

GOLDLITE ONLINE SERVICES

Kenya Certificate of Secondary Education

SMARTFOCUS QUICK REVISION SERIES 2025

CHEMISTRY PAPER 1

24 SERIES EXAMS

KNEC COMPLIANT

FOR MARKING SCHEMES AND MORE PAPERS INBOX/WHATSAPP
OR CALL 0724351706/0726960003 OR VISIT OUR WEBSITE

WWW.GOLDLITEKCSEREVISION.CO.KE
SUBSCRIBE AND DOWNLOAD THOUSDANDS OF RESOURCES

UPLOADED DAILY

ANSWER ALL THE QUESTIONS IN THE SPACES PROVIