while the left most has a place value of 1 x

23 as shown in Table 1.2.

Table 1.2

Place values (2n) Eights 23 =8 Fours 22 =4 Twos 21 = 2 Ones 2° = 1

Binary digit 1 0 1 1

The decimal equivalent of 10112 can be worked out as shown below.

1 x 8 = 8 Ox4 = 0 1 x 2 = 2 l x l =1 Total = 11

;Octal number system

Page 8 of 117

The octal number system consists of eight digits running from 0 - 7. The place value of octal

numbers go up in factors of eight from right to left as shown in Table 1.3. For example to

represent an octal number such as 724\, we proceed as follows:

Table 1.3

Place values 83 =512 82 =64 81 = 8 8° = 1

Octal digit 7 2 4 5

The decimal equivalent can be worked out as follows:

7 x 512 = 3 584 2 x 64 = 128 4 x 8=32 5xl = 5 Total = 3749

Hexadecimal number system

This is a base sixteen number system that consist of sixteen digits ranging from 0 - 9 and letters

A - F where A is equivalent to 10, B to 11 up to F which is equivalent to 15 in base ten system.

The place value of hexadecimal numbers goes up in factors of sixteen as shown in Table 1.4.

Table 1.5 gives digits for base 10 and base 16.

Table 1.4

Place value 162= 256 161 = 16 16° = 1

Hexadecimal digit 9 4 6

Table 1.5

Base 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

A hexadecimal number is usually denoted using 16 as a subscript or capital letter H to the right

of the number. For example, 94B can be written as 94BI6 or 94BH.

The decimal equivalent of94BI6 can be worked out as shown below.

9 x 256 =2304 4 x 16 = 64 11xl =11 total = 2379

Further conversion of numbers from one number system to another

So far, we have looked at the four types of number systems and introduced their basic concepts

in a general and limited way. However, in this section, we shall have a detailed look at how to

convert numbers from one system to another. The following conversions will be considered.

1. Conversion between binary and decimal numbers.

2. Converting octal numbers to decimal and binary form.

3. Converting hexadecimal numbers to decimal and binary form.

Page 9 of 117

Conversion between binary and decimal numbers

Converting binary numbers to decimal numbers

To convert a binary number to decimal number, we proceed as follows:

1. First write the place values starting from the right hand side.

2. Write each digit under its place value.

3. Multiply each digit by its corresponding place value.

4. Add up the products. The answer will be the decimal number in base 10.

Converting decimal numbers to binary

To convert a decimal number to binary, there are two possible methods, the long division method

and the place value method.

In long division method, the decimal number is continuously divided by 2. However, at each

level of the division, the remainder which is either a 1 or 0 is written to the right of the quotient.

Starting from bottom upwards, read the series of the remainder digits. The series of 1 's and O's

obtained represent the binary equivalent of the number.

To convert a decimal number to a binary number using place value method proceed as follows:

Write down the place values in factors of 2 up to the value immediately larger or equal to the

number being considered. For example, to convert 24710 into binary, we write" down the place

values up to 28 i.e.256. Similarly to convert 25810' write down the place values up to 29 i.e. 512.

If the number being considered is itself a factor of 2 such as 64, 128, 256 etc., then place values

should be written up to the number itself.

Let us now convert 24710 to binary. Starting from the left as shown in Table 1.6, subtract the

place value from the number being converted. If the difference is a positive number or a 0, place

a 1 in the binary digit row. If the difference is negative, place a Zero.

In Table 1.6, a 0 is placed in the binary digits row of the first column because 247 - 256 gives a

negative value. The number 247 is then carried forward to the next lower place value i.e. 128.

Table 1.6

Place value 28 27 26 25 24 23 22 21 2°

Difference 247 - 256 247 - 128

Binary digit 0

Since 247 - 128 gives a positive difference of 119, the digit 1 is placed in the second column of

the binary digit row and the difference is carried forward to the next lower place value as shown

in Table 1.7.

Table 1.7

256 128 64 32 16 8 4 2 1

247 - 256 247 - 128 119 - 64

0 1

Page 10 of 117

Table 1.8 shows the completed operation. Table 1.8

256 128 64 32

247 - 256 247 - 128 119 - 64 55 - 32

0 1 1 1

16 8 4 2 1

23 - 16 7-8 7-4 3-2 1 - 1=0

1 0 1 1 1

Converting a binary fraction to decimal number

A decimal number which has both an integral and fractional part is called a real number. The

weight of the integral part of a real number increases from right to left in factors of I 0 while that

of the fractional part decreases from left to right in factors of 10-x. Table 1.9 shows how a real

number 87.537 can be represented using the place values.

Table 1.9

Place value 101 10° . 10-1 10-2 10-3

Decimal digit 8 7 . 5 3 7

Value 80 7 . 0.5 0.03 0.007

For a binary number, the same approach as in Table 1.9 can be used, only that the place values

(weight) are based on factors of 2. For example, the binary number 11.110112 can be represented

as shown in Table 1.10.

Table 1.10

Place value 21 2° . 2-1 2-2 2-3 2-4 2-5

Binary digit 1 1 . 1 1 0 1 1

Value in base ten 2 1 . 0.5 0.25 0 0.0625 0.03125

NB: When converting a real number from binary to decimal, work out the integral and fractional

parts separately then combine them.

Converting a decimal fraction to binary

Remember that to convert a decimal integer to its binary equivalent we continuously divide the

number by 2. In real decimal numbers, we do the same for the integral part. However to convert

the fractional part to its binary equivalent, we proceed as follows:

1. Multiply the fractional part by 2 and note down the product.

2. Take the fractional part of the immediate product and multiply it by 2 again.

3. Continue this process until the fractional part of the subsequent product is 0 or starts repeating

the value of the original fractional part of the number being converted:

Page 11 of 117

4. The binary equivalent of the fractional part is extracted from the products by reading the

respective integral digits from the top downwards as shown by the arrow in

5. Combine the two parts together to get the binary equivalent.

Converting octal numbers to decimal and binary numbers

Converting octal numbers to decimal numbers

To convert a base 8 number to its decimal equivalent we use the same method as we did with

binary numbers. However, it is important to note that the maximum absolute value of an octal

digit is 7. For example 982 is not a valid octal number because digits 8 and 9 are not octal digits,

but 7368 is valid because all the digits are in the range of 0 - 7. Example 1.13 and 1.14 show how

to convert an octal number to a decimal number.

Converting octal numbers to binary numbers

To convert an octal number to binary, each digit is represented by 3 binary digits because the

maximum octal digit i.e. 7 can be represented with a maximum of 3 digits. See Table 1.11.

Table 1.11

Octal digit Binary equivalents

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Examples 1.15, 1.16 and 1.17 show how to convert octal numbers to binary numbers.

Converting hexadecimal numbers to decimal and binary numbers

Converting hexadecimal numbers to decimal number

To convert a hexadecimal number to its base ten equivalents, we proceed as follows:

1. First write the place values starting from the right hand side.

2. If a digit is a letter such as an 'A' write its decimal equivalent.

3. Multiply each hexadecimal digit with its corresponding place value and then add the products.

The following examples illustrate how to convert a hexadecimal number to a decimal number.

Converting hexadecimal numbers into binary numbers

Since F is equivalent to a binary number 11112, the hexadecimal numbers are represented using 4

digits as shown in Table 1.12.

Page 12 of 117

Table 1.12

Decimal. Hexadecimal Binary

equivalent digit equivalent

00 00 0000

01 01 0001

02 02 0010

03 03 0011

04 04 0100

05 05 0101

06 06 0110

07 07 0111

08 08 1000

09 09 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

The simplest method of converting a hexadecimal number to binary is to express each

hexadecimal digit as a four bit binary number and then arranging the groups according to their

corresponding positions as shown in Example 1.21.

Symbolic representation using coding schemes

In computing, a single character such as a letter, a number or a symbol is represented by a group

of bits, the number of bits per character depends on the coding scheme used.

The most common coding schemes are the Binary Coded Decimal (BCD), Extended Binary

Coded Decimal Interchange Code (EBCDIC) and American Standard Code for Information

Interchange (ASCII).

Binary Coded Decimal

Binary Coded Decimal is a 4-bit code used to represent numeric data only. For example, a

number like 9 can be represented using Binary Coded Decimal as 10012, Binary Coded Decimal

system is mostly used in simple electronic devices like calculators and microwaves. This is

because it makes it easier to process and display individual numbers on their Liquid Crystal

Display (LCD) screens.

A standard Binary Coded Decimal, an enhanced format of Binary Coded Decimal, is a 6-bit

representation scheme which can represent nonnumeric characters. This allows 64 characters to

be represented. For example, letter A can be represented as 1100012 using the standard Binary

Page 13 of 117

Coded Decimal. A set of Binary Coded Decimal and standard Binary Coded Decimal code are

provided in Appendix II.

Extended Binary Coded Decimal Interchange Code (EBCDIC)

Extended Binary Coded Decimal Interchange Code (EBCDIC) is an 8bit character coding

scheme used primarily on IBM computers. A total of256 (28) characters can be coded using this

scheme. For example, the symbolic representation of letter A using Extended Binary Coded

Decimal Interchange Code is 110000012, See Appendix II for a detailed scheme.

American Standard Code for Information Interchange (ASCII)

American Standard Code for Information Interchange (ASCII) is a 7-bit code, which means that

only 128 characters i.e. 27 can be represented. However manufacturers have added an eighth bit

to this coding scheme, which can now provide for 256 characters. This 8-bit coding scheme is

referred to as an 8-bit American Standard Code for Information Interchange. The symbolic

representation of letter A using this scheme is 10000012, See Appendix II for more details,

»Binary arithmetic operations

In mathematics, the four basic arithmetic operations applied on numbers are addition,

subtraction, multiplication and division. In computers the same operations are performed inside

the central processing unit by the arithmetic and logic unit (ALU). However the arithmetic and

logic unit cannot perform binary subtraction directly. It performs binary subtraction using a

process known as complementation. For multiplication and division, the arithmetic and logic unit

uses a method called shifting before adding the bits; however, because the treatment of this

method is beyond the scope of this book, we shall only explain how the computer performs

binary addition and subtraction.

Representation of signed binary numbers

In computer technology there are three common ways of representing a signed binary number.

1. Prefixing an extra sign bit to a binary number.

2. Using ones complement.

3. using twos complement.

Prefixing an extra sign bit to a binary number

In decimal numbers, a signed number has a prefix "+" for a positive number e.g. +2710 and "-"

for a negative number e.g. -2710 However in binary, a negative number may be represented by

prefixing a digit 1 to the number while a positive number may be represented by prefixing a digit

O. For example, the 7-bit binary equivalent of 127 is 11111112, To indicate that it is positive, we

add an extra bit (0) to the left of the number i.e. (0) 11111112, To indicate that it is a negative

number we add an extra bit (1) i.e. (1) 11111112, The problem of using this method is that the

zero can be represented in two ways i.e. (0)00000002 and (1)00000002,

Ones complement

Page 14 of 117

. The term complement refers to a part which together with another makes up a whole. For

example in geometry two complementary angles add up to one right angle (90°). The idea of

complement is used to address the problem of signed numbers i.e., positive and negative.

In decimal numbers (0 to 9), we talk of nine's complement. For example the nines complement

of 9 is 0 that of 5 is 4 while that of 3 is 6. However, in binary numbers, the ones complement is

the bitwise NOT applied to the number. Bitwise NOT is a unary operator (operation on only one

operand) that performs logical negation on each bit. For example the bitwise NOT of 11002 is

00112 i.e. Os are negated to Is while I's are negated to O’s. Likewise the bitwise NOT of 00 1 0

11 0 1 is 110100102 which represents -4510' The bitwise NOT of 8-bit zero 000000002 is

111111112, Looking at the two numbers, the most significant digit shows that the number has a

sign bit "0" for "+0" and" 1" for "-0". Like in the method of using an extra sign bit, in ones

complement, there are two ways of representing a zero.

Twos complement

Twos complement, equivalent to tens complement in decimal numbers, is the most popular way

of representing negative numbers in computer systems. The advantages of using this method are:

1. There are no two ways of representing a zero, as is the case with the other two methods.

2. Effective addition and subtraction can be done even with numbers that are represented

with a sign bit without a need for extra circuitries to examine the sign of an operand.

The twos complement of a number is obtained by getting the ones complement then adding a

1. For example, to get the twos complement of a decimal number 4510' first convert it to its

binary equivalent then find its ones complement. Add a 1 to the ones complement i.e.

4510 = 001011012

Bitwise NOT (00101101) = 11010010

Two's complement = 110100112

Binary addition

The five possible additions in binary are:

1. 0+0=0

2. 0 + 12= 12

3. 12 + 0 = 12

4. 12 + 12 =102 (read as 0, carry 1)

5. 12 + 12 + 12 = 112 (read as 1, carry 1)

Binary subtraction

Direct subtraction

The four possible subtractions in binary are:

1. 0-0=0

Page 15 of 117

2. 12-0= 1

3. 12 - 12 = 0

4. 102 - 12 = 12 (Borrow 1 from the next most significant digit to make 0 become 102, hence 102 -

12 = 12)

The following examples illustrate binary. Subtraction using the direct. method.

Subtraction using ones complements

The main purpose of using the ones complement in computers is to perform binary subtractions.

For example to get the difference in 5 - 3, using the ones complement, we proceed as follows:

 1. Rewrite the problem as 5 + (-3) to show that the computer performs binary subtraction by

adding the binary equivalent of 5 to the ones complement of 3.

2.Convert the absolute value of 3 into 8-bit equivalent i.e. 000000112,

 3.Take the ones complement of 000000 112 i.e. 111111002 which is the binary representation of

-310'

4. Add the binary equivalent of5 to the one's complement of3 i.e.

 000000101

 + 111111000

 (1)00000001

Looking at the difference of the two binary numbers, you will observe that:

1. It has a ninth bit. The ninth bit is known as an overflow bit.

2. The result show that the difference between the two numbers is 00000001. This is not

true! We know that it should be 00000010.

To address this problem in a system that uses ones complement, the overflow digit is added back

to the magnitude of the 8-bit difference. Therefore the difference becomes 00000001 + 1 =

00000010, which is the correct answer.

Subtraction using twos complements

Like in ones complement, the twos complement of a number is obtained by negating a positive

number to its negative counterpart. For example to get the difference in 5 - 3, using the two's

complement, we proceed as follows:

1. Rewrite the problem as 5 + (-3).

2. Convert the absolute value of 3 into 8-bit binary equivalent i.e. 00000011.

3. Take the ones complement of 000000 11 i.e. 11111100.

4. Add a 1 to the ones complement i.e. 11111100 to get 11111101

5. Add the binary equivalent of 5 to the twos complement of 3 i.e.

 000000101

 + 111111001

 (1)000000 1 0

Page 16 of 117

6. Ignoring the overflow bit, the resulting number is 00000010 which is directly read as a binary

equivalent of +2.

DATA PROCESSING

Chapter outline

2.1 Introduction

2.2 Data processing cycle

2.3 Description of errors in data processing

2.4 Data integrity

2.5 Data processing methods

2.6 Computer files

2.7 Types of computer processing files

2.8 File organisation methods

2.9 Electronic data processing modes

Introduction

Data refers to the raw facts that do not have much meaning to the user and may include numbers,

letters, symbols, sound or images. Information, on the other hand, refers to the meaningful output

obtained after processing the data.

Therefore the data processing refers to the process of transforming raw data into meaningful

output i.e. information. Data processing can be done manually using pen and paper,

mechanically using simple devices like typewriters or electronically using modem data

processing tools such as computers. Electronic data processing has become so popular that

manual and mechanical methods are being pushed to obsolescence.

Data processing cycle

Data processing cycle refers to input-process-output stages that data goes through to be

transformed into information. It is often referred to as a cycle because the output obtained can be

stored after processing and may be used in future as input. The four main stages of data

processing cycle are:

1. Data collection

2. Data input

3. Processing

4. Output

Data collection

Data collection is also referred to as data gathering or fact-finding. It involves looking for crucial

facts needed for processing.

Page 17 of 117

Methods of data collection

Some methods of data collection include interviews, use of questionnaires, observation etc. In

most cases, the data is collected after sampling. Sampling is the process of selecting

representative elements (e.g. people, organisations) from an entire group (population) of interest.

Some of the tools that help in the data collection include source documents such as forms, data

capture devices such as a digital camera etc.

Stages of data collection

The process of data collection may involve a number of stages depending on the method used.

These include:

Data creation: This is the process of putting together facts in an organised format. This may be

in form of manually prepared document or captured from the source using a data capture device

such as a bar code reader.

Data transmission: This will depend on whether data need to be transmitted via communication

media to the central office.

Data preparation: This is transcription (conversion) of data from source document to machine-

readable form. This may not be the case for all input devices. Data collected using devices that

directly capture data in digital form do not require transcription.

. Media conversion: Data may need to be converted from one medium to another e.g. from a

floppy disk to hard disk for faster input.

Input validation: Data entered into the computer is subjected to validity checks by a computer

program before being processed to reduce errors at the input.

Sorting: In case the data needs to be arranged in a predefined order, it is first sorted before

processing.

Data input

Data input refers to a process where the collected data is converted from human readable form to

machine-readable form (binary form). The conversion takes place in the input device.

Processing

This is the transformation of input data by the central processing unit (CPU) to a more

meaningful output (information). Some of the operations performed on data include calculations,

comparing values and sorting.

Output

The final activity in data processing cycle is producing the desired output also referred to as

information. The information can then be distributed to the target group or stored for future use.

Distribution is making the information available to those who need it and is sometimes called

Page 18 of 117

information dissemination. This process of dissemination may involve electronic presentation

over radio or television, distribution of hard copies, broadcasting messages over the Internet or

mobile phones etc.

Description of errors in data processing

The accuracy of computer output is very critical. As the saying goes, garbage in, garbage out

(GIGO), the accuracy of the data entered in the computer directly determines the accuracy of the

information given out.

Some of the errors that influence the accuracy of data input and information output include

transcription, computation and algorithm errors.

Transcription errors

Transcription errors occur during data entry. Such errors include misreading and transposition

errors.

Misreading errors

Incorrect reading of the source document by the user and hence entering wrong values bring

about misreading errors. For example, a user may misread a hand written figure such as 589 and

type S86 instead i.e. confusing 5 for S.

Transposition errors

Transposition errors results from incorrect arrangement of characters i.e. putting characters in the

wrong order. For example, the user may enter 396 instead of369.

Transcription errors can be avoided by using modem data capture devices such as bar code

readers, optical character readers, and digital cameras etc., which enter data with minimum user

intervention.

Computational errors

Computational errors occur when an arithmetic operation does not produce the expected results.

The most common computation errors include overflow, truncation and rounding errors.

Overflow errors

An overflow occurs if the result from a calculation is too large to be stored in the allocated

memory space. For example if a byte is represented using 8 bits, an overflow will occur if the

result of a calculation gives a 9-bit number.

Truncation errors

Truncation errors result from having real numbers that have a long fractional part that cannot fit

in the allocated memory space. The computer would truncate or cut off the extra characters from

the fractional part. For example, a number like 0.784969 can be truncated to four digits to

become 0.784. The resulting number is not rounded off.

Page 19 of 117

Rounding errors

Rounding errors results from raising or lowering a digit in a real number to the required rounded

number. For example, to round off 30 666 to one decimal place, we raise the first digit after the

decimal point if its successor is more than 5. In this case, the successor is 6 therefore 30.666

rounded up to one decimal place is 30.7. If the successor is below 5, e.g. 30.635, we round down

the number to 30.6.

Algorithm or logical errors

An algorithm is a set of procedural steps followed to solve a given problem. Algorithms are used

as design tools when writing programs. Wrongly designed programs would result in a program

that runs but gives erroneous output. Such errors that result from wrong algorithm design are

referred to as algorithm or logical errors.

Data integrity

Data integrity refers to the accuracy and completeness of data entered in a computer or received

from the information system. Integrity is measured in terms of accuracy, timeliness and

relevance of data.

Accuracy

Accuracy refers to how close an approximation is to an actual value. As long as the correct

instructions and data are entered, computers produce accurate results efficiently. In numbers, the

accuracy of a real number depends on the number. For example 72.1264 is more accurate than

72.13.

Timeliness

Timeliness of data and information is important because data and information have a time value

attached to them. If received late, information may have become meaningless to the user. For

example, information on the newspaper that is meant to invite people for a meeting or occasion

must be printed prior to the event and not later.

Relevance

Data entered into the computer must be relevant in order to get the expected output. In this case,

relevance means that the data entered must be pertinent to the processing needs at hand and must

meet the requirements of the processing cycle. The user also needs relevant information for daily

operations or decision making.

Threat to data integrity

Threats to data integrity can be minimized through the following ways:

1. Backup data preferably on external storage media.

2. Control access to data by enforcing security measures.

Page 20 of 117

3. Design user interfaces that minimize chances of invalid data entry.

4. Using error detection and correction software when transmitting data.

5. Using devices that directly capture data from the source such as bar code readers, digital

cameras, optical character readers etc.

Data processing methods.

As mentioned earlier, data can be processed manually, mechanically or electronically.

Manual data processing

In manual data processing, most tasks are done manually with a pen and a paper. For example in

a busy office, incoming tasks (input) are stacked in the "in tray". The processed tasks are then

put in the "out tray" (output). The processing of each task involves a person using the brain in

order to respond to queries. The processed information from the out tray is then distributed to the

people who need it or stored in a file cabinet.

Mechanical data processing

Manual processing is cumbersome and boring especially when processing repetitive tasks.

Mechanical devices were developed to help in automation of manual tasks. Examples of

mechanical devices include the typewriter, printing press and weaving looms. Initially, these

devices did not have any electronic intelligence.

Electronic data processing

For a long time, scientists have researched on how to develop machines or devices that would

simulate some form of human intelligence during data and information processing. This was

made possible to some extent with the development of electronic programmable devices such as

computers.

The advent of microprocessor technology has greatly enhanced data processing efficiency and

capability. Some of the microprocessor-controlled devices include computers, cellular (mobile)

phones, calculators, fuel pumps, modem television sets, washing machines etc.

Computer files

A file can be defined as a collection of related records that give a complete set of information

about a certain item or entity. A file can be stored manually in a file cabinet or electronically in

computer storage devices. Computerized storage offers a much better way of holding

information than the manual filing systems, which heavily rely on the concept of the file cabinet.

Some of the advantages of computerized filing system include:

1. Information takes up much less space than the manual filing.

2. It is much easier to update or modify information.

3. It offers faster access and retrieval of data.

4. It enhances data integrity and reduces duplication.

Elements of a computer file

A computer file is made up of three elements namely: characters, fields and records.

Page 21 of 117

Characters A character is the smallest element in a computer file and refers to a letter, number

or symbol that can be entered, stored and output by a computer. A character is made up of a set

of seven or eight bits depending on the character-coding scheme used.

Fields

A field is a single character or collection of characters that represents a single piece of data. For

example, in a student’s record, the student's admission number is an example of a field.

Records

A record is a collection of related fields that represent a single entity. For example, in a class

score sheet, details of each student in a row such as admission number, name, total marks and

position make up a record.

Logical and physical files

Computer files are classified as either logical or physical.

Logical files

A logical file is a type of file viewed in terms of what data items it contains and details of what

processing operations may be performed on the data items. It does not have implementation

specific information like field, data types, size and file type. Logical files are discussed in system

design later in the book.

Physical files

As opposed to a logical file, a physical file is one that is viewed in terms of how data is stored on

a storage media and how the processing operations are made possible. Physical files have

implementation specific details such as characters per field and data type for each field. Physical

files are discussed later in system implementation and operation in this book.

Types of computer processing files

There are numerous types of files used for storing data needed for processing, reference or

backup. The main common types of processing files include master files, transaction, reference,

backup, report and sort file.

Master file

A master file is the main file that contains relatively permanent records about particular items or

entries. For example a customer file will contain details of a customer such as customer ID, name

and contact address.

Transaction (movement) file

A transaction file is used to hold input data during transaction processing. The file is later used

to update the master file and audit daily, weekly or monthly transactions. For example in a busy

Page 22 of 117

supermarket, daily sales are recorded on a transaction file and later used to update the stock file.

The file is also used by the management to check on the daily or periodic transactions.

Reference file

A reference file is mainly used for reference or look-up purposes. Lookup information is that

information which is stored in a separate file but is required during processing. For example, in a

point of sale terminal, the item code entered either manually or using a bar code reader looks up

the item description and price from a reference file stored on a storage device.

Backup file

A backup file is used to hold copies (backups) of data or information from the computers fixed

storage (hard disk). Since a file held on the hard disk may be corrupted, lost or changed

accidentally, it is necessary to keep copies of the recently updated files. In case of the hard disk

failure, a backup file can be used to reconstruct the original file.

Report file

A report file is used to store relatively permanent records extracted from the master file or

generated after processing. For example you may obtain a stock levels report generated from an

inventory system while a copy of the report will be stored in the report file.

Sort file

A sort file is mainly used where data is to be processed sequentially. In sequential processing,

data or records are first sorted and held on a magnetic tape before updating the maste file.

File organization methods

File organization refers to the way data is stored in a file. File organization is very important

because it determines the method of access, efficiency, flexibility and storage devices to be used.

There are four methods of organizing files on a storage media. This includes: sequential, random,

serial and indexed-sequential

Sequential file organisation

In sequential file organisation, records are stored and accessed in a particular order sorted using a

key field. Retrieval requires searching sequentially through the entire file record by record from

the beginning to the end. Because the records in the file are sorted in a particular order, better file

searching methods like the binary search technique can be used to reduce the time used for

searching a file. Since the records are sorted, it is possible to know in which half of the file a

particular record being searched is located. Hence this method repeatedly divides the set of

records in the file into two halves and searches only the half in which the record is found. For

example, if the file has records with key fields 20, 30, 40, 50, 60 and the computer is searching

for a record with key field 50, it starts at 40 upwards in its search, ignoring the first half of the

set.

 Random or direct file organisation

Page 23 of 117

In random or direct file organisation, records are stored randomly but accessed directly. To

access a file stored randomly, a record key is used to determine where a record is stored on the

storage media. Magnetic and optical disks allow data to be stored and accessed randomly.

Serial file organisation

With serial file organisation, records in a file are stored and accessed one after another. The

records are not sorted in any way on the storage medium. This type of organisation is mostly

used on magnetic tapes.

Indexed-sequential file organisation method

This method is almost similar to sequential method, only that an index is used to enable the

computer to locate individual records on the storage media. For example, on an magnetic drum,

records are stored sequentially on the tracks. However, each record is assigned an index that can

be used to access it directly.

Electronic data processing modes

There are several ways in which a computer, under the influence of an operating system is

designed to process data. Examples of processing modes are:

1. Online processing

2. Real-time processing

3. Distributed processing

4. Time-sharing.

5. Batch processing

6. Multiprocessing

7. Multitasking

8. Interactive processing

On-line processing

In online data processing data is processed immediately it is received the computer is connected

directly to the data input unit via a communication link. The data input may be a network

terminal or an online input device attached to the computer.

Real-time processing

In a real-time data processing, computer processes the incom111g data as soon as it occurs, up-

dates the transaction file and gives an immediate response that would affect the events as they

happen. This is different from online in that for the latter an immediate response may not be

required. The main purpose of a real-time processing is to provide accurate, up-to-date

information hence better services based on a true (real) situation. An example of real-time

processing is making a reservation for airline seats. A customer may request for an airline

booking information through a remote terminal and the requested information will be given out

within no time by the reservation system. If a booking is made, the system immediately updates

Page 24 of 117

the reservations file to avoid double booking and sends the response back to the customer

immediately.

Distributed data processing

Distributed data processing refers to dividing (distributing) processing tasks to two or more

computers that are located on physically separate sites but connected by data transmission media.

For example, a distributed database will have different tables of the same database residing on

separate computers and processed there as need arises. The users of the distributed database will

be completely unaware of the distribution and will interact with the database as if all of it was on

their computer.. This distribution of processing power increases efficiency and speed of

processing. An example is in the banking industry where customers' accounts are operated on

servers in the branches but all the branch accounts can be administered centrally from the main

server as if they resided on it. In this case, we say that the distributed database is transparent to

the user because the distribution is hidden from the user's point of view.

Time-sharing

In a time-sharing processing, many terminals connected to a central computer are given access to

the central processing unit apparently at the same time. However in actual sense, each user is

allocated a time slice of the CPU in sequence. The amount of time allocated to each user is

controlled by a multi-user operating system. If a user's task is not completed during the allocated

time slice, he/she is allocated another time slice later in a round robin manner.

Batch processing

In batch processing, data is accumulated as a group (batch) over a specified period of time e.g.

daily, weekly or monthly. The batch is then processed at once. For example in a payroll

processing system, employees' details concerning number of hours worked, rate of pay, and other

details are collected for a period of time, say one month. These details are then used to process

the payment for the duration worked. Most printing systems use the batch processing to print

documents.

Multiprocessing

Multiprocessing refers to the processing of more than one task at the same time on different

processors of the same computer. This is possible in computers such as mainframes and network

servers. In such systems, a computer may contain more than one independent central processing

unit, which works together in a coordinated way. At a given time, the processors may execute

instructions from two or more different programs or from different parts of one program

simultaneously. This coordination is made possible by a multiprocessing operating system that

enables different processors to operate together and share the same memory.

Multiprogramming

Multiprogramming, also referred to as multi-tasking refers to a type of processing where more

than one programs are executed apparently at the same time by a single central processing unit.

It is important to note that, as opposed to multiprocessing. In multiprogramming, a computer has

only one central processing unit. The operating system allocates each program a time slice and

Page 25 of 117

decides what order they will be executed. This scheduling is done so quickly that the user gets

the impression that all programs are being executed at the same time.

Interactive processing

In interactive data processing, there is continuous dialogue between the user and the computer.

As the program executes, it keeps on prompting the user to provide input or respond to prompts

displayed on the screen.

Page 26 of 117

ELEMENTARY PROGRAMMING PRINCIPLES

Chapter outline

3.1 Introduction

3.2 Computer programming

3.3 Description of terms used in programming

3.4 Levels of programming languages

3.5 Advantages and disadvantages of low level and high-level languages

3.6 Program development

3.7 Program documentation

3.8 Development of algorithms

3.9 Program control structures

3.10 Designing more complex algorithms

Introduction

Human beings have evolved from the Stone Age to a highly sophisticated and advanced society

by inventing things like the wheel, fire, transistors and today's ultra modem devices like

computers. The idea of computers started way back in the nineteenth century.

The first generation computers called Electronic Numeric integrator and Calculator (ENIAC 1)

were operated by plugging wires into a control panel that resembles the old telephone

switchboards

Computer programming

A computer works by executing a set of instructions known as a program. The term

programming refers to the process of developing computer instructions (programs) used to solve

a particular task. It involves use of special characters, signs and symbols found in a particular

programming language to create computer instructions. A programming language is a special set

of symbols that can be translated into machine-readable form by the computer when arranged in

a particular sequence or order. Each language has a special sequence or order of writing

characters usually referred to as syntax.

It was John von Neumann of Princeton University (USA) who first came up with the proposition

to store programs in the computer memory. Perhaps, this was one of the most dramatic

developments in the computer history. Why? Because not only did the new stored-program way

of computing increase-processing speed but also allowed easy and flexible methods of editing

and updating the program.

Description of terms used in programming

Before we go further with programming, it is important to define some common terms used in

computer programming.

Source program

Page 27 of 117

The term source program refers to the program code that the programmer enters in the program

editor window that is not yet translated into machine-readable form. The source program is

usually created using a particular programming language as discussed later.

Object code

The term object code refers to the program code that is in machine-readable. A source code that

is not in machine-readable form must be translated into object code.

Translators

The term translator is used to refer to language processors such as assemblers, interpreters and

compilers that convert the source program into object code.

Assembler

An assembler translates assembly language into machine language that the computer can

understand and execute.

Interpreter

An interpreter translates the source program line-by-line, allowing the CPU to execute one line

before translating the next. The translated line is not stored in the computer memory. It means

that every time the program is needed for execution, it has to be translated. This method of

translating programs was very common in early computers that did not have enough memory to

store the object code as a file that can be executed later

Compiler

A compiler translates the entire source program into object code: The object code file can be

made into a fully executable program by carrying out another process known as linking which

joins the object code to all the other files that are needed for the execution of the program. After

the linking process, an executable file (application file) is generated. This file is stored on a

storage media such as a disk with a name that has a unique extension (.EXE). Examples of

executable files are WINWORD.EXE and PM70.EXE used to start Microsoft Word and Adobe

PageMaker 7.0 respectively.

The difference between the interpreters and compilers are summarised below:

Interpreters Compilers

1. Translates the source program

one statement at a time

1. Translates the entire source

code

at once before execution

2. Translates the program each

Time it is run hence slower than

Compiling

2. Compiled program (object

code) can be saved on a storage

media and run as required, hence

Executes faster than interpreted

Programs.

Page 28 of 117

3. Interpreted object code takes

Less memory compared to

Compiled program.

3. Compiled programs require

More memory as the object file

Are larger.

Levels of programming languages

Many programming languages have been developed over the years. These languages are

classified into two major levels namely:

1. Low-level languages

2. High-level languages

These levels are further subdivided into five generations. The first and second generations

consist of low-level languages while the third to the fifth generation consist of high-level

languages.

Low-Level languages

Low-level languages are classified as low because the computer can easily understand them

directly or they require little effort to translate into computer understandable form. These

languages are hardware oriented and therefore they are not portable i.e. a program written for

one computer cannot be installed and used on another. Two types of low level languages are the

machine languages and assembly languages.

Machine languages (First generation languages)

In machine languages, instructions are written using binary logic. Given that data and

instructions are in binary form, many lines of code are needed to accomplish even a simple task

like adding two numbers. A program written in machine language might look like this:

It is evident from the above code that it is hard for a person to guess what the program is all

about unless they have special knowledge in machine level programming. Furthermore, different

CPU's have different machine codes e.g. those for the Intel Pentium processors may differ from

Motorola or Cyrix processors. Therefore before decoding the meaning, a programmer has to

know for which CPU the program was written. Obviously, such programs are hard to understand

from the programmer's point of view, but very easy to execute from the computer's perspective.

Assembly languages (Second generation languages)

Assembly languages were developed in order to overcome the difficulties of understanding and

using machine languages. These languages represented the first successful attempt to make

computer languages readable. The languages allowed programmers to write programs as a set of

symbolic operation codes called mnemonics. Mnemonics are basically shortened two or three

letter words. Programs written in assembly language require an assembler in order to convert

them into machine language that the computer can understand. Just like the machine languages,

assembly languages are also machine dependent and therefore a program written for one

computer cannot be used on another.

Page 29 of 117

High-level languages

High-level languages are very close to the human language (English like) and they can be read

and understood even by people who are not experts in programming. There are many types of

high-level languages and each of them was developed to address a particular problem-solving

domain while others came about due to advancement in technology. These languages are

machine independent. This means that a programmer concentrates on problem solving during a

programming session rather than how a machine operates.

High-level languages can be classified into five groups:

1. Third generation languages. (3 GLs)

2. Fourth generation languages. (4 GLs)

3. Fifth generation languages. (5 GLs)

4. Object oriented languages. (OOPs)

5. Web scripting languages.

Third generation languages (3 GLs)

Third generation languages (3 GLs) are also called structured or procedural languages. A

procedural language makes it possible to break a program into components called modules each

performing a particular task. This is referred to as structured programming. The structured

programming approach emphasizes the following:

1. Large programs can be broken down into smaller sub programs each performing a single task.

2. Use of a few simple control structures in problem solving. These control structures include

sequence, selection and iteration as covered later in this book.

Structured programming offers many benefits because it is flexible, easier to read and modify.

Examples of third generation programming languages include:

Pascal: Pascal was initially developed as an academic language, to help in the teaching and

learning of structured programming.

FORTRAN: (FORmula TRANslator): This language was developed for mathematicians,

scientists and engineers. It enables writing of programs with mathematical expressions.

COBOL: (Common Business Oriented Language): This language is designed for developing

programs that solve business problems e.g. developing data processing applications such as

computer-based inventory control systems.

BASIC: (Beginners All-purpose Symbolic Instructional Code): This language was mainly

developed to enable students to easily learn programming. Basic is a simple general-purpose

language used for developing business and educational applications. Because of its simplicity, it

is a powerful tool for students who wish to learn programming. It was the first high-level

language that was available for microcomputer users.

C: This is a programming language mainly used for developing system software such as the

operating system. It is one of the most popular and powerful high-level languages in the business

world because of its ability to provide the programmer with powerful features of low-level

languages and at the same time easily understandable as a high level language.

Page 30 of 117

Ada: This language was named after the first lady programmer, Ada Lovelace. Ada is suitable

for developing military, industrial and real time systems. .

A sample program written in Pascal language

Imagine the task of developing a program that would solve the equation of a straight line given

by the algebraic expression:

 Y = MX + C.

To enter the program code below in Pascal, proceed as follows:

1. From Windows explorer, locate a folder called TP and open it.

2. From the TP folder select BIN

3. From BIN window, double click a file named turbo.EXE. Pascal program window is displayed

on the screen.

4. Enter the program code exactly as it is but ignore the numbering.

1. Program Straight Line (Input, Output);

2. Var

3. y, m, x, c: Integer;

4. Begin

5. Writeln ('Input the value of m');

6. Readln (m);

7. Writeln ('Input the value of x');

8. readln (x);

9. Writeln ('Input the value of c ');

10. Readln (c);

11. Y: = m * x + c;

12. Writeln (The value of y is:’, y);

13. End.

Explanation

Line 1: This is the program header. The word "Program" indicate the beginning of the program

whose name is Straight-Line. The (input, output) statements shows that the program will expect

some input from the keyboard and display the output on the screen.

Line 2: Var is short form for variable. A variable is a location for data in the computer memory.

This statement tells the computer that variables are about to be declared. When a variable is

declared, the computer sets aside some memory space to store a value in the variable.

Line 3: F our variables have been declared of type integer. This means that the memory spaces

that will be set aside can only hold values that are whole numbers.

Line 4: The Begin statement shows that this is the start of the program body. The computer

executes statements in this section. For example, the execution starts by asking the user to input

the value of m.

Line 5: The writeln statement displays whatever is in the brackets on the screen. Notice that the

statements in brackets are written between inverted commas. The string will be sent to the screen

exactly the way it appears in the brackets. If you wish to display the value held in a variable on

Page 31 of 117

the screen, then you have to remove the inverted comma's and write the name of the variable in

the brackets e.g. writeln (y) will display the value held in the variable y.

Line 6:The read or readln statement reads a value and stores it in a variable. When the program

is running, a read/readln statement in the code will display a blinking cursor that indicates to the

user where to type the input.

Line 11: Calculates the value of y. Notice the symbol’: ='. In Pascal! This is called the

assignment statement. The values on the righ1 are calculated then stored in the variable y, which

is on the left of the assignment symbol.

Line 12: The writeln displays the value stored in yon the screen. Notice that y is not within the

inverted commas. If you gave the value of m as 10, x as 2 and c as 20 then the following should

appeal on your screen: The value of y is: 40.

This is because the statements between the inverted comma’ are meant to make the output

readable on the screen. Otherwise: only the value 40 would have been displayed.

Line 13: The 'End.' statement shows the end of a program.

Fourth generation languages (4 GLs)

Fourth generation languages make programming an even easier task that the third generation

languages because they present the programmer with more programming tools. Examples of

such tools include command buttons, forms etc. With the advent of these languages, gone are the

days when a person had to write lines upon lines of code. Instead, the programmer selects

graphical objects on the screen called controls then uses them to create designs on a base form.

The programmer may also use an application generator that works behind the scenes to generate

the necessary code; hence the programmer is freed from the tedious work of writing the code.

Examples of fourth generation languages are: Visual Basic, Delphi Pascal and Visual COBOL.

A sample form designed using Visual basic programming language

The programmer in this case simply picks a tool from the toolbox and uses it to create objects

such as command buttons, textboxes etc. on the form by dragging the mouse pointer on the form

during design.

Fifth generation languages (5 GLs)

Fifth generation languages are designed around the concept of solving problems by enabling the

computer to depict human like intelligence. These programs are designed to make the computer

solve the problem for the programmer rather than the programmer spending a lot of time to come

up with the solution. With such languages, the programmer only worries about what problem

needs to be solved and what conditions need to be met without worrying about how to implement

an algorithm to solve them. Examples of these languages are those used in artificial intelligence

like PROLOG, Mercury, LISP and OCCAM.

Object-oriented programming languages (OOP)

The idea behind object-oriented programming (OOP) was developed in the 1960's but its

significance was not appreciated until lately. The concept behind object oriented programming

languages is to look at a program as having various objects interacting to make up a whole. Each

object has specific data values that are unique to it (called state) and a set of the things it can

accomplish called (functions or behavior). This process of having data and functions that operate

Page 32 of 117

on the data within an object is called encapsulation. Several objects can then be linked together

to form a complete program. Examples of object-oriented languages include Simula, which was

developed in the 1960's. However, C++, Java and SmallTalk are contemporary languages in this

range. Although Java is sometimes associated with development of web sites it can be used to

create whole application programs that do not need a web browser to run. OOP has contributed

greatly to the development of graphical user interface operating systems and application

programs.

I

Web Scripting languages!

Web scripting languages are used to develop or add functionalities on web pages. Web pages are

hypertext documents created in a language called Hypertext Markup Language (HTML). The

language simply consists of tags that are interpreted by the web browser software to display text

when the HTML file is opened on the screen by a web browser software. A tag is a special word

enclosed between the less than and greater than (<>) symbols and the browser can interpret it as

a command. For example, to start a HTML page, one must use the <HTML> tag at the very top

of the document. Other languages like Extended HTML (XML) have been derived directly from

HTML with the only difference being that XML allows the user to define their own tags instead

of using the standard HTML tags.

Unlike other programming languages, HTML does not have the declaration part and control

structures (to be covered later in the book). Due of this reason, it is not considered as a true

programming language.

Due to its simplicity, HTML has many limitations and cannot be used alone when it comes to

developing functional websites. Some special blocks of code known as scripts may be inserted in

HTML pages using scripting languages like JavaScript, VBScript and Hypertext Preprocessor

(PHP) in order to add functionality to the HTML page. A script is a small program fragment,

written in a different language other than HTML but inserted into the HTML program.

Most HTML tags have an opening tag and a closing tag. An opening tag is enclosed between < >

while a closing one between </ >. Text that is to be displayed on the screen is enclosed between

an opening and closing tag. For example, the statement Hello will display the word

"Hello" in boldface on the screen. Table 3.1 shows examples of HTML tags and their meanings:

1

Table 3.1

Tag Meaning

1. <HTML></HTML> Marks the beginning and end of a HTML

document. All other tags and text fall

between these two tags.

2. <HEAD> </HEAD> Marks the header part of the document.

3. <TITLE> </TITLE> Gives title of the web page. Text between

this tags appears in the title bar when the

page is browsed.

4. <BODY></BODY> Marks the body part of the document.

5. <CENTER></CENTER> Centres text and objects on the web page.

Page 33 of 117

6. Bolds the text on the web page.

7. <1></1> Italicise the text.

8. <Hl></Hl> Sets size of text on the web page with H6

displaying the smallest and H1 the largest

Size.

Creating a script using Javascript

Javascript is a popular scripting language. Before writing your HTML program with a script

inserted, make sure that you have the latest browser software installed on your computer. Older

browsers may not have support for Javascript. If you are using Internet Explorer, it should be

version 5.0 and above.

Open Notepad and key in the following program. Do not write the numbers to the left of each

line of code.

1. <HTML>

2. <HEAD>

3. < TITLE> Scripting Example </TITLE>

4. </HEAD>

5. <BODY>

6. <HI> < CENTER. We are the world </CENTER> </HI>

7. <SCRIPT LANGUAGE = 'JavaScript'>

8. Document. Write ('My name is strongman');

9. alert ('congratulations for succeeding to run this script');

10. </SCRIPT>
11. </BODY></HTML>
After typing the entire program, save your file on the desktop as Example.html and then close the

notepad. Notice that the icon to your file on the desktop look like that of the default web browser

in your computer.

To view the web page, double click the icon of the file Example .htm1 on the desktop. Figure

3.3. shows an open webpage.

Fig. 3.3: A web page with a script.

Explanations

Line I: The tag <HTML> marks the beginning of the HTML document.

Line 2: The <TITLE> </TITLE> tags show the title of the web page. The text between this tags

will appear in the title bar of the running HTML document as can be seen in Figure 3.2. Notice

that the title is written in the header section i.e. between <HEAD> and </HEAD> tags.

Line 5: It marks the beginning of the body section. Anything between <BODY> and </BODY>

will be executed and displayed when the webpage starts running.

Page 34 of 117

Line 6: This line will display the text "We are the world" on the screen. The text will be large i.e.

size HI and it will be centred on the screen. The text will also be bolded.

Line 7: It marks the start point of the script. Notice the line LANGUAGE = 'JavaScript' which

tells the browser that the script will be written in JavaScript language.

Line 8: The statement Document. Write tells the browser using JavaScript to write whatever is in

the brackets. Notice that in JavaScript, the end of a statement is marked by a semicolon (;).

Line 9: The word alert displays a message box on the screen with an OK button. Clicking the

button makes the message box to disappear. The text in the brackets appears in the dialog box.

Line 10: Closes the script.

Line 11: Marks the end of the body and the HTML code.

Practical activity 3.1

1. Open a text editor program on your computer like NotePad or WordPad.I

2. Type the following program exactly the way it is in the editor:

<HTML>

<HEAD><TITLE> This is my first webpage</TITLE></HEAD> <BODY bgcolor = "red" >

<H l><CENTER>Hello World</CENTER></HI>

</BODY> </HTML>

3. Save your work as webpage.html on the desktop. Make sure that the Save As Type box reads

"All Files" before clicking the save button in order to avoid saving a text file with two

extensions i.e. webpage.html. txt

4. Close your text editor. Notice that your file on the desktop has the icon of the default web

browser installed on your computer. Double click it to view the web page! Figure 3.4 shows

a sample of the display expected when the file is loaded to the browser. If you have a colour

monitor, it should look as below only that it will have black bold text on a red background!

5. Check your program and change your background to blue, save then click the refresh button.

What happens?

Fig. 3.4: Sample web page

Advantages and disadvantages of low-level and high-level languages

Having looked at the various programming languages, it is important to identify the advantages

and disadvantages associated with each level of programming languages.

Advantages and disadvantages of low level languages

Advantages

1. The CPU understands machine language directly without translation.

2. The processor executes them faster because complex instructions are already broken down

into smaller simpler ones.

3. Low level languages are stable and hardly crash or break down once written.

Disadvantages

1. Low level languages are difficult and cumbersome to use and learn.

2. They require highly trained experts both to develop and maintain programs.

3. Removing errors (debugging) in low level language programs is difficult.

 4. Low level programs are machine dependent i.e. they are not transferable from one hardware or

software platform to another.

Page 35 of 117

 Hence we say they are not portable.

Advantages and disadvantages of high level languages

Advantages

1. High level languages are portable i.e. they are transferable from one computer to another.

2. High level languages are user friendly and easy to use and learn.

3. High level languages are more flexible; hence they enhance the creativity of the programmer

and increase productivity in the workplace.

4. High level languages are far much easier to correct errors (debug).

Disadvantages

1. Their nature encourages use of many instructions in a word or statement hence the complexity

of these instructions causes slower program processing.

2. They have to be interpreted or compiled to machine readable form before the computer can

execute them.

(Review questions 3.1)

 1. Define the term computer program.

 2. What is programming?

3. State three advantages of high level languages over low level, languages.

4. List four examples of high level languages and for each state its most appropriate application

area.

5. Why is an executable file unique as compared to any other file?

6. Differentiate between a compiler and an interpreter. Why did early computers work well with

interpreters?

7. List the various examples of programming languages per generation.

8. State one advantage of machine language over all the other languages.

9. Write the following in full:

 (a) HTML (b) OOP

10. Distinguish between source program and object code in programming.

11. Define the term encapsulation as used in object oriented programming.

Program development

The process of program development is not an easy task. Remember that in our definition of

programming, we said that the program must solve a particular problem or accomplish a task.

Hence, before developing a program, the requirements of the eventual users and its expected

functions should be fully understood.

Program development can be broken into the following stages:

1. Problem recognition.

2. Problem definition.

3. Program design.

4. Program coding.

5. Program testing and debugging.

6. Implementation and maintenance.

The completion of one stage leads to the beginning of the next. At the same time, some stages

have to be continuously reviewed in light of the step just before them to make sure that they meet

the requirements. For example, after coding, the code has to be compared to the design to see

Page 36 of 117

whether it meets the design specification. Therefore, this method becomes very expensive if the

correct requirements are not identified at each stage before the next is initiated.

It is important to note that although some people consider documentation as an independent

stage, it is done at all stages of the program development lifecycle as shown in Figure 3.5. This is

important so that the facts are recorded when they are still fresh and in the required detail by the

programmer.

Problem recognition

Problem recognition refers to the understanding and interpretation of a particular problem. In

order to understand a problem you need to look for the key words such as compute, evaluate,

compare etc. You can then rewrite the problem in a more simplified way using the keywords.

A programmer identifies problems in the environment and seeks to solve them by writing a

computer program that would provide the solution. Many of the privileges of automation that we

enjoy today are as a result of people who wrote computer programs to do the tasks. For example,

the intelligent control of traffic lights, the autopilot in aircraft and the use of robots in industry

are good examples where problems were recognised and the computer was used as a tool to solve

them. Think of the person who after seeing the tedious nature of typing using a manual

typewriter decided to develop a word processor program!

In any given circumstance, the following three situations can cause the programmer to identify a

problem that is worth solving:

1. Problems or undesirable situations that prevent an individual or organisations from achieving

their purpose.

2. Opportunity to improve the current program. It can be argued that any unexploited opportunity

is a problem.

3. A new directive given by the management requiring a change in the status quo.

Sample problem

Consider a mathematical problem such as calculating the area of a circle. In this case, the

problem is finding the area of a circle. As a programmer, it will be your interest to develop a

program that can be used to calculate the area of any circle. The equation for calculating the area

of a circle is given by A = лr2.

Problem definition

In problem definition, also referred to as problem analysis, the programmer tries to determine or

define the likely input, processing activities and the expected output using the keywords outlined

at the problem recognition stage.

At the end of this stage, the boundaries of the expected program will have been established i.e. a

clear view of what the program needs to accomplish must be in place. In case, several methods

are identified that can be used to solve the same problem, then the best alternative should be

chosen.

In our problem of calculating the area of a circle, an investigation reveals that the parameters

needed to determine the area of any circle are:

1. Input: (a) Pie (л) which is a constant.

 (b) The radius of the circle.

2. Process: The formula of calculating area of a circle which is л x radius x radius.

3. Output: The area of the circle (A).

Page 37 of 117

The problem definition stage ends with the writing of a requirements report or document for the

new program. It is this document that enables a programmer to come up with a program design

that meets the needs at hand.

Program design

Program design is the actual development of the program's processing or problem solving logic

called the algorithm. An algorithm refers to a limited number of logical steps that a program

follows in order to solve a problem. It is the programmer who will usually come up with the

algorithm after carefully analysing the requirements specification. Many programs are not

usually made up of one large block of code i.e. they are not monolithic. Instead, several units

called modules work together to form the whole

In modular programming, each module performs a specific task. This approach makes a program

flexible, easier to read and carry out error correction.

The design phase enables the programmer to come up with models of the expected program. The

models show the flow of events and data throughout the entire program from the time data is

input to the time the program gives out expected information. The development of algorithms is

covered later in the chapter.

Program coding

Program coding is the actual process of converting a design model into its equivalent program.

This is done by creating the program using a particular programming language. The end result of

this stage is a source program that can be translated into machine readable form for the computer

to execute and solve the target problem. Programs can be written in many different languages but

the general trend in the world today is to use programs that are easy to learn and understand such

as, Pascal, C++, Visual Basic and Java. Below is a comparison of the same program written in

Pascal and C++ used to calculate the area of a circle.

Program in Pascal Program in c++

Program AreaCircle (input, output);

Const Pi = 3.142;

Var

Radius, Area: real;

Begin

Writeln ('Enter the radius');

Readln (radius);

Area: = Pi *Radius *Radius;

Writeln ('The area is', Area)

End.

#include<iostream.h>

main ()

{

double radius, area;

const double pi = 3. 142;

cout«"Enter the radius"« "\n";

cin»radius;

area = pi *radius * radius;

cout«"The area is"« area «"\n";

return 0;

}

NB: Use lowercase when coding using C++.

Going through the two programs, you will realise that they are fairly similar, irregardless of the

language that was used to code them. The table below explains the program codes.

Pascal code C++ code Explanation

Page 38 of 117

Program AreaCircle

(input, output);

#include<iostream.h» The header of the

programs. The statements

in () and < > shows that

the user inputs data via the

keyboard and the program

display information on the

screen.

Const Pi = 3.142; double pi = 3.142; A constant has been

declared with a name pi

and value 3.142.

Var

radius, area:real

double area, radius; Real variables with

fractional

parts have been declared.

Begin { Marks the beginning of the

program body or c++

function

Writeln ('Enter

the radius');

cout< <"Enter radius"; Displays on the screen the

string between inverted

commas

Readln (Radius) cin> >radius; Displays a blinking cursor

that tells the user that an

input is needed before the

program can continue.

Area: = Pi*Radius

*Radius;

area = pi*radius

* radius;

Calculates the area. Notice

the assigment statement in

Pascal is : = while in C++

it

IS =

Writeln ('The area

is' Area)'

, ,

cout< <"The area

is" area « "\n";

Display the value stored in

the variable Area.

End. return 0;

}

Marks the end of the

program

NB: “\n" is a C++ syntax of directing the character to a new line. It is equivalent to PASCAL’s

"In" used in writeln and readln.

Program testing and debugging

After coding, the program has to be tested and the errors detected corrected (debugged).

There are two types of errors (bugs) that can be encountered when testing a program. These are:

1 Syntax errors: These errors emanate from improper use of language rules e.g. grammar

mistakes, punctuation; improper naming of variables and misspelling of user defined and

reserved words. Reserved words are those words that have a special meaning to the

programming language and should not be used by the programmer for anything else. These

errors are detectable by the translator and must be corrected before the program runs.

Page 39 of 117

2. Logical errors: They are not detectable by the translator. The program runs but gives wrong

output or halts during execution. Such errors that occur during program execution are

sometimes called runtime or execution errors.

Methods of error detection

There are several methods of testing the program for errors. These include:

1. Desk checking (Dry-run)

It involves going through the program while still on paper before entering it in the program

editor. This helps the programmer to detect the most obvious syntax and logical errors.

2. Using debugging utilities

After entering the program in the program editor, you can run the debugging utilities during

translation to detect syntax errors in order to correct them before execution.

3. Using test data

The programmer carries out trial runs of the new program. At each run, the programmer

enters various data variations and extremes including data with errors to test whether the

system will grind to a halt. For example, if the input required is of numeric type, the

programmer may enter alphabetic characters to see whether the program will grind to a halt

unexpectedly. A good program should not crash due to incorrect data entry but should

inform the user about the anomaly and request for the entry of the correct data.

Implementation and maintenance

Implementation

Implementation refers to the actual delivery and installation of the new program ready for use.

New programs will obviously change the way things are done when implemented hence the need

for review and maintenance.

Review and maintenance

Review and maintenance is important because of the errors that may be encountered after the

program has been implemented or exposed to extensive use. A program may also fail not

because of poor development but also due to poor use. Therefore proper training and post

implementation support of users will always reduce the chances of having them entering invalid

data that can crash the program.

Program documentation

Program documentation is the writing of support materials explaining how the program can be

used by users, installed by operators or modified by other programmers. All stages of program

development should be documented in order to help during future modification of the program.

Documentation can either be internal or external. Internal documentation, is the written non-

excutable lines (comments) in the source program that help other programmers to understand

the code statements. External documentation refers to reference materials such as user manuals

printed as booklets. User manuals are common examples of external documentation There are

three target groups for any type of documentation:

1. User oriented documentation. These type enables the user to learn how to use the program as

quickly as possible arid with little help from the program developer.

2. Operator oriented documentation. It is meant for computer operators such as the technical

staff. It helps them to install and maintain the program.

3. Programmer oriented documentation. It is a detailed documentation written for skilled

programmers. This documentation provides necessary technical information to help in

Page 40 of 117

future modification of the program. In this type of documentation, all stages of the program

development should be documented because.

(a) There may come a need to revise or modify the program.

(b) Other programmers may think of ways of improving your program.

Development of algorithms

As defined earlier an algorithm can be defined as a limited number of logical steps that a

program follows in order to solve a problem. In most cases, algorithms can be depicted using a

number of tools such as decision tables, decision tree's, flowcharts and pseudocodes. In this

book, we shall mainly discuss program flowcharts and pseudocodes because they are the most

widely used by programmers.

Pseudocode

As mentioned earlier, a pseudocode is a set of statements written in a readable language (usually

English-like phrases) but expressing the processing logic of a program. Some of the words used

in a pseudocode may be drawn directly from a programming language and then mixed with

English to form structured statements that are easily understood by non-programmers and also

make a lot of sense to programmers. However pseudocodes are not executable by a computer.

Guidelines for designing a good pseudocode

1. The statements must be short, clear and readable

2. The statements must not have more than one meaning i.e. should be unambiguous

3. The pseudocode lines should be clearly outlined and indented clearly.

4. A pseudocode should show clearly the start and stop of executable statements and the control

structures (to be discussed later in the section).

5. The input, output and processing statements should be clearly stated, using keywords such as

PRINT, READ, INPUT etc. Below are some examples that demonstrate how to write a

pseudocode.

Example 3.1

Write a pseudocode that can be used to prompt the user to enter two numbers, calculate the sum

and average of the two numbers and then display the output on the screen.

Solution

START

PRINT "Enter two numbers"

INPUT X, Y

SUM = X + Y

AVERAGE = SUM/2

PRINT SUM

PRINT AVERAGE

STOP

Example 3.2

Write a structured algorithm that would prompt the user to enter the length and width of a

rectangle, calculate the area and perimeter then display the result.

Solution

(i) First draw the rectangle of length (L) and width (W)

(ii) Write down the pseudocode

START

PRINT "Enter length and width":

Page 41 of 117

READ L, W

AREA = L * W

PERIMETER = 2(L + W)

PRINT AREA

PRINT PERIMETER

STOP

Example 3.3

Write a pseudocode for a program that can be used to classify people according to age. If a

person is more than 20 years; output "Adult" else output "Young person"

Solution

START

PRINT "Enter the age" INPUT AGE

 IF AGE> 20 THEN

 PRINT "Adult"

ELSE

 PRINT "Young person"

Program flowcharts

Unlike a pseudocode which expresses ideas in form of short statements, a flowchart does the

same using both statements and special symbols that have specific meaning. Therefore, a

flowchart is a diagrammatic representation of a program's algorithm. The symbols are combined

with short text clues which are a form of shorthand understood by programmers. The special

symbols used to draw program flowcharts vary but the most common ones are as outlined below:

1.

Ellipse: denotes the beginning and end of the program algorithm.

2. Parallelogram: used to denote an input or output operation. For example, READ A, B,

PRINT SUM.

3. Rectangle: Indicates that a processing or data transformation is taking place. For example

SUM=A+B.

4. Rhombus: Used to specify a condition. A condition must evaluate to a boolean value (True or

false) for the program to execute the next instructions.

Stop/start

Input/out

put

Process

Decision

Page 42 of 117

5. Connector: Used as a connecting point or interface for arrows coming from different

directions.

 Arrow: Used to indicate the direction of flow of the program logic.

Guidelines for drawing a flowchart

1. There should be only one entry/starting point and one exit point of the program algorithm.

2. Use the correct symbol at each stage in the flowchart. For example, it is wrong to use a

decision symbol where input is required.

3. The logical flow should be clearly shown using arrows.

Comparison between a pseudocode and a flowchart

Taking our example of calculating the area of a circle mentioned in the earlier subtopic the

algorithm by both methods are shown below.

Program control structures

Program control structures are blocks of statements that determine how statements are to be

executed. In structured programming languages, there are three control structures namely;

sequence, selection and iteration (looping).

Sequence

In sequence control structure, the computer reads instructions from a program file starting from

the first top line and proceeding downwards one-by-one to the end. This is called sequential

program execution.

Therefore, sequential program execution enables the computer to perform tasks that are arranged

consecutively one after another in the code. However, most programs that solve real world

problems need to enable the computer either to repeat tasks or to make decisions when certain

conditions are true or false hence the need for selection and iteration.

Selection

In selection control, execution of statements depends on a condition that returns true or false.

The condition must be a boolean expression. One example of a boolean expression is x > = 20.

In such a case the condition is true if x is equal to or greater than 20. Any other value that is less

than 20 is therefore false.

Generally, the four types of selection controls used in most high-level programming languages

are:

Connector

Page 43 of 117

1. IF... THEN.

2. IF ... THEN ... ELSE.

3. Nested IF.

4 CASE selection.

In this book, we shall demonstrate how to implement these controls by using both pseudocodes

and flowcharts.

IF ... THEN

IF ... THEN selection is used if only one option is available. In this case, all other options are

ignored. For example, in a school environment, the administration may decide to reward only

those students who attain a mean mark of 80% and above. Therefore, if a students attains 80%

and above, he or she is rewarded while the rest are ignored. The following pseudocode and

flowchart illustrate this condition:

IF ... THEN... ELSE

IF ... THEN... ELSE selection is suitable when there are two available options. For example, in a

football match, if a player does a mistake which is considered serious by the rules of the game,

he/she is given a red card. Otherwise, he/she is given a yellow card. The algorithms below

illustrates this situation using the IF ... THEN... ELSE selection.

Nested IF selection

Nested IF selection is used where two or more options have to be considered to make a selection.

For example, in an Olympics track event, medals are awarded only to the first three athletes as

follows:

(a) Position 1.Gold medal

(b) Position 2: Silver medal

(c) Position 3: Bronze medal

The pseudocode segment and flowchart extract below shows the structure of the Nested IF

selection.

Pseudocode segment

IF position = 1 THEN

medal = "Gold"

ELSE

 IF position = 2 THEN

 medal = "silver"

ELSE

 IF position = 3 THEN

 medal = "bronze'

ELSE

medal = "nil"

 END IF

 ENDIF

ENDIF

Flowchart extract

Page 44 of 117

The general format of the Nested IF is

IF < condition> THEN

statements

ELSE

 IF < condition> THEN

statements

ELSE

IF < condition> THEN

statements

ELSE

statements

 END IF

 END IF

ENDIF

CASE Selection

CASE selection is an alternative to the Nested IF especially where there are several options to

choose from. This selection is preferred to the Nested IF in order to reduce the many lines of

code. However, it is important to note that the boolean expression for the case selection can only

be expressed using integers and alphabetic characters only. Generally the boolean expression

should be CASE integer OF or CASE Char OF as illustrated in the example below. In this case,

average must be an integer.

Pseudocode

CASE average OF

80..]00: Grade = 'A'

70.. 79: Grade = 'B'

60.. 69: Grade = 'C'

50.. 59: Grade = 'D'

40 .. 49: Grade = 'E'

ELSE

 Grade = 'F'

ENDCASE

Flowchart extract

General format of case

CASE x OF

Label: statement

Label 2: statement 2

Label 3: statement 3

 Label n: statement n -1

ELSE

statementn

ENDCASE

Note that the flowchart is not different from that of the Nested IF construct-

Iteration (looping)

Iteration, also referred to a looping or repetition is designed to execute the same block of code

again and again until a certain condition is fulfilled. Iteration is important in situations where the

same operation has to be carried out on a set of data many times. For example, assume that you

Page 45 of 117

are writing a program that will use the same formula to calculate the average marks of three

subjects for each student in a class and that the student records are stored in a computer file.

To calculate the average score for each student in a class, the program should repeatedly read

record by record from the file, and then use the formula after each read operation to calculate the

average.

Generally, the three main looping controls are:

(a) The WHILE loop

(b) The REPEAT. .. UNTIL loop

(c) The FOR loop

The WHILE loop

The 'WHILE' loop is used if a condition has to be met before the statements within the loop are

executed. Therefore, this type of loop allows the statements to be executed zero or many times.

For example in banking, to withdraw money using an automated teller machine (ATM) a

customer must have a balance in his/her account.

This scenario can be represented as follows using an algorithm

Pseudocode segment

 WHILE balance> 0 Do

Withdraw cash

Flowchart extract

Update account

END WHILE

Withdraw cash Update account

In our case above,

1. The condition balance> 0 is first tested.

2. If it is true, the account holder is allowed to withdraw cash.

3. The program exits the loop once the balance falls to zero.

In general, the WHILE loop can be represented using a pseudocode and a flowchart extract as

shown below.

Pseudocode segment

 WHILE < condition> DO

statements

ENDWHILE

The REPEAT ... UNTIL loop

Unlike the 'WHILE' loop, REPEAT... UNTIL allows the statements within it to be executed at

least once since the condition is tested at the end of the loop. For example, consider the ATM

cash withdrawal case discussed under the 'WHILE' loop. If the REPEAT ... UNTIL is used, then

the client will be able to withdraw the cash at least once since availability of balance is tested at

the end of the loop as shown below.

Pseudocode

 REPEAT

Withdraw cash

Update account

UNTIL balance > 0;

The general format of the REPEAT. .. UNTIL loop is;

Pseudocode

 REPEAT

Page 46 of 117

statements

UNTIL < condition>

The FOR loop

The FOR loop is used in circumstances where execution of the choosen statements has to be

repeated a predetermined number of times. For I

example, consider a program that can be used to calculate the sum of ten numbers provided by

the user. The 'FOR' loop can be used to prompt the user to enter the 10 numbers at most ten

times. Once the numbers have been entered, the program calculates and displays the

accumulated sum. The loop is predetermined because it has to be repeated 10 times as shown

by the algorithms below.

Pseudocode

FOR count = 1 to 10 DO

PRINT "Enter a number (N)"

 INPUT N

Sum=Sum+N

END FOR

Display SUM

Explanation

The FOR loop in the problem above functions as follows:

1. The loop variable (count) is first initialised to the lower limit, in this case a value of 1.

2. The lower limit is then tested against the upper limit whose value is set at 10.

3. If the lower limit is less than or equal to 10, the program prompts the user to enter a number N,

otherwise the computer exits the loop.

4. After the last statement in the loop has been executed, the loop variable count is incremented

by a 1 and stored in the lower limit i.e. lower limit = count + 1.

5. The lower limit is then stored in count and step (2) is repeated

The FOR loop can also be used to count downwards from the upper limit to the lower limit. For

example, in the above problem, the upper limit 10 can be tested against the lower limit 1 as

follows.

FOR count = 10 DOWN TO 1 DO

Therefore the general format of the FOR loop can be represented using two sets of algorithms.

1. Pseudocode for 'FOR' loop that counts from the lower limit

 FOR loop variable = lower limit To upper limit DO.

 statements

ENDFOR

2. Pseudocode for a 'FOR' loop that counts from the upper limit down to the lower limit

FOR loop variable = Upper limit DOWN TO Lower limit DO

statements;

ENDFOR.

Designing more complex algorithms

The following examples demonstrates how to design more complex algorithms based on what

has been covered previously. This is aimed at helping a beginner programmer understand how

control structures are used to design logically correct algorithms.

Example 3.7

With aid of a pseudocode and a flowchart, design an algorithm that:

(a) Prompt the user to enter two numbers X and Y.

Page 47 of 117

(b) Divide X by Y. However, if the value of Y is 0, the program should display an error message

"Error: Division by zero".

Solution

Using a pseudocode

START

PRINT "Enter 2 numbers X and Y"

INPUT X, Y

IF Y = 0 THEN

PRINT "Error: Division by zero"

ELSE

Quotient = X/Y

PRINT X, Y, Quotient

ENDIF

STOP

Example 3.8

Tusaidiane Savings Society (TSS) pays 5% interest on shares exceeding 100 000 shillings and

3% on shares that do not meet this target. However no interest is paid on deposits in the

member's TSS bank account. Design an algorithm for a program that would:

(a) Prompt the user for shares and deposit of a particular member.

(b) Calculate the interest and total savings.

(c) Display the interest and total savings on the screen for a particular member of the

society.

Solution

Using a pseudocode

START

PRINT "Enter member name, share and deposit"

INPUT Name, Shares, Deposit

If shares> 100 000 THEN

 Interest = 0.05 x shares

ELSE

 Interest = 0.03 x shares

ENDIF

Total savings = Deposit + shares + Interest PRINT Name, Total Saving, Interest

STOP

Example 3.9

In an athletics competition, an athlete is rewarded as follows:

1 st position: Gold

2nd position: Silver

3rd position: Bronze

Draw a flowchart for a program that would be used to determine the type of medal to be

rewarded to each athlete.

Example 3.10

The class teacher of Form 3W in a secondary school requested a programmer to design for her a

simple program that would help her do the following:

Page 48 of 117

(a) Enter the names of students and marks obtained in 8 subjects - Mathematics, English,

Kiswahili, Biology, Chemistry, Business studies, Computer studies and History.

(b) After entering each subject mark, the program should calculate the total and average marks

for each student.

(c) Depending on the average mark obtained, the program should assign grade as follows:

(i) Between 80 and 1 00 - A

(ii) Between 70 and 79 - B

(iii) Between 60 and 69 - C

(iv) Between 50 and 59 - D

 (v) Below 50 - E

(d) The program should then display each student's name, total marks and the average grade.

Using both a flowchart and a pseudocode, write an algorithm that shows the design of the

program.

Solution

Using pseudocode

START

REPEAT

PRINT "Enter name and subject marks"

INPUT Name, Mathematics, English, Kiswahili, Biology, Chemistry, Business, Computer,

History

SUM = Mathematics + English + Kiswahili + Biology + Chemistry +Business + Computer +

History

AVG = SUM/8

IF (AVG <80) AND (AVG<100) THEN

Grade = 'A'

ELSE

 IF (AVG >70) AND (AVG > 79) THEN

 Grade = 'B'

ELSE

 IF (AVG >60) AND (AVG >69) THEN

 Grade = 'c'

ELSE

 IF (AVG >50) AND (AVG >59) THEN

 Grade = 'D'

 ELSE

 Grade = 'E'

 ENDIF

 ENDIF

 ENDIF

ENDIF

PRINT Name, Sum, AVG, Grade UNTIL Count = Number of students

STOP.

Page 49 of 117

Example 3.11

The gross salary of employees in KARU BOOKS ENTERPRISE is based on basic salary and

additional benefits as follows:

(a) Employees who have worked for the company for more than 10 years receive an additional

pay of 10% to their basic salary.

 (b) Monthly salary bonus based on monthly sales of books as follows:

Monthly sales Bonus Rate (%)

Above 500 000 15

Between 250 000 and 500 000 10

Below 250 000 5

Draw a flowchart for a program that would be used to calculate the gross salary then output each

employee’s basic salary, gross salary and all benefits.

Page 50 of 117

SYSTEM DEVELOPMENT

Chapter outline

Introduction

Description of a system

Information system

Theories of system development

Stages of system development

System documentation

Page 51 of 117

Introduction

The concept of a system emerged from early psychologists who believed that the mind was a

whole unit, rather than a collection of psychological parts as the belief was by that time.

However, it was Ludwig von Bertalanff, a German biologist, who gave the name "general

systems theory" to the discipline that devoted itself to coming up with principles that apply to all

systems.

A system is a set of organised components which interact in a given environment and within a

specified boundary to achieve collective goals and objectives that are emergent. Emergent

characteristics are those that result from interaction of various components and may not exist in

the individual component. Therefore, once the components come together, they become

interrelated and generate new goals and objectives. For example, a bicycle system has all the

components working together to provide motion when ridden. The individual components cannot

provide these services to a rider when on their own!

Description of a system

A system can be described as being either soft or hard.

Soft systems

Human activity systems are said to be soft systems. They are described as soft because of three

main reasons:

1. Their boundaries may be fluid or keep on changing.

2. Their goals and objectives usually conflict and may not be captured clearly at anyone time

because they are based on human factors like attitudes and preferences.

3. It is difficult to precisely define exact measures of performance for them.

One example of a soft system is the political system. It is very difficult for instance to model a

system that will predict the political mood in a country over a period of time. Another example is

a sales tracking and prediction system in an organisation. Sales in an organisation depend on

human factors like attitude in the market place.

Hard systems

Hard systems are systems whose goals and objectives are clearly defined and the outcomes from

the systems processes are predictable and can be modeled accurately. Such systems are based on

proven scientific laws like mathematical formulas or engineering solutions.

An example of a hard system would be a stock management system in a supermarket. It is

possible to know exactly the stock levels, cost and sale price and to predict accurately the profit

if all the stock is sold.

A good system incorporates both hard and soft aspects of a system. For example, a stock

management system should be able to show when the demand for a certain item rises so that a

decision can be made to stock more. New demand is driven by soft aspects in people’s lives like

attitude and seasons!

Page 52 of 117

Characteristics of systems

All systems have some common characteristics. Some of these characteristics are explained

below.

Holistic thinking

In holistic thinking a system is considered as a whole. Aristotle, a Greek philosopher, once said

that the whole is more than the sum of the parts. The various components that make up a system

may be simple in nature and process but their combination creates a complex whole, whose

overall goals are more sophisticated than those of the individual components. Hence, a system

should be considered as a whole unit rather than considering its parts individually.

Subsystems

A system is made up of different components (subsystems). Therefore a system does not exist in

solitude but it may be a component of larger a system. For example, the classroom system is part

of a school system, which is part of the Ministry of Education. The Ministry of education is part

of the Government which is part of the global system!

Boundary and environment

Each system has a space (boundary) within which the components operate. Any entity that falls

outside the boundary but interacts with the system is part of the system environment. Such

entities are called external entities. They provide the inputs and receive the outputs from the

system. For example, the external entities to a school system may include the parents, various

suppliers and the society at large.

Purpose

 The purpose of each system is to perform a particular task or achieve a goal. The objectives that

a system is supposed to achieve enable system developers to measure the performance of a

system during its operation. One main objective for a school system for instance is to enable the

students to excel in national examinations.

Process

A system usually will transform or process data from one state to another.

System entropy

The word entropy means decay. Systems "decay" naturally over time. This means that a system

slowly becomes useless to the user either due to improvement in technology, new management

policies or change in user requirements. Therefore a system must be reviewed in order to

improve it or to develop a new one. .

Inputs and outputs

A system communicates with its environment by receiving inputs and giving outputs. For

example, a manufacturing firm can be considered as a system that gets raw materials (inputs)

from the environment and transforms them into finished products (outputs) released into the

environment.

Open and closed systems

A system can be described as being open or closed. An open system receives input from and

gives output to the environment while a closed system does not. Open systems normally adapt to

changes in the environment.

Control

Control can be defined as the method by which a system adapts to changes in the environment in

order to give the expected output or to perform to the expected level. Control is achieved through

feedback which involves having outputs from the process of the system being fed back to the

Page 53 of 117

control mechanism. The control mechanism in turn adjusts control signals that are fed to the

process which in turn makes sure that the output meets the set expectations. Fig. 4.1 depicts a

typical system that has feedback to the control function. Imagine a motor vehicle manufacturing

company that is producing several vehicles per day. Assuming that the demand rises, then

feedback would show that the company is underperforming. Hence, control signals that would

speed up movement of units on the assembly line can be issued to increase production.

Information system

An information system is an arrangement of people, data processes and information that work

together to support and improve the day-to-day operations in a business and the decision making

process. The main purposes of an information system in an organisation are:

1. Supporting information processing by enhancing tasks such as data collection, processing and

communication.

2. Helping in decision making by collecting operational data, analyzing it and generating reports

that can be used to support the decision making process. This process is referred to as on-line

analytical processing.

3. Enable sharing of information. Perhaps, this is one of the greatest powers of information

systems. For example, any departments in a given organisation can now share the same

electronic information stored in a central database at the click of a mouse button.

Why develop new information systems?

The need for developing information systems is brought about by three circumstances:

1. New opportunities: A chance to improve quality of internal processes and service delivery in

the organisation.

2. Problems: These are undesirable circumstances that prevent the organisation from meeting its

goals.

3. Directives: These are new requirements imposed by the government, management or external

influences.

Role of information system analyst

A system analyst is a person who is responsible for identifying an organisation's needs and

problems then designs and develops an information system to solve them. The system analyst

does this by:

1. Reviewing the existing system and making recommendations on how to improve or implement

an alternative system.

2. Working hand in hand with programmers to construct a computerized system.

3. Coordinating training of the new system users and owners.

Project management

The system analyst is the overall project manager of the information system being implemented.

His project management skills like assuring quality, keeping within schedule and budget

determine whether the system will be successfully implemented or not. For example, a project

that does not stick to its schedule will most likely overshoot its budgeted cost leading to

unsuccessful completion.

Theories of system development

Several theories or methods are used in system development. The aim of all these theories and

methods is to identify business requirements and to develop information systems that effectively

Page 54 of 117

meet them. This helps to support the day to day operations and decision making processes in an

organisation.

Some of the most common system development theories include:

1. Traditional approach.

2. Rapid application development (RAD).

3. The structured approach.

At this level, we will concern ourselves mostly with the structured approach. However, we shall

briefly discuss the other two methods of system development.

Traditional approach

Traditional approach relies mostly on the skills and experience of individual staff members

carrying out the project. This means that there is no formal documented methodology to be

followed by all system developers in the organisation. This obviously presents a chaotic scene in

system development especially where more than one persons are involved in the development

effort. In most cases, success depends on the heroic efforts of an individual. This means that all

other projects heavily rely on a particular person for their success.

In this approach, the manual system is replaced with a computerised one without change in

overall structure of the former system. Hence the weaknesses of the former system are not

addressed and are carried forward to the new system. For example, in a banking hall, a manual

system is characterised by long queues and poor controls. If the traditional approach is followed,

each cashier will simply be given a computer. The long queues might remain and lack of controls

increase because no value was added to the former information system. This method is not

recommended for today's business environment.

Rapid application development (RAD)

Rapid application development (RAD) model evolved from the theory that businesses today

heavily rely on information technology. Many information' systems that were manual in nature

are now fully computerised. Therefore, development and implementation of information systems

needs to be quick enough for the organisation to maintain a competitive advantage in the market

place.

Recent developments in programming software have seen the release of fourth generation

languages (4GL's) which are user-friendly because of their graphical interfaces. Rapid

application development makes it possible for system developers to quickly capture user

requirements by designing system interfaces in the presence of the user. This rapid application

development technique is known as prototyping, and assumes that the user knows what they

want when they see it. A prototype is a smaller working model of a real world system. Other

approaches used in rapid application development include small team with advanced tools

(SWAT) and joint application development (JAD).

The main disadvantage of rapid application development is that the working system may have

oversights and weaknesses due to the quick Development. For example, a system may be

working well but lack the necessary inbuilt security mechanisms. This would be undesirable in

today’s insecure operating environment.

The structured approach

Structured approach to system development defines a set of stages that should be followed when

developing a system. Each stage is well documented and specifies the activities to be carried out

by the system analyst and his team while developing a system.

Page 55 of 117

Stages of system development

The main stages in system 4evelopment as depicted by the structured approach include:

1. Problem recognition and definition.

2. Information gathering.

3. Requirements specification.

4. System design.

S. System construction (coding).

6. System implementation.

7. System review and maintenance.

Figure 4.2 is a diagrammatic representation of the seven stages of the system development

lifecycle (SDLC).

The stages of developing a system are also called the system development lifecycle. Each stage

serves a role in the problem solving process. The lifecycle divides the life of an information

system into two major parts namely:

1. The development stage.

2. The operation and support stage.

To demonstrate how to undertake each stage, we shall consider a case study.

Case study

Computer-based library management system

Mutito high school library has 3000 text books. Each book is identified by its author, ISBN

number, book ID and title. The books are arranged on the shelves using their book ID. Card

catalogues are maintained for all the books. There are two types of catalogues, one arranged

according to the author's names while the other is arranged according to the titles of the books.

Each member is issued with three borrower cards that have a registration number and name of

the member. To locate a book for borrowing, a member checks in the card catalogue for its

classification then moves to the shelve to retrieve it. The member surrenders a borrower's card .at

the issue counter where the staff gives out the book and stamps the date of return. A member is

not allowed to borrow more than three books at anyone time. Members are charged for overdue

books at a fixed rate multiplied by the number of days delayed.

We now look at each of the stages of system development in more detail with this case study in

mind.

Problem recognition and definition

Problem recognition is done during the preliminary investigation. During the recognition phase,

the system analyst seeks to answer two questions. The first is whether the proposed project is

worth looking at while the second is if the project is worth pursuing. After this, the system

analyst has to define the scope of the project and establish the constraints, budget and schedule.

The most common constraints are usually lack of finance, lack of enough expertise and/or lack of

appropriate technology to develop the system.

Problem definition, also called problem analysis is the process of identifying the problem,

understanding the problem and finding out any constraints that may limit the solution. This stage

requires the analyst to find out as much as possible about the current system in order to draw up

a good and relevant proposal for the new system. Remember that there is always an existing

system whether manual or computerised. After this, several alternative solutions are modeled.

The main question asked at this point is whether the proposed solution is the right one.

Page 56 of 117

Looking at our case of the school library management system, the problem at hand is to replace

the inefficient manual operations such as cataloguing with an efficient computerised system. The

system analyst tries to answer the following questions.

1. What are the shortcomings of the current systems?

2. What types of records are used for books and students in the library?

3. What procedure is followed to borrow/lend books?

4. How are overdue books handled when returned?

In this first stage, a special study will be carried out to establish the costs and benefits of a new

system. This study is called a feasibility study. A new system will only be developed if its

benefits are more than its costs. The end of this stage is marked by presentation of a feasibility

report to the management.

The feasibility of a system is assessed in four ways:

Operational feasibility: This establishes the extent to which the users are comfortable or happy

with the proposed or new system.

Schedule feasibility: This establishes whether the development of the proposed system will be

accomplished within the available time.

Technical feasibility: This establishes whether the technology available is sufficient or can be

upgraded for the new system. It also seeks to find out whether the staff has relevant technical

skills to develop and use the new system.

Economic feasibility: This establishes whether developing the new system is cost effective by

analysing all the costs and benefits of the proposed system.

Information gathering

After the feasibility study report has been approved by the management, the system analyst can

then proceed to the next stage referred to as information gathering or fact finding. Some of the

methods used to collect or gather data include:

1. Study of available documents.

2. Interviews.

3. Questionnaires.

4. Observation.

5. Automated methods.

Studying available documentation

The available documentation describes the current system and all its procedures. It forms a rich

source of information for the analyst. Examples of such documents are card catalogues, receipts,

reports, technical manuals, organisational charts and archival or backup files.

Interviews

Interviews should be carried with the relevant stakeholders in order to get views about the

current system and gather information about the requirements for the proposed system. The

interview method is powerful because it enables the analyst to have face to face contact with the

interviewee.

Therefore in executing an interview, the following guidelines should be followed:

1. The interviewee must be informed in good time and the topic of discussion communicated

accordingly to allow for adequate preparation.

2. Avoid personal biases in your questions and perspectives.

Page 57 of 117

3. Be careful about body language and proxemics. Proxemics refers to things like sitting

arrangement, body closeness and how people react when their private distance is violated.

Figure 4.3 shows a verbatim introduction of sample interview with the library manager.

INTERVIEW TITLE

BRIEF INTRODUCTION Interviewer:

 Interviewee:

Interviewer: Hello............

Interviewee: Hello. Welcome to my office.

Interviewer: Thank you. Please call me Pat. I would like to ask you a few questions about the

system that we are developing

Interviewee: ...

...

...

Fig. 4.3: Example of an interview

Advantages of interviews

1. Non-verbal communication like facial expressions can be used and observed.

2. Questions can be rephrased instantly for clarification and to probe the interviewee further.

Disadvantages of interviews

1. It is difficult to organise interviews and they are time consuming.

2. The interviewee may not fully open up on some issues that may be personal or sensitive.

Questionnaires

A questionnaire is a special purpose document that allows a person to collect information and

opinions from the people who receive and respond to it. The main advantage of using this

method is that the questionnaires give the respondents privacy when filling them and they can do

so at their own pleasure. This may enhance the sincerity of the information given.

Figure 4.4 below shows an extract of a questionnaire used to gather data from library attendants.

QUESTIONNAIRE

BRIEF INTRODUCTION Date: ...,.............

 .

...

QUESTIONS

1. How long have you worked as a library attendant:

 1 yr. 2yrs. over 2 yrs.

2. How long does it take to rearrange books on the shelves?

 days weeks months

 Fig. 4.4: An example of a questionnaire

Advantages of questionnaires

1. Since they are filled and returned in privacy, more sincere responses are possible.

2. The respondent can fill the questionnaire at their own pace.

Disadvantages of questionnaires

1. Good questionnaires are difficult to prepare.

Page 58 of 117

2. The respondent may not fully understand the questions because of ambiguity of language

hence give erroneous responses.

Observation

Observation requires the observer to participate or watch closely as a person performs activities

in order to learn about the system. This method gives the analyst first hand experience about the

problems and exposes him/her to the system requirements. The main advantage of observation is

that concepts that are too difficult for non-technical staff to explain can be observed. However,

this method has some drawbacks too. These include:

1. The person being observed might alter behaviour leading to wrong equirements being

observed.

2. The need to be on-site consumes a lot of time.

Automated methods

Automated data collection is mostly used when actual data is required but difficult to get through

interviews, observation or questionnaires. Such data may be collected using devices that

automatically capture data from the source such as video cameras, tape recorders etc.

Preparing and presenting the fact finding report

At the end of the information gathering stage, the analyst must come up with a requirements

definition report that has the following details:

1. Cover letter addressed to the management and IT task force written, by the person who

gathered the facts.

2. Title page which includes the name of the project, name of analyst and the date the

proposal is submitted.

3. Table of contents.

4. Executive summary which provides a snapshot of how the new system is to be

implemented. It also includes recommendations of the system analyst because some

people will only have to read the summary to make decisions.

5. Outlines of the system study which provides information about all the methods used in

the study and who and what was studied.

6. Detailed results of the study which provide details of what the system analyst has found

out about the system such as problems, constraints and opportunities that call for an

alternative.

7. Summary which is a brief statement that mirrors the contents of the report? It also

stresses the project's importance.

This report is then presented to the management for evaluation and further guidance.

fig 4.5 shows a sample general outline of the fact finding report presented to the management of

the school library and the head of the I

Library management information system

Fact finding report

1.0 Table of contents.

2.0 Executive summary.

2.1 Objectives: The new computerised system is intended to improve efficiency in the library by:

(a) Keeping an inventory of all the books in the library and automatically updating the stock hence eliminating

the tedious physical counting process.

Page 59 of 117

(b) Reducing the time needed to seek for a book by 60%.

(c) Tracking overdue and lost books.

2.2 Recommendation:

This system could result in efficient processing of library transactions. It will replace the tedious manual

system.

3.0 Methods used to study the system

3.1 Interviews: Used when seeking facts from management.

3.2 Questionnaires: Circulated to user staff.

3.3 Observation: Observed book search and issue.

4.0 Detailed results

4.1 Problems: Duplication of records, delays and book loss.

4.2 Opportunities: Efficiency, stock management etc.

4.3 Alternatives: Enforce controls in current system, more staff etc.

5.0 Summary.

The new system is highly recommended because the other alternative of enforcing controls and employing more

staff will add operating costs with little additional value.

Fig. 4.5: A sample outline of a fact finding report

NB: The sample report is simplified for purposes of instruction at this level and should not be

taken as a complete report. A complete report lay comprise of several bound pages.

Requirements specification

Requirement specification, the system analyst must come up with the detailed requirements for

the new system. Remember that in the long run the hardware and software used to develop the

system mainly depends on input, output and file requirements. For example, if one of the input

requirements is that the system would require data in picture format then one input device that

cannot be avoided is an image capturing device such as a digital camera or a scanner. At this

stage the following requirements specifications are considered:

1. Output specification.

2. input specification

3. File/data stores.

4. Hardware and software requirements.

Output specifications

As opposed to data processing cycle where we follow the input-process-output model in system

development, consideration is given to the output requirements of the new system first. This is

because; the main interest from a system is information (output). For example the management

of the library in our case study is interested in whether the system can generate reports on

overdue books, charges on late return, inventory etc.

The quality of system output depends on how well management and user requirements were

identified. The Output is usually in the form of reports either in hardcopy or softcopy form.

The following factors should be put into consideration when designing the output

1. The target audience. For example, top management would require a summary of overall

performance in the organisation while a user report may show only the transactions

carried out or transactions at hand

2. The frequency of report generation. Some reports are required daily, others weekly,

monthly or annually. However, some are required in an ad hoc manner i.e. at random.

3. Quality and format: The quality and format of information to be generated should be put

into consideration.

Page 60 of 117

For our case study outlined earlier, the following outputs are needed from the library

management system:

1. A report about all the overdue books showing charges against each borrower.

2. A search report for a particular book showing its classification and whether its on the shelve or

not.

3. A search report about a particular member showing which books he/she is currently holding.

Table 4.1 below shows a sample report expected to be generated from the computerised library

system showing all the overdue books.

 Table 4.1

 OVERDUE BOOKS

ISBN Number Title Member

Name

Date

Issued

Date Due Overdue

Days

1.9966495746

2. 9966 49 600 x

3.

4.

5.

Computer studies

Mathematics 1

..................

..................

..................

James L. Wak

Linda Were

...............

...............

...............

10/01/2005

12/01/2005

...............

...............

...............

24/01/2005

26/01/2005

...............

...............

...............

6

4

......

......

......

Input specifications

Once the system analyst has identified the information (output) requirement of the new

computerised system, he/she goes ahead to identify the input needed to obtain the relevant

information from the system. In our case of the library, the following inputs can be deduced from

the output specification:

1. The type of data needed to add a book to the books file or database in the library. For example

in the library database the following data items may be entered:

(a) Title of the book.

(b) Names of the author(s) of the books.

(c) The ISBN number of the book.

(d) Book ID

2. Determine data that is needed for someone who wishes to borrow a book.

After identifying all the inputs, the analyst designs the user interface by designing data entry

forms or screens. An example of an input form is the new member registration form as shown in

Figure 4.6.

New member registration

Surname:

Registration number:

First name:

Gender:

Fig. 4.6: Data entry form design
Save exit

Page 61 of 117

The user interface is an important determinant of whether the system will be happily accepted by

the users or not. Hence, it must be designed with a lot of care. The following guidelines should

be observed:

1. Objects placed on forms like text boxes, labels and command buttons must be neatly aligned

and balanced on the form.

2. The size of the form must not be too small for user legibility or too big to fit on the screen

3. The colour for the interface must be chosen carefully to avoid hurting the eye. Avoid colours

that are too bright.

File/data stores

File requirements specification involves making an informed decision on files required to store

data and information in the system. The system analyst should identify the number of files that

will be needed by the system and determine the structure of each of the files. For example, will

the files allow direct access? Will the files be sequential files stored on a magnetic tape?

The attributes of the records in a file should also be identified. An attribute is a unique

characteristic of a record for which a data value can be stored in the system database. If it is a

student, one attribute can be the name and the other is the student's registration number. For a

book record, the attributes that can be identified include: Book ID, international serial book

number (ISBN), the title, publisher, year of publication, date of issue and date of return.

However, only those attributes that are of importance to the system will be picked and used to

store data for each record. In our case study for instance, we only need the Book ID, title, author,

ISBN number, date of .issue and return.

These attributes will form the basis for table design in the database. Each attribute will become a

field in the table. For example, there will be a Books table that will have fields for each record.

Factors to consider when designing a file

In order to design a good file, you need to consider the following aspects:

1. The key attribute or field: This is usually an attribute that is unique for each record.

2. The type of data: Each field has a data type. Book titles can be stored as data of type "text"

while the date of borrowing a book as of the type "date" in the database.

3. The length of each field: This is important because the longer the field, the slower the system

takes to process transactions. A name field can be specified to be 30 characters long while

the integer field can be 10 characters long. However, these vary depending on the system

developer's perception of how the system should store the data.

4. Back up and recovery strategies: The updated copies of data and information files need to be

stored in a different place other than the location of the current system. This makes sure that

even if the current file gets corrupted or crashes, the backed up data can be used to recover

or reconstruct the original file.

Hardware and software requirements

The system analyst should specify all hardware and software requirements for the new system.

Some of the factors to consider in hardware and software specification are:

1. Economic factors such as price and acquisition method.

2. Operational factors e.g. reliability, upgradeability and compatibility with the existing

resources.

3. User-friendliness.

Page 62 of 117

System design

There are several tools for designing an information system. Examples of such tools are

flowcharts, data flow diagrams, entity relationship models and structured charts. In this book,

we shall concentrate on the use of the system flowcharts as the primary tool for system design.

A system flowchart is a tool for analysing processes. It allows one to break process down into

individual events or activities and to display these in shorthand form showing the sequential or

logical relationships between them.

After drawing the system flowchart, other algorithm design tools like pseudo codes and program

flowcharts can be used to extract the processing logic for each module in the system before

system construction.

The system flowchart has many similarities to the program flowchart covered earlier in the book.

However, it has its own set of symbols and it seeks to depict the whole system rather than the

individual program modules. Figure 4.8 shows some common system flowchart symbols.

Other symbols that are of great importance at this level are as follows:

Rectangle with rounded corners: represents an event which occurs automatically and usually

triggers a chain of other events. For example, the book lending process is triggered by a student

request!

Kite: represents the sort operation.

Designing a system flowchart

Designing system flowcharts gives a concise picture of the way particular processes are done

within the business organisation. After this has been achieved, the next logical step of making

changes to the processes for the better can be handled easily.

Although there is no formal approach for designing a system flowchart, the following guidelines

are important:

1. Start by writing the title of the flowchart. For our case study, the title "Library Books

Management Information System" could be sufficient.

2. If possible, start drawing the flowchart with the trigger event. In this case, our trigger would

be a student request to borrow a book or to return an overdue book.

3. Note down the successive actions taken in their logical order until the event or process is

concluded. Use few words to describe the actions.

4. When there are many alternatives at the decision stage, follow the most important and

continue with it. Other significant but less important alternatives can be drawn elsewhere and

reference made to them by using the on/or off page connectors. Figure 4.9 shows the system

flowchart for the proposed computerised library management system for the school.

Explanation

From the system flowchart, we observe that:

1. A member e.g. a student requests for a particular book.

2. The system checks for the students record in the system. If the student has more than three

books, a message to this effect is displayed and cannot borrow an extra book.

3. If the student has less than three books, then the book can be given out to him/her.

From the system flowchart, a program flowchart for a particular task can be extracted. Figure

4.10 illustrates the book lending process extracted from the library management system

flowchart.

Page 63 of 117

System construction

System construction refers to the coding, installation and testing of the modules and their

components such as outputs, inputs and files.

The purpose of the construction phase is to develop and test a functional system that fulfils the

business and design requirements. Indeed, programmers come in at this stage and are briefed on

the system requirements as illustrated using various design tools in order for them to construct a

computerised working model of the same.

System construction methods

There are a number of programming techniques that can be used to construct a designed system.

These include:

1. Using the high-level structured language such as Pascal, COBOL etc

2. Using fourth generation languages (4GL) - These are easy to use programming

languages. Some of the fourth generation languages are Visual Basic, Visual COBOL,

Delphi Pascal etc.

3. Customising the standard packages - This involves the use of a ready made software

package mostly a database software, financial package or enterprise management system.

Due to the varied approach to system construction available, Chapter 5 in this book introduces

you to Visual Basic programming while Appendix I explains how a database package can be

customised to construct a system. Figure 4.11 shows a data entry form constructed to enable

entering a new book record into the library information database.

Testing the system

After construction, the system is tested by entering some test data to find out whether its outputs

are as expected. The system is tested using the requirements specifications and the design

specifications to find out whether it meets all requirements specified.

For example, if one of the requirements of the computerised library management system is to

ensure that no member is allowed to borrow more than three books at the same time, it must do

that without fail. Figure 4.12 shows a message box to this effect.

System implementation

System implementation is the process of delivering the system for use in day to day operating

environment for the users to start using it. The areas to be addressed during system

implementation include file conversion, staff training, and changeover strategies.

File conversion

Every time a new system is implemented, the format of data files might require modification or

change. This process is referred to as file conversion. A new system may require a change in file

format e.g. from manual to computerised. The factors to consider at this point are:

1. Whether the new system requires a new operating system and hardware. The best practice

today is to develop systems that do not need hardware change unless it is very necessary.

2. Whether you need to install new application software. For example if you have developed a

new system by Customising a database application software, you need to install that

software if it is not installed.

3. Whether you need to create new database files for the new system. For example, where files

are manual, electronic ones will have to be made. However, remember that we strive to

develop systems that are data independent too. That means that the systems can be changed

without affecting the organisational data structures in the databases.

Page 64 of 117

Staff training

Availability of appropriate documentation like user manuals goes a long way to make staff

training easy, quick and effective. System implementation can fail if the staff are not trained

properly leading to great loss of company resources.

Changeover strategies

Changeover simply means how to move from the old system and start using the new. Most

businesses especially those that are driven by information technology need as smooth a

changeover as possible. Some of the system changeover strategies are:

Straight changeover

In straight changeover, the old system is stopped and discarded and the new system started

immediately. This sudden change of old to new means that the project faces higher risks in case

the new system faces problems. This is because the old system would not be there to fall back to.

The advantage of this method is that it is cheaper because you do not have to run the two systems

in parallel. Figure 4.13 shows the straight changeover strategy diagramatically. At a time t, a

switch is made from the old to new system.

Parallel changeover

In parallel changeover, both the old and new system are run parallel to each other for some time

until users have confidence in the new system then the old system is phased out. This method is a

bit costly because extra resources have to be engaged to run the two systems in parallel.

However, its lower risk to business operations and thorough testing of the new system are some

of its advantages. This method is not suitable for large systems because of the high operational

costs during changeover. Figure 4.14 depicts a parallel changeover process.

Phased changeover

In phased changeover, a new system is implemented in phases or stages. A good example is the

way the education system is changed from the old to the new curriculum. Each year at least one

class level changes over to the new syllabus.

Sometimes, one phase may run a new system for testing before it is implemented into all the

other phases. This is called piloting. The main", disadvantage of phased changeover is the danger

of incompatibility between various elements i.e. hardware or software of the same system.

However, its advantage is that it ensures slow but sure changeover.

Security control measures

Information and data security have become some of the most important aspects of information

systems. A lot of careful planning has to be done in order to have what is called inbuilt security

in the system. This is because information is under constant threat of being illegally accessed or

disclosed to unauthorised parties. Therefore, the system implementers must make sure that the

security features built in the system are properly configured during the implementation stage.

System maintenance and review

System maintenance is the adjustment and enhancement of requirements or correction of errors

after the system has been implemented. Regardless of how well the system is constructed and

tested, errors may be detected when the system is in use.

System review is a formal process of going through the specifications and testing the system

after implementation to find out whether it still meets the original objectives. This act is

sometimes called review and audit. If the system does not meet the stated objectives, system

development might start all over again.

System documentation

Page 65 of 117

System documentation is a life long process in the system development lifecycle. After a system

has been implemented, any maintenance work must be documented in order to update the

existing documentation. In this chapter, we have constantly provided sample documentation in

every stage of system development using the school library management system case study.

Generally comprehensive system documentation consists of the following:

1. Report on fact finding

2. Requirement specification

3. System and module flowcharts

4. Table/file structures description

5. Sample test data and expected output

6. Output reports

Reports on fact finding

At the end of fact finding stage, the system analyst should prepare a well detailed report that

mainly outlines:

1. The methods used to collect data.

2. Weaknesses of the current system as evidenced by the collected data.

3. Recommendations: Why there is a need to replace or upgrade the current system.

Figure 4.5 on page 104 shows a sample fact finding report for the school library system.

Requirement specification

The report on requirement specification outlines mainly the:

1. Output requirements for the new system such as reports.

2. Input requirements.

3. Hardware and software required to develop the new system.

Table 4.1 on page 106 gives a sample report expected from a computerised library system, while

Figure 4.6 on page 107 gives a simple illustration of an input form for new library members.

System flowchart

The system flowchart shows the overall functionality of the proposed information system.

Therefore at the end of the designed phase, the system analyst should write a report that contains:

1. The system flowchart or data flow diagrams that shows the processing logic of the information

system.

2. Any module flowchart that may help programmers in construction of the required subsystem

or modules. a sample module flowchart.

Table file structures description

Depending on approach used in system construction, the report should contain file or table

structure definitions. For example, if you opt to construct a system using customisation approach,

details on table structures should be well documented (see Appendix I). Figure 4.15 shows a

sample table structure of the Books table in a library system.

Sample test data

To test whether the new computerised information system is working as expected, you need to

use test data for every module (subsystem). For example, in our library case study, we need to

test sample data for books entry, book borrowing etc. Table 4.2 shows a sample test data that can

be entered in the database whenever a book is borrowed.

Table 4.2

Last name Middle name Class Stream Book Date Return

 borrowed borrowed date

Page 66 of 117

Mburu James 3 C Maths Form I 8/6/2005 26/6/2005

Janet Achieng 3 A Kamusi sanifu 23/6/2005 30/6/2005

Helen Mutua 4 B Elementary

chemistry

6/6/2005 24/6/2005

Ali Mohamed 2 A Computer

studies

6/5/2005 23/5/2005

Kerich Dennis I A Biology

form I

6/6/2005 24/6/2005

James Kamau 3 B Computer

studies

7/6/2005 25/6/2005

Output reports

To prove that the system is working and giving the desired result, you should provide a number

of sample output from various system modules. Figure 4.16 shows a sample report showing a list

of members who have borrowed books.

User manual

User manuals are supposed to help a person to use the system with as little guidance as possible.

Therefore, the manual must contain information such as:

1. How to install, start and run the system.

2. How the system appears when running (interface).

3. How to carry out various tasks e.g. in our case study, this would include new books entry,

lending/borrowing, data entry etc.

4. Error correction and how to get help when faced by exceptions. This would be in a

troubleshooting guide.

Figure 4.17 shows a sample main menu screen switchboard from which the user can access

other modules.

Page 67 of 117

PROGRAMMING WITH VISUAL BASIC

Chapter outline

5.1 Introduction

5.2 Starting Microsoft Visual Basic

5.3 Features of Visual Basic Integrated Development Environment (IDE) window

5.4 Saving a Visual Basic project

5.5 Opening an existing project

5.6 Visual Basic fundamental concepts

5.7 Control structures

5.8 Working with graphical objects

5.9 Modules and procedures

5.10 Creating menus, messages and dialog boxes

5.11 List boxes and combo boxes

5.12 Visual Basic data structures

5.13 Linking Visual Basic forms to a database

5.14 Creating a Visual Basic executable file

Introduction

In the previous chapter, we studied how to develop a system using some system analysis and

design methods without necessarily referring to any particular programming language.

Therefore, we have been looking at what a system analyst ought to do rather than how a

particular task should be done. In this chapter, we shall learn how to develop programs using

Visual Basic programming language. Note that any other programming language can be used to

develop programs. Therefore, as a leaner, you are at liberty to select any other programming

language and learn how to use it to construct systems.

Definition of Visual Basic

Visual Basic (VB) is a graphical user interface programming language for creating software

systems that run under Microsoft Windows environment. It is modeled in line with BASIC

language which was originally created to help students learn how to program.

Visual Basic has the following features:

1. It is an event driven programming language. An event is a response generated by the

program when the user performs an action e.g. a mouse click. The response depends on the

code held in an event procedure. An event procedure is a group of self contained statements

that are executed by the computer when a trigger action is performed. For example, a mouse

click may cause a menu to be displayed on the screen.

2. It has a collection of tools that are used by programmers. These tools are called controls. The

controls can be accessed easily by clicking their icons on the toolbox to select them.

3. It has special objects called forms that have a title bar at the top. The programmer can then add

controls such as a menu bar, status bar, toolbars, buttons, and slide bars to the form when

creating an application.

Starting Microsoft Visual Basic

You can start Visual Basic from the Programs menu by pointing to Microsoft Visual Studio and

then selecting Microsoft Visual Basic. Depending on the way the application has been setup, you

may see the New Project dialog box

This dialog box allows you to set up a new project. You can set up several types of projects as

shown by the different icons in this dialog box. However, for the purposes of learning, let us

Page 68 of 117

select the Standard.EXE project found on the New tab. Click the Open button. The application

window will appear. This is the Visual Basic Integrated Development Environment (IDE).

Features of Visual Basic Integrated Development Environment (IDE) window

The Visual Basic application window (Figure 5.2) has many similarities to common windows

based applications.

The following is a summary of the various features identified in the window:

The standard toolbar

Like in many other applications, the standard toolbar has the standard icons that are shortcut

commands to the menu bar commands. Simply point to an icon and a text tip will appear telling

you the name of the icon. Of great interest to us this time are the three commands of Start, Break

and End.

To execute a Visual Basic project, simply click the Start button or select Start1from the Run

menu. Execution of the program can be temporarily suspended by clicking the Break button.

Resume the run by selecting Continue from the Run menu. Finally, the execution can be stopped

by clicking the End button.

Forms and controls

Forms and controls are generally called objects. An object is usually associated with an event

hence most objects have their own properties and methods. The properties define the appearance

of the object while the method is a predefined action that can be set to occur or affect the object.

For example show method makes a form visible on the screen.

The form design window is the place where the programmer does the actual design of the user

interface for the program. This is accomplished by selecting the relevant control icons from the

toolbox then placing them on the form design window. The control can then be moved and

resized as desired by the programmer.

The entire form can be moved around on the screen by holding the title bar of the project

container window then dragging it to the required position.

Project window

The project window displays a hierarchical list of files associated with a particular project. The

files represent forms and program modules in the project. For example, Figure 5.2 shows a form

whose title is Form 1.

Properties window

The properties window displays a set of various characteristics unique to each active object in

the project. Some examples of properties include name, caption, colour, height etc.

When a new project starts, it is most likely that the form design window is active. In this case,

the properties for the form will be displayed and can be changed by the programmer as

appropriate. For example, we can change the caption of the form by clicking on the Alphabetic

tab in the properties window then changing the value associated to Caption property from Form.l

to say "Book Data Form". Notice that the caption in the title bar of the active form changes

simultaneously as you type the new name in the properties window.

Code editor window

Figure 5.2 shows that the project window has three icons at the top left hand comer. One of them

is called the code view icon. Point to the icon with the mouse pointer and a tool tip will appear

showing its name. If you click it, the code editor window opens displaying the code of the object

that is currently selected. Alternatively, double click the object on the form for which you want

Page 69 of 117

to edit its code. The code editor window will open (Figure 5.4). In this case, we double clicked

the form.

Form layout window

The form layout window allows you to specify the screen location of the form when the project

is Executed. This can be done by dragging the form in this window to the desired location.

The Visual Basic toolbox

Visual Basic tool box has controls that enable a person to design and customise forms. Figure 5.5

depicts the toolbox.

Pointer: This is not actually a control but a tool used to select an object or objects to be worked

on.

Picture box: A picture box is used to display graphical objects or text and to initiate event

actions. It is similar to an image box but has more properties, redraws slower and cannot be

stretched.

Label: A label displays text on a form. The text cannot be reassigned during program execution

though its appearance can be altered.

Text box: A text box provides a means of entering or displaying text. The text may be already

available or can be entered during the program execution.

Frame: A frame is a tool rather than a control used as a container for a group of controls.

Command button: A control used to activate an event driven procedure.

Check box: As opposed to the option buttons a check box is used if more than one selection are

to be made.

Option button: Option buttons are used when one selection must be made before an action is

carried out. For example, if you want to turn off a computer running on Microsoft Window 9x,

check the shut down option button then click Yes/OK.

Combo box: A combo box is a special type of list box that combines the capabilities of a text box

and a list box. It provides a list of text items for selection by the user during program execution.

Items can also be added during program execution.

List box: The list box control provides a list of text items for selection by the user.

Horizontal scroll bar: A horizontal scroll bar is used for drawing horizontal scroll bars on a

form.

Vertical scroll bar: A vertical scroll bar is used for drawing vertical scroll bar on a form.

Timer: Timer control allows timed events to occur repeatedly at a specific time intervals.

Drive list box: A drive list box provides a means of selecting a drive from a list of existing

drives.

Directory list box: A directory list box provides a way of selecting a directory from a list.

File list box: A file list box provides a way of selecting files within a group of files.

Shape tool: A shape tool is used to draw circles, ellipses, squares and rectangles within forms.

Line tool: A line tool is used when drawing straight lines within forms.

Image box: An image box control is used to display graphical objects.

Data control: A data control when placed on a form provides a means of displaying information

from an existing database.

Page 70 of 117

NB The number of tools available on the tool box depends on the edition and release of Visual

Basic you are using

Saving a Visual Basic project

Saving a project in Visual Basic is a bit different compared to other applications. This is

because Visual Basic operation involves saving multiple files.

(a) To save a new Visual Basic project for the first time, select the Save project As command

from the File menu. The Save File As dialog box of Figure 5.6 (a) appears. You will first have

to enter a form name e.g. bookdata and then click the Save button. The form is saved as a file

with extension .frm.

(b) After this, the Save Project As dialog appears. Type the name of the project and it will be

saved as a file with extension. vbp (Visual Basic project

Opening an existing project

You can open a project when Visual Basic starts or from the file menu. To open a project during

startup, from the New Project dialog box that appears when Visual Basic is starting, click the

Existing tab. A list of existing projects will be displayed as shown in Figure 5.7

(a). Alternatively, if Visual Basic is already running, close all other projects then click the Open

Project command on the File menu. The Open Project dialog box appears from which you can

select the Existing tab. (Figure 5.7 (b)). Type the name of/or select the project to open.

Visual Basic fundamental concepts

Before going further into detailed discussion on how to develop programs in. Visual Basic, it is

important to highlight some of the fundamental concepts used in Visual Basic.

Data types

Table 5.1 shows the data types supported by Visual Basic:

Table 5.1

Data type Description

Integer A whole number with no fractional part. Integers range

from -32768 to 32767.

Long integer Numbers which are integers but have a bigger value and

range. They range from -2,147,483,648 to 2,147,483,647.

Single

A single precision real constant includes a fractional part. The

largest value is 3.4 x 1038

Double

It includes a fractional part but has far much larger magnitude than

the single real number constant. However, it cannot be larger than

l.2x 1 0308

String

Characters enclosed in quotation marks

Boolean

Data types that have only two logical states i.e. true or false.

Constants

In programming, a constant is a value that remains the same. It does not change during the

execution of the program. There are three types of constants: string, numeric and named

constants.

String constants

Page 71 of 117

A string constant can be defined as a sequence of characters enclosed in quotation marks. They

are used to write non-numeric values like telephone numbers, addresses and names. The

following are examples of string constants: "Holiday season", "345678", "Why don't you call",

"$72.10"

Numeric constants

Numbers are usually referred to as constants in Visual Basic. In most cases, the numeric

constants are either whole numbers (integer) or double or single. Some examples of numeric

constants are:

0, 3, 6000 +70, 1.4E+2, 1.674, -.00456,

Named constants

A named constant is identified by name rather than its actual value. In Visual Basic, the reserved

word Canst is used to declare this type of constants e.g. Canst Price As Integer = 20, means that

an integer value 20 is identified using the name price.

Variables

A variable is a memory location referred to by name used to hold a value that is subject to

change during program execution. When a variable is declared in a program, the computer sets

aside memory space to hold a value in the variable. The variable may be a numeric constant, a

character, a string or any other data item.

In Visual Basic, the following rules should be followed when declaring variables:

I. The variable name must not have more than 255 characters.

2. The variable name must start with a letter.

3. The letter case is not important when declaring variables.

4. A variable name must not be a reserved word. A reserved word is a special word that Visual

Basic understands as a command, internal function name or simply set aside for use by the

program. Examples of reserved words are Case, Else, Dim, etc.

5. Variable names should not have spaces.

A variable is declared using the reserved word Dim. Dim is the short form of the word dimension

(size). It is used to associate a variable with a specific data type. For example to declare a

variable that will store the first name of a student in a program, the following declaration can be

used:

Dim FirstName As String

This means that the variable FirstName is of the type string.

Variants

A variant is a variable whose data type has not been explicitly declared by the programmer. In

this case, the variable type will be determined by the value held by the variant. These types of

variables are called variant type because their data type keeps on changing with the values they

hold. Although this may sound okay, it is not a good programming practice. All variables should

be explicitly declared.

Scope

The word scope refers to the level of the program that a variable, a constant or a procedure is

recognised. The scope of a variable constant is said to be global or local. The scope of a

procedure variables or constants is set by declaring it as either private or public. The following

terms are used in this regard:

I. Private subprocedure.

2. Public subprocedure.

3. Global variables/constants.

Page 72 of 117

4. Local variables/constants.

A public procedure can be accessed from any module or form in the program. However, a private

procedure is accessed in the module or form within which it is declared.

A variable or constant that is declared within a procedure is said to be local. This means that it

can only be accessed within that procedure. However, a variable or constant that is declared

outside the standard module but within the same project is said to be global. Such variables can

be accessed by all procedures within the project.

If a public procedure is to be accessed from a module or a form other than the one it is contained

in, the form or module name must be preceeded by the module containing the definitions i.e.

GlobalModuleName.Active FormName (Arguments).

In Visual Basic, to declare variables as either private or public use the syntax:

1. Private X As Integer

2. Public Y As String

In the first declaration, the private variable X can only be accessed in the module within which it

is declared. In the second example, it can be accessed by other subroutines in the same project.

User defined data types

Sometimes, a programmer may want to have a single variable that can store several data types as

a unit. Such a data type whose individual components are standard data items are referred to as

user defined data types. Some examples of user defined data types are records, arrays,

enumerated types, lists etc. They are user defined because it is the programmer who creates them

in the program. Each element or member can be accessed individually by using a period between

the user defined variable and the member name e.g. if a record known as schoolrecord has a

name field, then to access the name field, a programmer will type schoolrecord.name in the

code.

Using suffixes to declare variables and constants

Suffixes are special symbols appended to the end of a variable or constant name in order to

associate them with a particular data type. It makes programming easier and faster. Table 5.2

summarises some common

suffixes. Table 5.2

 Examples

Suffix Data type Long declaration Short declaration

% Integer Dim A As Integer A%

! Single Dim X As Single X!

$ String Dim Q As String Q$

& Long integer Dim C As Long Integer C&

Double Dim P As Double P#

Mathematical operators

In order to write correct mathematical expressions, you need to understand some of the operators

used in Visual Basic. These include arithmetic, relational and logical operators.

Arithmetic operators

Arithmetic operators are special symbols that are used to write arithmetic expressions like

addition, subtraction, division and multiplication. However, it is also possible to carry out other

mathematical operations using other operators. Table 5.3 shows a summary of symbols used in

arithmetic operations:

Table 5.3

Symbol Name Operation

Page 73 of 117

+ Plus sign Addition

- Minus sign Subtraction

* Asterisk Multiplication

/ Slash Division

/\ Caret Exponentiation

" Back slash Integer division

MOD Modulus Integer remainder

NB: The last two rows in the table can be explained as follows:

1. In an integer division, each of the numbers being divided is first rounded to become an integer

then the quotient is truncated to an integer. For example, 2.4/3.5 will result in 2/4 being

evaluated.

2. The MOD operator returns the remainder of an integer division. For example, 4 MOD 3

returns 1 and 5MOD3 returns 2.

Operator precedence/hierarchy

Arithmetic operators in Visual Basic have the following order of precedence when used in a

program. Notice that the order may not be the same as that of algebra in mathematics. Table 5.4

illustrates how to carry out operations.

Table 5.4

precedence symbol Expl

anation

1 Exponentiation All exponential expressions are performed first

2 Multiplication/division Carried out after exponentiation; left to right In an

expression.

3 Integer division Done after all multiplication and normal division

operations

4 Integer remainder Done after integer division

5 Addition and

subtraction

Are carried out last, left to right.

For example write down the order of evaluation of the following expression:

(b /\ 2 - 4 * a * c)/2 * a.

Relational operators

A relational operator is used in an expression that returns a true or false value when evaluated.

The operators can compare numeric variables, constants or expressions. Table 5.5 shows a

summary of relational operators used in Visual Basic.

Table 5.5

Operator Name

= Equal to

<> Not equal to

> Greater than

< Less than

<= Less than or equal to

>= Greater than or equal to

The following are examples of relational expressions:

1. Y < > 100 2. Y> 60 3. S< = sqr(G + V) 3. Loss = (Expenses - Profit)

Page 74 of 117

The expression in 1 will evaluate to true if y is not equal to 100 otherwise it will evaluate to

false.

A decision construct in a program based on a relational expression would make a decision

depending on the outcome of the evaluation.

Logical operators

Logical operators are used to combine expressions to form compound expressions. Table 5.6

summarises some common logical operators used in Visual Basic.

Table 5.6

Operator Operation

And Results in a condition that is true if both expressions are true.

Or Results in a condition that is true if one of the conditions is true or both are true.

Xor Results in a condition that is true if one of the conditions is true and the other is

false.

Not Negates the value of a logical expression.

For example:

1. (x = 30) AND (student = "John")

2. IF (x = 20) OR (y = 30) THEN

3. IF x NOT 0 THEN

The assignment statement

An assignment statement is an executable statement that assigns whatever is on the right of the

assignment operator to the variable on the left. In Visual Basic, the assignment operator is the

equal sign (=). A variable can be assigned a value as follows:

Variable = Expression

Examples of assignment statements are:

1. P = 0.25 2. E = M*C"2 3. Area = 1/2 * base* height 4. X = X + I

NB: The last statement on the right (X = X + I) does not make mathematical sense. Yet, this is

the beauty of the assignment statement in programming. The statement can be interpreted as

follows:

Add 1 to the original value of X and assign the sum to X.

The Print statement

The Print statement displays data on the active form of your Visual Basic project. It can be used

to display processing results of a program. If you run the project, you will notice that the result of

the Print statement starts being displayed in the top left comer of the form. The structure of the

Print statement is:

Print VariableName (this prints out the value held in a variable).

or

Print "String"

(this prints out the string between the two quotation marks. If there is

nothing between the two quotation marks, a blank line will be the output)

The skeletal code listing below shows a sample code that displays the values stored in the

variables StudentName, TotalMarks and AverageMark on a form.

Private sub Form_Load ()

Dim StudentName As String, TotalMarks As Single, AverageMark As Single

Page 75 of 117

............

StudentName = "Edward"

 TotalMarks = 1000

AverageMark = 200

……………

Print, StudentName, TotaIMc;zrks,AverageMark

End sub

The following output will be displayed on the form: Edward 1000 200

NB: The use of a comma to separate the various elements to be output by the Print statement

makes them to be widely spaced on the screen. To have a compact display with the various

outputs close to each other, then use a semicolon to separate the various elements e.g. Print

StudentName; TotalMarks AverageMark would display

Edward 1000 200

Library functions

Library functions are modules that have been pre-written and included in the Visual Basic

language. A function performs a single task like calculating a mathematical expression then

returns a value. A function will usually have a name and can be called when needed to perform a

particular task. Visual Basic has many library functions. A library function is accessed by stating

its name followed by the information that must be supplied to the function enclosed in

parenthesis. This process is called calling a/unction. The values held in the parenthesis are called

arguments. When the function is called, it uses the supplied arguments to perform an operation

and return a value. Table 5.7 shows a summary of some the library functions used in Visual

Basic.

Table 5.7

Function Call Description

Date z = Date () Returns the current date

Exp z = Exp(w) Returns the value of eW

Sqr z = Sqr(w) Returns the square root of w

Log z = Log(w) Returns the natural logarithm of w

Str z = Strew) Returns a string whose characters are w e.g.

Str(6.80) = "6.80"

Cos z = 'Cos(w) Returns the cosine of w

Abs z = Abs(w) Returns absolute value ofw e.g. Abs(-8) = 8

U case z = Ucase(w) Returns the upper case equivalent of w

Int

z = Int(w) Returns the largest integer that is

algebraically less than w e.g. Int(2.2) = 2

Time z = Time Returns the current system time.

Format z = Format Formats the output to appear as stated.

Using the format function

The format function helps the programmer to display data in many different formats. Table 5.8

below shows how data can be formatted.

Table 5.8

EXPRESSION SAMPLE FORMATTED OUTPUT

Print format(16.778994,”##,##”) 16.78(notice the rounding)

Print format(now, “mm-dd-yyyy”) 1-20-2006

Page 76 of 117

Print format (15678, “##,###.00”) 15,678.00

Label1.caption=format$(sprice, “##,###,##”) 10,630.75

NB: The dollar sign may be used with the format function depending on the type of output

required. In the last row of the table, the formatted output is displayed on a label control.

Program comments

Comments are English statements included in the code to document a program. The comments

are not executed when the program is running. In Visual Basic, a comment starts with a single

apostrophe (') followed by the comment statement. For example:

X = Sin(p) 'find the sine of p and store it in X

Print X 'display the value ofX on the screen

Converting a numeric string to a value

If you enter a number in a text box, the best way to convert it into a value is to use the Val

function This is because the computer treats anything typed in the textbox as a string. The Val

function operates on the string and returns a numerical value.

Hence, if the name property of a text box is set to txtLength, then the number typed in it can be

read as a value into a variable x as follows:

x = Val(txtLength.Text)

Converting a value to a string

Assuming a particular variable has a numeric value and you wish to display the value in a text

box, then you have to convert the value to a string first. Suppose that the name of the text box is

txtArea and the integer variable is x then:

txtArea.Text = Str(x) ‘ display the value in x as a string in txtArea.

Project 5.1

Create a program that can be used to calculate the area of a rectangle. The program should

prompt the user to enter the length and width of the rectangle. Figure 5.8 shows an overview of

such a program.

To create the project, proceed as follows:

1. Open Visual Basic and select the Standard.EXE from the New Project dialog box. A blank

form will be displayed as shown in Figure 5.9.

2. Place the necessary controls on the form. We need three text boxes and two command buttons.

Double click the text box tool on the toolbox then the command button. The controls are

automatically placed on the form and are given default names like Text! and Commandl.

Add another command button. Use the shape tool to place a rectangle on the form. Drag the

controls to the desired location on the form and repeat the process until you have the

interface as shown in Figure 5.10.

3. The next step is to define the set of properties for each control. To do this, right click the

control then click properties. Set each control properties in the properties window as shown

in the Table 5.9 below:

Table 5.9

Object Property Value

Page 77 of 117

Label1 Caption

Name

"Rectangle"

IblRectangle

Text1 Font

Name

Text

Arial

txtLength

(blank)

Text2 Font

Name

Text

Arial

txtWidth

(blank)

Text3 Font

Name

Text

Arial

txtArea

(blank)

Shape Shape

Border Width

FillStyle

FillColor

0- Rectangle

2

4-Upward Diagonal

Blue

Commandl Caption

Name

Font

Exit

cmdExit

Arial

Command2 Caption

Name

Font

Calculate

cmdCalculate

Arial

NB: The conventional way of setting the name property of any object in Visual Basic is to use

object prefixes such as txt for text or boxes, lbl for labels, cmd for command buttons etc.

4. After setting the properties, we can now write the event procedures that calculate the area of

the rectangle once values are entered in the txtLength and txtBreadth text boxes. To write the

code, double click calculate button and add the code listing between Private sub

cmdCalculate click and the End sub.

Dim L As Single, W As Single, A As Single

 L= Val(txtLength. Text)

W= Val(txt Width. Text)

A=L*W

txtArea= Str(A)

For the cmdExit button, just write End between Private sub cmdExit click and the End sub.

Figure 5.11 shows how your code should look like in the code window.

5. Run the project. Enter a value in the txtLength and another in the txtWidth text boxes then

click the Calculate button. Notice that the area of the rectangle is displayed as shown in

Figure 5.12.

Explanation

Page 78 of 117

1. The first line declares the variables needed for the program to run and store values.

2. The second and third lines assign the values in the text boxes called txtLength and txtWidth

variables Land W respectively.

3. The second last statement calculates the area of the rectangle while the last uses a function Str

to display the result as a string value in the textbox named txtArea.

Adding more forms to a project

Sometimes a Visual Basic project may require the use of more than one form. To add a form to a

project, the following procedure is followed:

1. Click the Project menu then select Add Form command.

2. In the dialog that appears, select the type of form you want to add from the New tab then click

Open button.

Control structures

In Chapter 3, we introduced the three control structures that determine the execution of

statements in a program. In this topic we shall discuss how these controls are implemented in

Visual Basic.

Selection

The most common selection controls used in Visual Basic are:

1. IF THEN.

2. IF ... THEN ELSE.

3.Nested IF.

4.CASE selection.

The IF...THEN selection

The IF. . . THEN selection is used to execute a single statement or a group of statements that

represent only one alternative or option. This means that some circumstances have only one

option for selection depending on whether a condition evaluates to true or false. For example IF

y = 80 THEN

Print (“……..”)

END IF

The statements in the If...Then...End If will be executed if the value of y is equal to 80 otherwise

the whole block will be bypassed and the statements after END IF will be executed.

IF...THEN...ELSE selection

The IF... THEN.. . ELSE allows the execution of two alternatives or options depending on

whether the test returns a true or false. Consider the following example:

IF average> 80 THEN

 Print("Excellent work! Congratulations")

ELSE

 Print("Work harder next time")

END IF

In this case, the statements starting with 'Excellent Work! ' will be displayed on the screen if

the average is greater than 80. Otherwise, if average is less than 80, the statement "Work harder

next time" will be displayed on the screen.

Nested IF selection

Nested IF selection is used if there are more than two available options to choose from. The

general format of Nested IF is

IF <condition> THEN

Page 79 of 117

 Statements

ELSE IF <condition> THEN

 Statement

ELSE IF <condition> THEN

 Statement

ELSE <condition> THEN

 Statement

Project 5.2

Write a program that can be used to find the roots of a quadratic expression.

ax2 + bx + C = 0

The formulas to solve the values of x in this expression are:

Xl = -b -sqr(b2 - 4ac)

 2a

X2 = -b -sqr(b2 - 4ac)

 2a

X=-b

 2a

i.e.b2 - 4ac = 0 or b2 = 4ac

To create the project, proceed as follows:

1. Test whether b2 is larger than or equal to 4*a*c. If it is true, then:

2. Create a new project that would be used to calculate the values of x, Xl and X2 also called

roots of the quadratic equation.

3. In the appropriate event procedure e.g. the calculate button, add the code listed below:

'Calculating roots of a Quadratic Equation

Dim a,b,c As Integer

Dim z,X,X1,X2 As Double

z=(b^2-4*a*c)

IF z> 0 THEN

X1=(-b+Sqr(d)) / (2*a)

x2 –x1=(-b-Sqr(d)) / (2*a)

ELSE IF z= 0 THEN

 x = -b / (2*a)

ELSE IF z= 0 THEN

Print ("This quadratic equation is not soluble'')

END IF

ENDIF

ENDIF

Explanation

1. The expression b/\2-4*a*c is first assigned to a variable z.

2. z is then tested if it is greater than zero. If greater, the program calculates the values of Xl, X2

and x. Otherwise a message "This quadratic equation is not soluble" is displayed.

The Case construct

Page 80 of 117

As discussed earlier in control structures of chapter 3, the Case construct is used to reduce the

tedious work of coding associated with the nested IF... construct. Let us look at a case statement

that can display the name of a weekday when its number is provided.

'Display weekday

Dim D As Integer

SELECT CASE D

CASE 0

 Print("Sunday'')

CASE 1

 Print("Monday'')

CASE 2

 Print("Tuesday'')

CASE 3

 Print(" Wednesday'')

CASE 4

 Print("Thursday'')

CASE 5

 Print("Friday'')

CASE 6

 Print("Saturday'')

CASE ELSE

 MsgBox("Error -That is not a day in the week'')

End SELECT

Looping construct

In Visual Basic looping instructs the computer to execute the same block of code many times

before a particular condition is met. Common looping constructs used in Visual Basic are:

1. DO loop.

2. WHILE...Wendloop.

3. FOR loop.

DO loop

There are four ways of writing the Do loop. Two of the constructs require the condition to be

tested first while the other two require that the condition be tested after the statement within the

construct is executed at least once. The general formats of the four Do constructs are:

1. DO WHILE <condition>

Statements

Loop

2.DO Until <condition>

 Statements

Loop

3. DO

Statement,

Loop UNTIL <condition>

4. DO

 Statements

Page 81 of 117

Loop WHILE <condition>

Explanation

The Do While. ..Loop in 1 continues to execute as long as the condition is true. The Do Until.

..Loop in 2 continues to execute as long as the condition remains false. The loop in 3 executes

the statements at least once as long as the condition is not true. Lastly, the loop in 4 executes the

statements within the construct at least once as long as the condition remains true. for the first

two DO statements, the test of the condition is done at the beginning of the loop hence avoiding

execution of any statements in the loop as long as the condition required is not met. On the other

hand, the last two loops allow a pass through the loop at least once before the condition is tested.

example 5.1

Write a program using the DO loop that will write numbers between 1 and 20 on the screen then

stop. Save the project as Example 5.1.

Solution

1. Double click the form to display its code window

2. Add the following code listing between the Private sub form-load and

End sub.

x=O

Counter=O

DO WHILE counter<=20

x=x+1

Counter=counter+ 1

Print x

Loop

NB: All the other DO loops can be easily implemented with little effort following the general

format provided.

Looping with While-Wend

The While..Wend construct can be used in place of a Do While loop. The general format of this

construct is:

While <condition>

Statements

Wend

As with the Do While loop, this loop executes the statements within the construct as long as the

condition is true.

Practical activity 5.1

Open the project for Example 5.1 and replace its code with the code below.

Dim x As Integer, Counter As Integer

x=O

Counter = 0

While counter<=20

x=x+1

counter=counter+1

Print x

Wend

Save the project as Example 53.

The FOR - NEXT loop

Page 82 of 117

The FOR - NEXT Loop executes the statements within the construct a predetermined number of

times. The general format of the FOR - NEXT

Loop is:

For index = lower limit To upper limit ‘sets upper and lower limits

statements

Next index 'increments index by 1.

You can set the STEP value of the index as follows:

For index = lower limit To upper limit STEP 2

statements

Next index 'STEP increments index by 2.

The FOR construct is very suitable for accessing values in a list or array because of their

sequential nature.

Practical activity 5.2

Open the project for Example5.3 and replace the code with the listing below:

Dim Number As Integer, Counter As Integer

Number= 0

For counter= 1 TO 20 STEP 2

Number= Number + counter

Print Number

Next counter

Working with graphical objects

To add a picture or object on to a form, simply click the picture box or the image tool on the

toolbox and then drag to define the area where you want the picture to be placed. Right click the

object and then click properties. Set the Name and Path properties. The Path property tells the

control where the picture is located.

Notice that after setting the properties, the picture is displayed on the form. If it is lying on top of

other controls and you want it to be the background, right click it then select Send to Back.

Modules and procedures

Large projects must be made modular in nature to enhance maintenance and independence of the

various blocks of code. The three main modules used in Visual Basic are explained in Table

5.10.

Table 5.10

Module Definition

Standard modules Their declarations and procedures can be accessed

by other modules. They are usually stored in files

that have the extension. bas You can create a

standard

module by clicking Project then Add Module.

Form module Are stored as files with extension frm Each form

may have many procedures and controls. To add a

form to the project, click the Project menu then

Add Form.

Page 83 of 117

Procedures These are events or self contained blocks of code

or commands that can be accessed and used by

programmers. The called procedure will normally

carry out a specific function it was designed to do.

Subroutines and functions are examples of

procedures.

Declaring general subroutines

So far, we have mainly discussed event driven procedures. Visual Basic also lets the programmer

create general procedures that can be called within another procedure (subroutine). The general

format of a general purpose subroutine is:

 Sub SubroutineName()

statements

End Sub

Example 5.2

Write a general subroutine that would solve y = xn , given that the values of n are integers.

Solution

Sub Power of Number ()

Dim x As Single, y As Single, n As Integer y = x^n

Print y

End Sub

Explanation

The above general subroutine is given the name PowerofNumber. To call the subroutine in

another procedure such as an event procedure, simply use the call statement. For example, to call

the subroutine in the cmdCalculate _Click event procedure, type:

Call PowerofNumber () or Power Of Number ()

The code is executed once the command button for the cmdCalculate click event procedure is

clicked.

Project 5.3

Consider a subroutine that will determine the largest of two numbers. Use the code listing below

to create a proj ect that can be used to determine the lagest value once the user clicks a command

button.

Sub Largest ()

Dim Larger As Integer, x As Integer, y As Integer

If (x>y) Then

Larger = x

Print ("The larger number is: ",x)

Else If (x<y) Then

Larger = y

Print ('The larger number is ",y)

Else

 Print("Both numbers are equal'')

 End If

 End If

End Sub

To create the project, proceed as follows:

Page 84 of 117

1. Open a new project and save it as LargerNumber.vbp. Save the form as LargerofTwo.frm. Set

the objects properties for the three labels (Tabe 5.11) and design the interface as shown in Figure

5.13.

Table 5.11

Control Properties Settings

Labell Name

Caption

lblLarger

Larger between

Label 2 Name

Caption

lblx

x

Label 3 Name

Caption

y

Text! ,2,3 Name

Text

txtLarger, txtx, txty

(blank)

Command 1 Name

Caption

cmdExit

Exit

Command2 Name

Caption

cmdCompare

Compare

Double click the Calculate and Exit buttons and add the codes as shown:

Option Explicit

Dim x As Single, y As Single

Private sub cmdCompareXY- Click ()

X = Val (txtX Text)

Y = Val (txt Y. Text)

 call Largest 'calls a procedure named Largest that

End Sub passes the values of x and ythe

 procedure.

3. Create a general subroutine called Largest and write the code listing below:

Sub Largest ()

Dim Larger As Single

If (x > y) Then

Larger = x

txtLarger = x

ElseIf (x < y) Then

Larger = y

txtLarger. Text = y

Else

txtLarger. Text = "The numbers are equal" End If

End Sub

Private Sub cmdExit – Click()

End ‘code for the exit button

End Sub

Page 85 of 117

This code will appear as shown in Figure 5.14. The call statement in the cmdCalculate

makes the Largest Sub procedure to be executed once the End sub is encountered, the

control is returned back to the next statement often the procedure call.

4. Click the run button and enter a value in the text box labelled X and the other in Y. Figure

5.15 shows that the value of Y i.e. 50 is larger than that of X.

Creating menus, message and dialog boxes Menus enable the users to quickly select

commands while dialog boxes enable the user to enter values and make selections when working

with the computer.

Drop down menus

Drop down menus are the most common menus found in applications. When a menu is selected,

a drop down list of commands is displayed.

For example to create a menu bar with the menu items File, Edit and Format with commands for

each menu item as shown in the Table 5.12 below.

Table 5.12

Menu File Edit Format

Commands open

Save as

Exit

copy

Cut

Paste

font

Background

Cells

Proceed as follows:

1. Click the Menu editor command on the toolbar. Alternatively, from Tools click the Menu

Editor command. The menu editor window opens.

2. Under caption, type the word File. This is the screen name of the menu item.

3. In the Name box enter mnuFile. This is the name that will be used to refer to the File item

when coding.

4. Under Shortcut, select a shortcut key combination. This is optional.

5. Click Insert button and notice that the cursor moves to the next line.

6. Type Open in the Caption box and mnuFileOpen in the Name box.

7. Click the flush right button to insert four dots to the left of Open i.e.

File

........... Open

This means that Open is an item of the File menu. Repeat steps 1 to 4 for all the items then click

the OK button. Your complete set up should appear as shown in Figure 5.16 below.

8. Click OK to close the menu Editor window and go to form design. You will notice that your

form now has a menu bar at the top as shown in Figure 5.17 below. Clicking the File menu

displays a list of the options that you defined.

It is now possible to activate the menu commands by adding code in their event procedures. To

do this, simply click a menu option while in design view and the code window opens in which

you can add its code.

 Message boxes

A message box is a special type of dialog box used to display a message to the user. To display a

message box, use the syntax:

MsgBox "Message string", Button/icon, "Title bar Caption".

For Example: MsgBox("Drive not Ready. Retry?", vbRetryCancel + vbQuestion, "Drive Error")

Displays a message box (Figure 5.18) that tells user that the drive is not ready. Note the Retry

and Cancel buttons, the Question mark in the dialog box and "Drive Error" on the Title bar.

Page 86 of 117

Table 5.13 outlines some of the buttons/icons used in Visual Basic

Table 5.13

button Constant

OK vbOKonly

Critical message icon vbCritical

Critical query icon vbQuestion

Warning message icon vbExclamation

Information message icon vbInformation

Dialog boxes

A dialog box enables the user to have a "dialog" with the computer i.e. to exchange information

with the computer. You have seen these many times when you try to open or save a file; a dialog

will always pop up asking you to fill or select some options. A dialog box is a special purpose

form. It is usually accessed when a menu item is selected. Most dialog boxes have common

controls like option buttons, list boxes and command buttons.

Simple dialog boxes

Visual Basic enables the user to create forms that can be used as dialog boxes. However, they are

secondary to the primary form that is used to access them. Such a form is referred to as a modal

form. This means that the form remains on top of the active form until the user clicks the OK or

cancel button. To add a modal form to your project, use the Load form command. For example,

if the name of the form is Form3 then the Load Form3 command will display the form into the

current project. To stop the form from executing, use the unload command i.e. Unload Form3.

In most cases, a form that is loaded may not even be visible in the project window. To make it

visible, simply use the Show method. Remember that a method carries out actions on objects.

For example to display Form 3, use the syntax Form3.Show. To show the form as modal, use

Fonn3.Show l or Form3.Show vbModal.

Project 5.4

Open a project on which you created the menu bar and do the following:

1. From the project menu click Addform then click New from the Add Form dialog box.

2. Select dialog A form with two command buttons ie Ok and Cancel is added to your project.

Notice in the Project Explorer window that a new form called Form2 is placed hierarchically

below the first form.

 Change the form caption and name appropriately.

3. From your main form file menu click the Open command.

4. In the menuFileOpen code window that opens add the code as shown in Figure 5.19.

5. Close the code editor window and run project. Notice that when you click File then Open the

dialog box you created is displayed on top of Form 1 (Figure 5.20). Because of the Show 1

method, you cannot access the main form until you click ok or cancel button on the dialog box.

Directory list box

You can also add a directory list box on a form. To do this, proceed as follows:

1. In the Project Explorer window, double click Form2 to open it in design view.

2. Double click the DirListBox on the toolbar to place it on the form.

3. Run the project and select the Open command from the File menu, you will be able to browse

all the directories on your computer using the dialog box that you just created.(Figure 5.21).

Common dialog box control

Page 87 of 117

Microsoft common dialog control is a component used to add dialog' boxes such as Save As and

Open onto a form. The common dialog control I is not available on the toolbox unless it is added.

To add it, click Project then Components. The components dialog box as shown in Figure 5.22

will appear. Select the option Microsoft common dialog control as shown, then click the Apply

button. Close the components dialog and check your toolbox for the new icon called common

dialog.

Project 5.5

Using the common dialog box control, create a project that can be used to display the open and

save As dialog boxes. To create the project, proceed as follows:

1. On the form, create a menu bar with menu items File, Edit and Format and two command

buttons with captions open and save as shown in Figure 5.23.

2. Right click the common dialog control on your form to display its properties window. Set the

name property e.g. commonDiagl.

3. Double click Open from the File menu or the Open Command button on the design form then

add the statement below between the Private sub and End sub.

CommonDiagl.ShowOpen

4. Double click the mnuSaveAs or the Save Command and type the code CommonDiag I. Show

Save

Save the project and run the form. Notice that if you click the Open command or button when the

form is running, the Open dialog box opens as shown in Figure 5.24.

In the same way a Print dialog box can be called by adding the following to a menu or button

event: CommonDiag 1.ShowPrint

Other dialog boxes supported by common dialog box are Show Color

and Show Font.

List boxes and combo boxes

List boxes and combo boxes are used to display a list of items the user can select from.

List boxes

A list box enables the user to select an item from a list of entries. Selecting an item on a list

during runtime causes the value of the selected item to be assigned to the ListIndex property. The

ListIndex is an integer with a range of 0 to n-I where the second item corresponds to index 1.

Items can be added to a list using the AddItem method or using the list function.

Project 5.6

Create a project that leads a list of items into a list box when the form is loaded.

To create the project, proceed as follows:

I. Place the list box on the form and then drag it to the expected size.

2. Double click the Form and add the following code window in the Form_Load() event

procedure:

Listl.List(O) = "Nairobi" Listl.Addltem("Nairobi'')

Listl.List(1) = "Kisumu" Listl.Addltem("Kisumu'')

Listl.List(2) = "Mombasa" Listl.Addltem("Mombasa '')

Listl.List(3) = "Bungoma" or Listl.Addltem("Bungoma'')

Listl.List(4) = "Nyeri" Listl.Addltem ("Nyeri'')

Listl.List(5) = "Nakuru" Listl.Addltem("Nakuru '')

Alternatively you can add the items in the list property of the list box. To do this, display the list

properties window, in the list property, enter the items. To move to the next line, during item

Page 88 of 117

entry, press Ctrl + Enter. Figure 5.25 shows the item list assigned to a list box using the

properties window.

3. Run the project. You will notice that the list builds dynamically as you click in the box when

the form is running.

NB: The ListIndex and ListCount properties are very important. ListIndex can be used in

CASE selection construct to point to the most recently selected list entry. For example,

Select Case Listlndex

 Case 0 'first entry in list corresponds to 0, not 1

"Nairobi"

Case 1

"Kisumu "

Case 2

 "Mombasa"

Case 3

............ " ..

End Select

On the contrary, the ListCount property shows the number of entries in a list and it starts from 1,

not O.

Combo boxes

As opposed to a list box, a combo box allows the user not only to select but also make a new

entry into the list of items.

Project 5.7

Create a project that loads a list items into a combo box when the form is loaded.

To create the project, proceed as follows:

1. Place the combo box control on the form.

2. Open its properties window and in the List property add the following items:

"Red"

"Yellow"

"Green"

"White"

"Black"

3. Run the project to load the form. Click the down arrow on the combo box to view the list of

item as shown in Figure 5.26 below.

Visual Basic data structures

Apart from using simple data structures such as Integer, Single, Double etc., Visual Basic comes

with features that allow the programmer to create complex data structures. These include arrays,

records and files.

Arrays

An array is a data structure that stores several data items of the same type hence it is called a

homogeneous data structure. Table 5.14 shows how data of type Integer is stored in an array.

The array has cells. The numbers 0 to 5 are called array indices or subscripts. In Visual Basic,

an array starts from cell 0 as shown in the table.

Declaring an array

To declare an array, use the statement Dim ArrayName (n), where n stands for the number of

elements in the array. For example:

Page 89 of 117

Dim Scores (4) is an array that holds five elements. An element is an item in an array that can

be accessed using the array variable name and a subscript. For example, consider an array of 5

elements called Scores. To display the 4th element use:

Score4 = scores(3)

Print Score4

The value stored in the variable score4 is printed on the form. To store a value in an array

variable, use the statement ArrayVariable (index). For example, to assign a numeric constant 90

to the fifth cell use

scores(4) = 90

This statement will assign a value 90 in the cell 4th of the array.

NB: If the array was very large and you wish to read or enter values in it,

it would be very tedious entering a value cell by cell i.e. Score(O) = 10

Score(1) = 20

Score(3) =30

Score(n) = x

To avoid this, the For.. loop can be used. Remember that this loop is used where the number of

iterations are pre-determined hence its suitability for use with arrays.

For example, if you wish to request the user to enter six values in array named A, the following

FOR loop can be used:

Dim A(5) As Integer

Dim index As Integer

Private Sub EnterArrayValues()

 For index= 0 To 5

 A(ifldex) = Val(Textl.Text)

 Next index

End Sub

Notice that the array is declared this time outside the Subroutine in order to make it a general

procedure that can be accessed by other subroutines. To Display values of the array on the form

the following statement can be used:

Private Sub Display Array Values ()

 For index = 0 To 5

Text2. Text= Str(A(index))

Next index

End Sub

Two dimensional arrays

A two dimensional array is a data structure in which elements are arranged in rows and columns.

Two subscripts are used to identify an item. For example Dim Score(2,4) means that the element

is in the 3rd row, 5th column. This is because the array was declared to start from row 0 column

0 same as Dim Score (0 to 2, 0 to 4). To manipulate elements stored in a

two dimensional array, we use the nested For.. Next or For Each ... Next

loop as shown below:

Dim iRow As Integer

Dim jColumn As Integer

For iRow = 1 T03

 For jColumn = 1 to 5

 Score(iRow, jColumn)

Page 90 of 117

 Next jColumn

Next iRow

Records

A record comprises of a series of related data items (fields). They differ from arrays in that

whereas all elements in an array are of the same data type, data items in a record may differ in

type. For example, when you want to store a students record with the fields Name, Registration

number and date of birth in a file as a unit, then you can define a record that

would hold all this data items in one structure. For example the following declaration will create

StudentDetails record:

Type StudentDetai/s

Name As String 15

 RegistrationNumber As String 10

DateofBirth As Date

………… .

End Type

The first line in the type declaration gives the name of the data structure i.e. StudentDetails. The

other three lines define fields in the data type. Notice that each field has its own data type and

that the string data types are of fixed length. The last line i.e. End type marks the end of the

record definition. A record is defined in a standard code module or the General Declaration

section of a form module.

It is not possible to access the elements of a data structure directly. This is why after defining

data structure, you must declare a variable that will be used to hold the records. This is done by

declaring a variable whose type is the data structure. The general format of such a declaration is:

Dim RecordVariablelVame As RecordName

For example, the StudentDetails record can be declared as a variable using the statement:

Dim Student As StudentDetails

This means that the variable Student is of type StudentDetails. To access an element in the

structure, the following syntax have to be used:

RecordVariable.FieldName e.g. Student.Name

Array of records

An set of user-defined data types can be stored and accessed in arrays too. Consider the record

declared below:

Type Student

RegistrationNumber As Integer Name As String * 20

End Type

An array of the student record can then be declared as follows: Dim StudentArray(39) As Student

This means that the array can store fourty student records. To access a field in the array of

records use the statement: Arrayname(index).FieldName e.g. StudentArray(20).Name will return

the name of the student whose record is in the 20th cell.

Data files

A file can be defined as a storage location of related information or records. Visual Basic

recognises three types of files namely: text (sequential) files, random access files and binary

files. Sequential files consist of data made of text strings. A random access file contains data

records each of equal length with each record having a unique identifier. Remember that a record

is a data structure that has several related data items about a particular entity. In random files, a

Page 91 of 117

record can be accessed directly by specifying its corresponding record number or location. A

binary file contains information expressed as a stream of bytes. Such files store graphics, sound

files or compiled code.

Sequential files

A sequential file stores data items one after another in sequence. The keywords used in

manipulating a sequential file include Output, Input, Write, Read and Close. Table 5.15 gives a

summary of the keywords used in manipulating sequential files.

Table 5.15

Keyword Description

Output Data is written on the storage media at the

beginning

of the file, overwriting any existing data.

Input Opens the sequential file for reading if data is to be

retrieved.

Append Data is added at the end of the last item in a file.

Write Data is output into the sequential file.

Read Reads data from the sequential file.

Close Terminates the processing of a disk file and writes

the last partially filled buffer onto the storage

media.

EOF(Filenumber) End of File marker. When reading data from a disk,

EOF tells the program when to stop. Attempt to

read

past the EOF causes a run-time error.

The following statements are very important when working with this type of files:

(a) Open filename For Output As #n

(b) Open filename For Input As #n

(c) Close #n

where n refers to the file number (n is usually an integer value).

Manipulating data in a sequential file

To manipulate a text file you can use the tools that corne with Visual Basic such as the common

dialog box. For example, to open a file for input, use the showOpen method of the common

dialog box. The skeletal code below shows that when the user enters the name of the file in the

open dialog box, it is assigned to a string variable TargetFile ready for input.

Private Sub mnuOpen _Click

Dim TargetFile As String, x As Integer, item As string

 CommonDialogl.ShowOpen

TargetFile= CommonDialog I.FileName

Open TargetFile For Input As #1

x= 0

Do Until EOF(I)

input # 1, item

'Write a code that reads each data

'Item from the TargetFile until the end-of file-condition is true

x=x+l

Loop

Page 92 of 117

Close #1

End Sub

Likewise, you can write data to a new file by operating it in Output mode as shown in the

skeletal code listing below. Note that the file number used is #2 to avoid overwriting the first

file.

Private Sub mnuSaveAs Click

Dim NewFile As String, x As Integer, item As string

CommonDialog 1.ShowSave

NewFile= CommonDialogl.FileName

Open NewFile For Output As #2

n= 30

For x = 1 TO n

'Write a code that writes each data item into the NewFile Next x

Close #2

End Sub

When you write to a file, all the original data in the file is lost. To avoid losing the content of a

file open it in Append mode as shown in the skeletal code below.

Private Sub mnuSaveAs Click

Dim TargetFile As String, x As Integer, n As Integer

CommonDialog 1.ShowSave

TargetFile= CommonDialog.FileName

Open TargetFile For Append As #1

n= 20

For x = 1 TO n

'write each data item at the end of an existing file Next x

Close #1

End Sub

Project 5.8

Using Visual Basic programming, develop a simple sequential file processing program that

would read data from a file called ReaderFile.txt and write the contents to another file called

Receive. txt . The system should be menu driven. The project should use the Open and Save as

dialog boxes to access the two files on the disk.

To create the project, proceed as follows:

1. Create a new project and save the default fonn as sequentialForm. Save the project as

SequentialFiles. vbp

2. Create a File menu having menu commands as shown in Figure 5.27 below: i.e. Click the tools

then menu editor command.

3. Place the Common dialog control, a combo box and a label on the form.

4. Double click the form then add the code listing below.

Private Sub Form_Load()

Form I. Caption = "Text File I"

Labell. Caption = "Learning to work with text files"

mnuSave As. Enabled = False

Combo 1. Text = " "

End Sub

Page 93 of 117

5. Double click the Open command and type the code below:

 Private Sub mnuOpen – Click()

Dim TargetFile As String, Item As String

Dim x As Integer

CommonDialog I.Filter = "Text files (*. txt)/*. txt" 'open only text files

CommonDialog1.ShowOpen

TargetFile = CommonDialog1.FileName

Open TargetFile For Input As #1

x= 0

Do Until EOF(1)

Input #1, Item

ComboI.List(x) = Item 'Assign items to the list property of combo box

ComboI.Tag = x 'Assign the index x to the tag property that represent the number of items read

from the file.

x= x+ 1

Loop

Combo 1. Text = "Contents"

Combo I.Locked = True

mnuSave As.Enabled = True 'enable command after file open

Close #1

End Sub

Private Sub mnuSave _As – Click()

Dim NewTargetFile As String

Dim x As Integer, m As Integer

CommonDialogI.Filter = "Textfiles (*.txt)/*.txt"

CommonDialog I.ShowSave

NewTargetFile = CommonDialogI.FileName

Open NewTargetFile For Output As #2

n = Val (Combo 1. Tag) 'Assign the value of the tag to n

For x = 0 To n

Print #2, ComboI.List(x)

Next x

Close #2

End Sub

Explanations

1.on running the program, a form is displayed on which is a combo box and a file menu.

2. On clicking the open command in the File menu, the open dialog box is displayed from which

the user can select or type the file name.The file is assigned to a variable TargetFile.

3. Minimise the Visual Basic IDE Window and start a text editor program such as Notepad. In

the window, write the text: we are the world.

4. After saving the text file, close the program and now return to your project. Click File then

Open on your running project. In the Open dialog box, locate your text file and open it. Notice

now that the words "We are the World" are displayed in the Combo box as shown in Figure 5.28.

You can now use the Save_As command to save the file elsewhere with another name.

Page 94 of 117

NB: If we alter the text and separate the words in the sentence with commas or quotes each

word will be read into the computer separately. In such a case the words will be displayed in

a drop down list in the combo box.

5. The reason why the text is displayed in the combo box is because we used the Print statement

for output and directed the output to the combo box. However, to write the content into the

file, use the Write #n statement instead of Print #n.

Project 5.9

Laura, a proprietor of Laura Refreshment Cafe has requested you to create a program that stores

her products in a sequential file. The data entry form should display beverages in a combo box

while juice flavours should be displayed in a list box. These two controls are populated with data

stored in a sequential file. Using a command button, the user should be able to add more

beverages in the combo box.

To create the project, proceed as follows:

1. Create a new project with one form and add appropriate controls on the form as shown in

Figure 5.29.

2. Display each control properties window and set the properties of each control such as:

(a) Name and caption of add beverages command button.

(b) A combo box with items such as Tea, Coffee, Cocoa, Beans etc.

(c) A List box with items such as Orange, Passim)., Mango etc.

(d) A menu bar with File and Edit Menus. The commands in the

File menu include Save and Exit while those in the Edit menu includes Delete an item, Clear

the list and add an item

3, Write a code for each event procedure as shown by the listing below.

 (a) Double click the Add Beverages command button and type the code below:

Option Explicit

Dim mbUnsaved As Boolean

Private Sub cmdAddBevarage – Click()

'Add new Beverage If cboBeverages.Text <> "" Then

 With cboBeverages

 .Add/tem cboBeverages

 .Text= ""

End With

mbUnsaved = True

Else

MsgBox "Enter the name of Beverage", vbExclamation, "Missing Data"

End If cboBeverages.SetFocus

End Sub

(b) Double click the form to open the code editor window and enter the code listing below:

 Private Sub Form_Load() .

'Load the list

Dim stBeverages As String

On Error GoTo HandleErrors 'Turn on the error handling routine

Open "a:BevFile.Dat" For Input As #1

Page 95 of 117

Do Until EOF(1)

Input #1, stBeverages

 cboBeverages.AddItem stBeverages

Loop

Close #1

Form Load exit:

Exit Sub

HandleErrors:

 'The code below raises any type of error encountered during the file open

operation

Dim iResponse As Integer

Select Case Err.Number

Case 53, 76 ' Invalid path or file name

 iResponse = MsgBox("Create a new file?", vbYesNo + vb Question, "File Not Found") Display

a message box

If iResponse = vb Yes Then

 Resume form_Load _exit 'Exit the Procedure

Else

 mnuFileExit - Click 'Exit the program

End If

Case 71

iResponse = MsgBox(''Drive not Ready. Retry?", .

vbRetryCancel + vbQuestion, "Drive Error'') display a message box

If iResponse = vbRetry Then

 Resume

Else

 mnuFileExit - Click 'Exit the program

End If

Case Else

.

Err.Raise Err display a message for any other type of error

End Select

End Sub

Private Sub mnuEditAdd – Click()

'Add a new beverage list cmdAddBevarage _Click

End Sub

(c) Double click the Add command from Edit menu and type the code below:

Private Sub mnuEditdelete – Click()

'Delete a selected item If cboBeverages.ListIndex <> -1 Then

cboBeverages.RemoveItem cboBeverages.ListIndex

mbUnsaved = True

Else

MsgBox "Select an item you want to delete", vbInformation, - I

"Select an Item"

 End If

Page 96 of 117

End Sub

(d) Double click the Exit command in the file menu and type the code listing below:

Private Sub mnuFileExit – Click()

'Exit from the program and save changes

Dim iResponse As Integer

If mbUnsaved = True Then

iResponse = MsgBox("Save changes?”,vb YesNo + vbQuestion, "Save Changes'')

If iResponse = vb Yes Then

mnuFileSave Click

End If

End If

End

End Sub

(e) Double click the save command in the file menu and type the code listing below:

Private Sub mnuFileSave – Click()

'Save the combo box content into a sequential file

Dim iIndex As Integer

Dim iMax As Integer

Open "a:BevFile.Dat" For Output As #1

iMax = cboBeverages.ListCount - 1

For iIndex = 0 To iMax

Write #1, cboBeverages.List(iIndex)

Next iIndex

Close #1

mbUnsaved = False

End Sub

Explanation

 1. On running the program, the form is loaded and you can add a beverage item in the combo

box as shown in Figure 5.30.

3. When the user clicks the save command on the File menu, the Beverages list is saved on the

floppy disk. You can view the items using Microsoft Windows NotePad or any Text Editor.

Below is a list of items saved in the file BevFile.Dat.

"Chocolate"

 "Tea"

 "Coffee"

 ''Milo''

 "Plain Coffee"

 "Soya" I

"Cocoa"

4. On error statement have been used in the Form Load procedure. This code ensures that the

program does not halt in case the user forgets to insert a floppy disk. On error statement and

the err objects are therefore used to trap run-time errors. The correct syntax of the On Error

statement is: I

On Error GoTo LineLabel e.g. On Error GoTo ErrorHandler I

Page 97 of 117

The lineLabel refers to the error handling code that begins with a line label such as

HandleErrors:

The resume statement tells the program to resume back to the statement that caused the error.

Resume Next option can also be used I to tells the program to execute the statement immediately

following the line that caused the error.

The Err object holds information about an error that has occurred. The name of the application

that caused the error is stored in the source property. The Number property contains error

numbers ranging from 0 to 65,535. Examples of Err.Number are shown in Table 5.16.

Table 5.16

Number Err.Description Number Err.Description

7 Out of memory 58 File already Exists

11 Division by zero 61 Disk full

13 Type mismatch 71 Disk not ready

53 File not found 76 Path not found

You can use the raise method to set the error code, effectively turning on an error. This is

necessary if the error that has occurred is not the one of the anticipated. The statement Err.Raise

Err in the form load procedure therefore tells the program to display an error message for any

other unhandled error.

Random access files

Random access files consists of fixed length records each assigned a unique identification

number. The keywords use in random file manipulation are summarised in Table 5.17 below:

 Table 5.17

Keyword Description

Random Records can be input or output and accessed in any,

order.

Get # FileNumber Reads data from a random disk file and place data

into the record name variable. The variable must

be a user-defined data type e.g. a record variable.

Put # FileNumber Writes the content of a record on the disk. The

record

number determines the relative location within the

file. If the record number is omitted, the record will

be placed in the next location from the last Get or

Put operation.

Len Len refers to the length of a single record. For

example Len(EmployeeRecord) retUrns the size of

the employeeRecord in bytes.

Page 98 of 117

LOF(FileNumber) Rather than using EOF, LOF is used to find the end

of a random file. This function returns the size of

the file in bytes. FileNumber is the file number

from the currently open file. To determine the

highest

record number, divide the return value of LOF by

the size of one record. For Example

 Number _of_records = LOF(1)/

Len (EmployeeRecord).

Seek(FileNumber) Returns the current location of the file pointer. For

a sequential file the current byte number is returned

while in randof!! files, seek returns the position of

the next record. For example

NextRecord = seek (1)

To open a random file for input or output use the syntax: The following statement:

Open filename For Random As #n Len = record length

Reading records from a random file

Records are read one at a time using the following procedure

Get #n,record number, data item

Sometimes, you may ignore the record number but instead put two commas I.e.

Get #n"data item

The computer in this case will look for the record following the last'Get operation.

Writing to a random file

The statement below can be used to write records to a file.

Put #n,record number, data item or put #n"data item

The latter statement would write a record next to the last Put operation.

NB: Random files will accept data records only.

Project 5.10

You have been requested to develop a program that can store employees contact details. Create a

project that has two forms namely the main form and a data form that can be used to manipulate

employees records and store them in a random file. The forms should have the following

controls:

Main form

1. A List box where the names of the employees are displayed.

2. Command buttons for Adding, Deleting, Updating and browsing employee’s records.

3. Menu bar with File and View menus.

Data form

1. Labels and Text boxes for LastName, FirstName, Address and City/Town

2. Navigation buttons i.e. First, Next, Previous and Last.

3. OK and Cancel buttons.

To create the project, proceed as follows:

1. Create a project that has two forms namely the main form and a data form and add controls as

shown in Figure 5.31 (a) and (b).

2. Open the properties window and set the properties of each control such as:

(a) Name and caption of each form controls

Page 99 of 117

(b) Command buttons for both forms.

(c) A combo box with items such as Tea, Coffee, Cocoa Soya etc.

3. Create a menu bar with File and View menus. The File menu should include at least one

command e.g. Exit while the View menu should have at least View Records command.

4. Write codes for each event procedure and standard procedure as shown by the listing below.

 Standard(Global) Procedure

Enter this code in a standard module code editor window.

Option Explicit

Type employeesRecord 'Define a record with five fields.

stLastName As String * 15

stFirstName As String * 15

stAddress As String * 10

stCity As String * 12

 stDeleted As String * 1

End Type 'End of record defination

Public gEmployee As employeesRecord

Public gstFileAction As String

Main form Procedures

Private Sub cmdAddNew – Click()

'Display a blank record in order to add a new employee

gstFileAction = "A"

frmFile.Show vbModal

End Sub

Private Sub cmdBrowse – Click()

'Browse the File

 gstFileAction = "B"

frmFile.Show vbModal End Sub

Private Sub cmddelete – Click()

 'Delete an employee from the list

 iflstEmployee.ListIndex <> -1 Then

 gstFileAction = "D"

 frmFile.Show vbModal

 Else

 MsgBox "Select a record to be deleted!", vbOKOnly + vbInformation, "Delete!"

End if

End Sub

Private Sub cmdUpdate - ClickO

 'Update an employee record

 iflstEmployee.ListIndex <> -1 Then

 gstFileAction = "u"

 frmFile.Show vbModal

 Else

 MsgBox "Select a record to update", vbOKOnly + vbInformation, "Update"

End if

End Sub

Private Sub Form_Load()

Page 100 of 117

'Store the details of the list box in a random file

 Dim iIndex As Integer

Dim iResponse As Integer

On Error GoTo HandleErrors

Open "a:Employee.Dat" For Random As #1 Len = Len(gEmployee)

 IfLOF(l) / Len (gEmployee) > 0 Then 'Iffile not empty

 For ilndex = 1 To LOF(1) / Len (gEmployee)

 Get #1, ilndex, gEmployee

 If gEmployee.stDeleted <> "Y" Then

 AddtoList (iIndex)

 End If

 Next iIndex

Else

iResponse = MsgBox("Create a new file?", vb YesNo + vb Question, "File Not Found'')

If iResponse = vbNo Then

mnuFileExit _Click 'Exit the program

End If

End If

form_Load - exit:

Exit Sub

HandleErrors:

If Err.Number = 71 Then

 iResponse = MsgBox("Drive not Ready. Retry?", vbRetryCancel + vb Question, "Drive

Error'')

 If iResponse = vbReiry Then

 Resume

 Else

 mnuFileExit _Click 'Exit the program

 End If

Else

On Error GoTo 0 'Turn error trap off

End If

End Sub

Private Sub mnuFileExit – Click()

 'End the program

Close #1

End

End Sub

Public Sub AddtoList(iIndex As Integer)

'Add an employee in the list box

Dim stName As String

stName = Trim(gEmployee.stLastName) & ", "& gEmployee.stFirstName

IstEmployee.AddItem stName

IstEmployee.ItemData(lstEmployee.NewIndex) = iIndex

End Sub

Private Sub mnu ViewEmployee – Click()

Page 101 of 117

 'Display the employees file

 gstFileAction = "B" 'Browse

frmFile.Show vbModal

 End Sub

Data form Procedures

Option Explicit

Dim miIndex As Integer

Private Sub cmdCancel- Click()

 'Switch to the main form

frmFile.Hide

 End Sub

Private Sub DisplayRecords()

 'Display record fields in the form text controls

 txtLastName. Text = gEmployee.stLastName

 txtFirstName. Text = gEmployee.stFirstName

 txtAddress. Text = gEmployee.stAddress

 txtCity. Text = gEmployee.stCity

End Sub

Private Sub SaveRecords()

gEmployee.stLastName = txtLastName. Text

gEmployee.stFirstName = txtFirstName. Text

gEmployee.stAddress = txtAddress. Text

gEmployee.stCity = txtCity. Text

End Sub

Private Sub cmdFirst – Click()

 'Display the first record

 frmMain!lstEmployee.ListIndex = 0

 Readrecords

End Sub

Private Sub cmdNext_Click()

 'Display the next record

 If frmMain! IstEmployee.ListIndex <

 frmMain!lstEmployee.ListCount -1 Then

 jrmMain!lstEmployee.Listlndex = jrmMain!lstEmployee.Listlndex + 1

 Readrecords

 Else

 cmdFirst Click

 End If

End Sub

Private Sub cmdLast – Click()

 'Display the last record

 frmMainflstEmployee.Listlndex =

 frmMain!lstEmployee.ListCount -1

Readrecords

End sub

Private Sub cmdOK Click()

Page 102 of 117

'Select the action to perform then click OK

Dim stName As String

Select Case gstFileAction

Case "A"

 milndex = LOF(1) / Len (gEmployee) + 1

 gEmployee.stDeleted = "N"

 SaveRecords

 WriteRecords

 frmMain.AddtoList (milndex)

frmMain!lstEmployee.ListIndex = frmMain!lstEmployee.Newlndex

Case "D"

miIndex =frmMain!lstEmplayee.ItemData(frmMain!lstEmployeeListIndex)

gEmployee.stDeleted = "Y"

WriteRecords

frmMain!lstEmployee.RemoveltemfrmMain! IstEmployee.Listlndex

 Case "U"

 SaveRecords

milndex= frmMain!lstEmployee.ItemData(frmMain!lstEmplayeeListIndex)

WriteRecords

 frmMain!lstEmployee.Removeltem frmMain! IstEmployee.Listlndex

frmMain.AddtoList (miIndex)

Case "B"

End Select

frmFile.Hide 'Return to the main form

End Sub

Private Sub ClearTextBoxes()

 txtLastName.Text = ""

 txtFirstName. Text = ""

 txtAddress. Text = ""

txtCity. Text = ""

End Sub

 Private Sub NavigationEnabled()

 cmdFirst.Enabled = True

 cmdNext.Enabled = True

 cmdPrevious.Enabled = True

cmdLast.Enabled = True End Sub

 Private Sub NavigationDisabled()

cmdFirst.Enabled = False

cmdNext.Enabled = False

cmdPrevious.Enabled = False

cmdLast.Enabled = False

End Sub

Private Sub cmdPrevious – Click()

If frmMain!lstEmployee.Listlndex < 1 Then

cmdLast Click

 Else

Page 103 of 117

 frmMain!lstEmployee.ListIndex = .frmMain!lstEmployee.ListIndex - 1

 Readrecords

End If

End Sub

Private Sub Readrecords()

 'Read data from a random file

 miIndex= frmMain!lstEmployee.itemData(frmMain!lstEmployee.ListIndex}

 Get #1, miIndex, gEmployee

DisplayRecords

End Sub

 Private Sub WriteRecords()

 'Save data to a disk

Put #1, miIndex, gEmployee

End Sub

 Private Sub Form_Activate()

 'Activate the data form and set focus to the LastName field

 Select Case gstFileAction

Case ''A''

ClearTextBoxes

NavigationDisabled

txtLastName.SetFocus

Case "D"

Readrecords

NavigationDisabled

Case "U"

 Readrecords

NavigationEnabled

Case "B"

 NavigationEnabled

 cmdFirst Click

 End Select

End Sub

Explanation

1. On running the program, the main form is loaded that shows a list of employees as shown in

Figure 5.32.

2. When the user clicks the Add New button, a blank data form is displayed with focus set on the

LastName text box. (See Figure 5.33). If you add a new employee record and then click the

OK button, the employee's name is added into the list box and saved into random file.

3. On clicking the Delete, Update or Browse buttons, the records are displayed on the form for

the user to perform the appropriate action. Figure 5.34 (a) shows a record that is just about to

be deleted while Figure 5.34 (b) shows the main form display after deleting the selected

record.

Binary files

A binary file is used to store graphics, sound or compiled files. Applications that make use of

binary files are complicated and beyond the scope of this book. However, to manipulate a binary

file the keywords Put, Get, EOF, Len, LOF, Seek, Loc (pointer location) are used.

Page 104 of 117

To open a binary file we use the statement; OpenfileName for Binary As #n. Below is a skeletal

listing of a Visual Basic program that read and writes the same data into a binary file.

Private Sub mnuCopy – Click()

Dim FileLength As Integer, Index As Integer

Dim FileName As String

Dim FileByteO As Byte

FileName = 'find out the file name

Open FileName For Binary As #1

FileLength = LOF(1)

ReDim FileByte(Filelength)

For index = 1 To FileLength 'read the file

 Get # 1 "FileByte(Index) 'the second field has no value

Next index

For Index = 1 To FileLength

Put #1, Index, FileByte(Index) 'the second field has a value

 Next Index

Close #1

End Sub

Explanation

The Get #n statement start reading the first byte in the file and then reads each successive byte

until the end of the file. The Put #n statement has a value hence it will overwrite the contents of

the file it is writing to. To avoid this, leave index empty so that the write operation simply

appends the records to the end of the file.

1. What is an array subscript?

2. Differentiate between a record and' an array.

3. Differentiate between a sequential file and a random access file.

4. State the function of each of the following file manipulation commands.

(a) Input #1 (b) Get#n (c) Put #n (d) Qpen

5. Differentiate between (a) EOF and LOF

6. An employee file has the following fields: First name, Second name, Employment number,

Date of employment and Date of birth. Using the type declaration, create a user defined data type

that will store ail this data for one employee.

7. Declare a variable that can store the user defined data type in question 6 above.

8. Assuming the user wants to access the DateofEmployment field in a record

variable'employeeDetails, write a statement that can do this.

Linking Visual Basic forms to a database

In Visual Basic, it is possible to access an existing database. This is done by adding data controls

on a form. For example assuming a database called library exists and it has a table called

students, to access this table in Visual Basic, proceed as follows:

1. Open your Visual Basic project. Click the Project Explorer icon on the toolbar to display the

explorer window. Double click Form1(Form1.frm) in the project explorer window to display the

blank form as in Figure 5.35.

Page 105 of 117

2. If the properties window is not displayed, right click the form then select Properties from the

shortcut menu. Change the properties as indicated below:

Property Value

Name Studentform

Caption Enter or View Students

3. Double click the Data control tool on the toolbox. A data control is placed on the form

automatically. Now move and resize it as you wish. Change the following properties of the

data control:

Property Value

Name StudentFormData

Caption ViewStudents

Connect Access 98/2000/2003 (Depends on the database

type and version installed in your computer).

DatabaseN am Provide the full directory path to the database

by clicking the... icon then browse to the

database.

RecordSourct STUDENTS (select this table from a drop down

menu)

The last two properties link your form to the database that has the data source records. For

example, in our case, the data source is the students table found in the Library database.

4. To view the fields of each record, add text boxes in the form that would accommodate all

fields from each record. To link each text to the data source, double click the text box and

then change the following properties for each text box.

Textbox 1

Property value

Name Studentregistrationtxt

Data source Studentformdata (remember this is the name

you gave to the data control on the form)

Datafield Registration number (select from dropdown

menu)

Text Reg no

Textbox 2

Property Value

Name Studentfirstnametxt

DataSource Studentformdata

Datafield First name

Repeat the above for all the available textboxes then save the project. Figure 5.36 (a) shows three

textboxes linked to the STUDENT table.

5. Run the project to display the content of the underlying table. Figure 5.36 (b) shows the

sample record from the underlying table. Notice that the fields on the form do not have

labels. It is the high time we add labels and command buttons.

To add labels proceed as follows:

(a) Double click the label control on the toolbox. A label is placed on the form.

Page 106 of 117

(b) Drag the label and place it above the Registration number field on the form.

(c) Change the label name and caption appropriately.

(d) Set the labels properties appropriately as shown in the table below.

Labels 1

Name Caption

Labelregno Registration no:

LabelFirstName First name:

LabelSecName Second name:

To add a command button proceed as follows:

(a) Double click the button from the toolbox.

(b) Change the name and caption of the command button.

Name Caption

EnterNewRecord New record

SaveNewRecord Save

I

(c) Change the buttons properties as indicated below

Your form should now look as shown in Figure 5.37.

Project 5.11

Create a new project called SchoolLibrary that can be used to access a database called

Biblio.mdb that conies with Visual Basic.

To create the project, proceed as follows:

1. Start Microsoft Access and locate for the Biblio database. The path to the database may be

C:IProgram FileslMicrosoft Visual

 Studio\VB98\Biblio. mdb. Figure 5.39 shows the tables in the database.

 2. Click the queries tab and open All Titles in design view. Note that the query has four fields

namely: Titles, ISBN, Author and Year Published.

3. Create a project that contains one form, large enough to hold the four fields. Click on the Data

Control tool and draw a data control at the bottom of the form as shown in Figure 5.40.

4. Add labels and text boxes that will be used as bound controls for the fields from the query. Set

Name, Caption and Text Properties for the labels and textboxes accordingly.

5. Change the Data control properties as follows:

(a) Set the Name property to datBooks and Caption to Display a book.

(b) Make sure the connect property is set to Access.

(c) Click the DatabaseName settings button (...) to display database name dialog box. From

the dialog box, locate the database called Biblio using the path C: IProgram Files \Microsoft

Visual

Studio\VB98\Biblio.mdb

6. Scroll to RecordSource property and click the down arrow. From the list of tables and queries

displayed, select All Titles. Figure 5.41 shows a section of the Data control properties settings.

7. Click each textbox and set the DataFie1d appropriately. For example, click the txtISBN, then

from the DataFie1d property, select ISBN.

 8. Write the code listed below for the command Close button.

Page 107 of 117

Private sub cmdClose – click()

 , Exit from the project

End

End Sub

9. Save the form as books and the project as VBBiblio. Figure 5.42 shows the complete form in

design view.

10. Run the project. Notice that the form bound controls are populated with data from the All

Titles query as shown in Figure 5.43. Click the navigation arrows of the data control to view

other records.

Using the Recordset object to manipulate a database

When you set the record source property of a data control to the name of a table or query, you

are defining a new object called a Recordset. The recordset has its own set of properties and

methods which you can use to move from record to record. Below is a summary of some

methods used with Recordset.

Method Description

AddNew Clears the bound controls for a new record entry

Update Beginning of file. Updates the underlying table or query by adding the new field.

Delete End of file. Used for deleting the currently selected record.

BOF Used to check for the beginning of a file.

EOF Used to test the end of a file.

Move Used to navigate through the database. Other Move methods includes MoveNext,

MoveLast and MovePrevious

Project 5.12

Using the Recordset object, modify the VBBiblio project by adding three more command buttons

namely Add New, Save and Delete on the Books form. Using the three buttons, the user should

be able to add a new record, automatically update the underlying data source or delete a selected

record.

To create the project, proceed as follows:

1. Open VBBiblio project and add the three buttons as shown in Figure5.44.

2. Write the code for each of the buttons. Below is a sample code for the modified VBBiblio

project.

Private Sub cmdAdd – Click()

'Add a new record

If cmdAdd. Caption = "&Add New" Then

datBooks.Recordset.AddNew 'Clear the fields for new entry

txtISBN.SetFocus

DisableNavigations

cmdSave.Enabled = True 'Enable the save button

cmdAdd.Caption = "&Cancel" 'Allow a cancel option

Else

datBooks.Recordset. Cancel Update

EnableNavigations

cmdSave.Enabled = False

cmdAdd.Caption = "&Add New"

End If

Page 108 of 117

End Sub

Private Sub DisableNavigations()

 cmdFirst.Enabled = False

cmdNext.Enabled = False

cmdPrevious.Enabled = False

cmdLast.Enabled = False

cmdDelete.Enabled = False

End Sub

Private Sub EnableNavigations()

 cmdFirst.Enabled = True

cmdNext.Enabled = True

cmdPrevious.Enabled = True

cmdLast.Enabled = True

cmdDelete.Enabled = True

End Sub

Private Sub

cmdClose – Click() 'Close the form

End

End Sub

Private Sub cmdDelete Click() 'Delete the selected record

 With datBooks.Recordset

 .Delete

 .MoveNext

If.EOF Then

 .MovePrevious

 If.BOF Then

 MsgBox " The record set is empty", vblnformation, "No

 Records"

 End If

 End If

End With End Sub Private Sub cmdFirst – Click()

 'Move to the first record

 datBooks.Recordset.MoveFirst

End Sub

Private Sub cmdLast – Click()

 'Move to the Last record

datBooks.Recordset

.MoveLast

End Sub

Private Sub cmdNext_Click() 'Move to the next record

With datBooks.Recordset

.MoveNext

 If.EOF Then

 .MoveFirst

End If

End With

Page 109 of 117

End Sub

Private Sub cmdPrevious – Click() 'Move to the previous record

With datBooks.Recordset

.MovePrevious

 If.BOF Then

 .MoveLast

 End If

 End With

End Sub

Private Sub cmdSave – Click()

'Save the current record

datBooks.Recordset.Update

EnableNavigations

cmdSave.Enabled = False

cmdAdd.Caption = "&Add New"

End Sub

Explanation

On running the program, the form is loaded that shows each record from All Titles query. The

user can navigate to view other records using the navigation buttons. This project also allows the

user to add, save and delete a record as shown in Figure 5.45.

Practical activity 5.3

Using an existing database called Hospital, write a project that access the employees Table that

has at least five fields i.e. First Name, LastName, Dateofbirth, Department and Status. The

project form should have Navigation, Add, save and Delete buttons

1. Assuming you have a database containing the following fields:

(a) Names

(b) Contact numbers

(c) Town

Explain how you can access these fields in the database from Visual Basic environment.

2. Explain the difference between a data control and a databound control.

3. Explain how you would link up a form in Visual Basic to a database called Biblio that comes

with VisualBasic located in a folder VB98. VB98 is accessed through the path C:/Program

File/Microsoft Visual Studio VB98.

Creating a Visual Basic executable file

You can convert your project into an executable (.EXE) file that can be run on Microsoft

Windows desktop. The EXE file contains the information for all your project files including the

form files and modules. After you create the EXE file, the other files are not affected. However

anytime you make changes to the source code, you must recreate the EXE file.

To create the EXE file Proceed as follows:

1. From the:Filemenu, select Make xxxx.exewhere xxxx stands for the currently open project.

2. In the make project dialog box, type the name of your executable file then click OK.

3. You can then place your EXE file in the programs menu or on the desktop.

Conclusion

Therefore with knowledge in Visual Basic programming and system development discussed in

Chapter 4, you can be able to create versatile information systems. This being an introduction

Page 110 of 117

there is a lot in Visual Basic programming. You can learn more on Visual Basic Programming

from Microsoft Visual studio on-line help known as MSDN collection.

APPENDIX I

Introduction to database design

Most systems will involve storage of data in a database and then having different users accessing

the data in their own unique way. Sometimes the data may be stored in a file that is created on

the disk. This appendix demonstrates how to construct system files or tables, using Microsoft

Access and finally automate your database to make it a fully-pledged application.

Remember that in system analysis, we said that for a library system, we will need to store data

about books and students as entities of the system. These records have to be stored in a database.

These entities have a relationship which needs to be defined during database design. For

example, because a student can borrow many books, this can be represented in the database

design as a "one-to-many relationship". Figure App. 1.1 represents this relationship using a

simple relationship diagram. The line that joins the two entities divides into three on the Books

side to show that one student can borrow many books.

Other relationships that are possible between entities are "one-to-one" and "many-to-many". In

Figure App. 1.2. for example, one student can only have one registration number.

Student has a Registration

number

Fig. App. 1.2: One-to-one relationship

Similarly, in a school environment, one course unit can be done by many

students and one student can do many course units (Figure App. 1.3).

Course unit can be

\taken by /

Student

/ \

Fig. App. 1.3: Many-to-many relationship

It is therefore possible to have a database design that has all the three entity relationships.

However, when designing your database, best practice demands one to develop one-to-many

relationships between entities. The diagram that shows the logical relationship between data

entities is called the entity relationship diagram (ERD).

Defining attributes

Attributes need to be identified for each of the entities identified in the entity relationship

diagram. The attributes will become the fields of the database table that will store data for each

entity. A complete set of

attributes in a table will form a record. Each entity will have one attribute that will hold a unique

value for each of the records entered in the database. This unique attribute is called the key

attribute or the primary key (PK). To create a relationship between two tables, include the

primary key of one table in the second table i.e. create a field in the second table that has the

same data type as the primary key of the first table. This field created in the second table is called

the foreign key (FK). Table App. 1.1 shows the attributes for two entities in a library

management system.

Table App. 1.1

Page 111 of 117

Entities and their attributes

Entity Attribute

Books Book number (PK)

ISBN number

Author

Publisher

Purchase price

Student Registration number

First name

Middle name.

Class

Stream

A careful study of the two tables will reveal that some of the attributes need to be separated and

used to develop other entities. This is because they will encourage duplicate storage of data in

the database. For example, one "Publisher" may have published many books. Hence, if you have

one hundred different books in the library done by the same publisher, you will have to enter the

same name a hundred times in the database!

Table App.I.2 shows this anomaly. This data duplication is not allowed and hence we can create

an entity called "Publishers" that will have the name of a publisher entered once in the database

then allow you to keep on referring to it when the need arises. The process of trying to eliminate

storage of duplicate values in the database is called normalization. It is governed by some rules

that are outside the scope of this book. However, the simple principle is that you try to separate

off any attributes that may eventually carry repeating values in the database to form their own

tables.

Table App. 1.2

ISBN Title Publisher Date

published

Date

issued

Return

date

09625063xx

08765432xx

GIS Data

Form 1 Geog.

Jets book

Jets book

2000

2001

1/3/2005

3/4/2005

8/3/2005

10/4/2005

To avoid repetition, Table App. 1.2 can be broken down into two, one for the books and another

for publishers as shown in Table App. 1.3.

Table App. 1.3

Entities and their attributes

Entity Attribute

Book Book Number (PK)

ISBN

Title.

Date of publication.

Year published

Purchase price

Student number (FK)

Publisher ID (FK)

Page 112 of 117

Student Registration number (PK).

First name.

Middle name.

Class

Stream

Publisher Publisher ID (PK).

Publisher name.

Address

City

Phone number

The entity relationship diagram of the system will now look as shown in Figure App. lA.

This entity relationship diagram shows that a student can borrow many books. Likewise a

publisher can publish many books.

Creating the database

This section presumes that you have covered the Form 2 syllabus on databases. To create a

database, proceed as follows:

1. From the start menu, select Microsoft Access. The dialog box of Figure.App. 1.5 appears.

Fig.App. 1.5:

2. Select BlankAccess Database option then click the OK button. The File New Database dialog

box appears. In the File name box, type the name of the new database to be created as shown in

Figure App. 1.6.

3. In the Save in box select the folder where you want to save your database, then click the

Create Database button.

4. The database as shown in Figure App. 1.7 appears on the screen allowing you to create the

various tables.

Defining a file/table structure

To define the file/table structure:

1. Click the Tables tab in the database window and then double click Create table in Design view

command.

2. Create the three tables i.e. students, books and publisher using the attributes defined earlier in

Table App. 1.3. Figure App. 1.8 shows a students table in design view.

Setting the primary key and foreign key

A primary key can be defined as a unique field that identifies each record in a database table.

This means that the primary key in a database table holds unique values for each record and

cannot accept duplicate, null or empty values. For example, if one student has the registration

number 2000, no other student can be assigned the same number and a value must be entered

into the field before proceeding to another record.

On the other hand, the foreign key is included as an attribute of an entity in order to create a

relationship with another entity in the database. For example, the Student registration number

Page 113 of 117

field in the BOOKS entity creates a relationship between the STUDENT entity and the BOOKS

entity. The entity with the foreign key is usually on the many side of a relationship. Values in a

foreign key field of a table in a database are unique but are allowed to repeat as long as they

appear in the primary key of the primary table.

To define table relationships:

1. From the tools menu, click relationship. Show table dialog box appears as shown in Figure

App. 1.9.

2. Select the tables and click add so that they are displayed on the relationship window.

3. To create a relationship, drag the primary key of the parent table to the foreign key of the

"child" table. For example to create a relationship between Students table and Books table, drag

the Fig. App. 1.10: Defining relationships registration number of the students table to the

registration number of the books table. Eventually, you will get a relationship such as the one

shown in Figure App. 1.10.

4. Enforce referential integrity: Referential integrity governs the nature of records in a "one-to-

many relationship". This means that all foreign keys in the child table must have a matching

record in the parent table. Therefore you cannot add a record in the child table if it does not

have a related record in the parent table.

Check the 'Cascade Update Related Fields' if you want your database to update the child

tables once the parent record is updated. This means that if the student's registration number

is changed, all the records in the related tables will automatically be updated. FigureApp.

1.11 shows an edit relationship for the two tables i.e. students and books.

Once you have created your database tables and related them accordingly, you can then enter

data into the tables using forms which you create. Since database forms design was covered in

Form 2 the rest of this appendix illustrates only data entry into the system.

Figure App. 1.15 shows a sample report generated from the database showing a summary report

indicating which student has which book. The report has been generated from a query that is

created using the three related tables.

Automating your database application

Once you finish creating the basic database objects i.e. tables, forms, reports and queries, you

may wish to automate operations such as data entry, printing reports and making the user

interface more user friendly.

In Microsoft Access, some of the tools used to automate a database are:

1. Switchboard: This is a special purpose form used to automatically access to other database

objects such as forms and reports.

2. Macros: This is a set of one or more actions used to automate commonly performed tasks such

as opening and closing forms and printing reports.

3. Visual Basic for application (VBA) module: The module object in Microsoft Access is a

program coding widow for a subset of Visual Basic programming language called Visual

Basic for Application (VBA). VBA is similar to Visual Basic only that you cannot create a

new program (project) within.

Creating a switchboard To create a switchboard;

Page 114 of 117

1. From the Tools menu, point to Database utilities then click Switchboard manager.

2. If no switchboards are available, Microsoft Access will prompt you whether you want to

create one. Click Yes.

3. From the switchboard manager dialog box click Edit.

4. From the Edit switchboard dialog box, click Edit. The Edit switchboard Item dialog box

appears in which you can specify the menu items to be included on the switchboard. Figure

App. 1.16 shows an illustration of switchboard editing dialog box for the library system.

5. In the "Edit switchboard item" text box, enter the name of the menu. From the command list

box, select the object to be accessed e.g.

"Open form in Edit mode". In the Form list box, select the name of the object e.g. StudentsForm

user click OK.

6. Finally click Close buttons to close the switchboard dialog boxes. Figure App. 1.17 below

shows a switchboard for the library management system.

Creating macros

To create a macro in Microsoft Access:

1. Click the Macros tab then New. The macros design grid appears.

2. In the macros design window, Action column, click the down arrow to select an action

that you want to be executed directly every time you run the macro. For example, scroll

downwards and click OpenForm.

3. In the lower part of the macro design window specify the action arguments. For example,

for the action OpenForm select the name of the form e.g. switchboard, view mode.

Creating Visual Basic for application (VBA) module

Since in chapter 5 we introduced you to Visual Basic programming, you can transfer the same

skills to coding using Visual Basic for Application. You will realise that the only difference

between the two is that Microsoft Access modules are only limited to particular objects and that

you can not create a new project using this. For more on Visual Basic for Application coding,

you can get help that comes with Microsoft Access. However, it is important to note that Visual

Basic for application is also available as an independent programming language which you can

use just like Visual Basic.

There are two approaches for creating VBA codes:

1. Adding a code to form and report using event procedure. To add a code in this way, open the

form or report in design view and then double click the form icon located at the meeting point of

the vertical and the horizontal ruler.

2. From the objects properties list, click the events tab then click the build button from the

resulting dialog box, choose Code Builder.

The coding window for the object you chose is displayed as shown in Figure App. 1.18.

Enter the VBA code between the private sub object name event and the end sub.

Securing your database from unauthorised access

There are a number of security options that can be used to set security. However the simplest

methods is the use of a password.

To setup a database password in Microsoft Access,

1. Open the database file in exclusive mode as shown in Figure App. 1.19.

2. From Tools menu, point to Security then click Set password.

3. Enter the password in the password text box and re-enter the same password in verify

box then click: OK

Page 115 of 117

When a user opens the database, he/she will be prompted to enter the password as show in

Figure App. 1.20.

Setting up the startup options

You can finally customise your application workplace by specifying the startup options. Start up

options lets you customise your database in order to make it more presentable to the users. Such

a database will always be starting as an application instead of loading it from Microsoft Access

application window.

To set up the start up options for your application, from Tools menu, click<start up then specify

the following

1. Applications title: The title that will appear on the title bar instead of the default Microsoft

Access title.

2. Application icon: You can choose an icon that goes together with your application title.

3. Menu bar: You can specify the menu options that should appear when running the application.

4. Display form: Choose the form you want automatically displayed once you start the

application e.g. the switchboard.

5. Uncheck "Display Database Window" to limit the users from viewing the objects created in

your database. .

Conclusion

Although this Appendix has tried to open you to a lot of utilities, tools and commands you can

use to come up with a fully fledged application, it is important to note that Microsoft Access has

a lot of potential which would take hundreds of pages to explain. However, you can use this

Appendix to help you explore further on skills and concepts that can help you develop

information systems through customisation approach.

Page 116 of 117

APPENDIX II

Coding schemes

Binary Coded Decimal (BCD)

Decimal number 0 1 2 3 4 5

Binary equivalent 0000 0001 0010 0011 0100 0101

Decimal number 6 7 8 9

Binary equivalent 0110 0111 1000 1001

Standard Binary Coded Decimal

Letter Binary Letter Binary Letter Binary Letter Binary

A 11 000 1 H 111 000 0 10011 0 V 010101

B 11 00 10 I 111001 P 100111 W 010110

C 11 00 11 J 100001 Q 10 1000 X 010111

D 110100 K 100010 R 10100 I Y 011000

E 110101 L 100011 S 010010 Z 011 00 1

F 110110 M 100100 T 010011

G 110111 N 100101 U 010100

ASCII and EBCDIC

Character 7 -bit ASCII 8-bit EBCDIC

0 0110000 1111 0000

1 0110001 1111 000 1

2 0110010 11110010

3 0110011 11110011

4 0110100 11110100

5 0110101 11110101

6 0110110 11110110

7 0110111 11110111

8 0111000 11111000

9 0111001 11111001

Character 7 -bit ASCII 8-bit EBCDIC

A 1000001 11000001

B 1000010 11000010

C 1000011 11000011

D 1000100 11000100

E 1000101 11000101

F 1000110 11000110

G 1000111 11000111

H 1001000 11001000

I 1001001 11001001

J 1001110 11010001

K 1001011 11010010

L 1001100 11010011

M 1001101 11010100

N 1001110 11010101

0 1001111 11010110

P 1010000 11010111

Page 117 of 117

Q 1010001 11011000

R 1010010 11011001

S 1010011 11100010

T 1010100 11100011

U 1010101 11100100

V 1010110 11100101

W 1010111 11100110

X 1011000 11100111

Y 1011001 11101000

Z 1011010 11101001

Character 7 -bit ASCII 8-bit EBCDIC

blank 0100000 01000000

 0101110 01001011

, 0101100 01101011

+ 0101011 01001110

- 0101010 01100000

/ 0101111 01011100

= 0111101 01100001

(0101000 01111110

$ 0100100 01011011

) 0101001 01011101

NB: Alphabetic lower case characters have their symbolic representation too but not included in

this scheme

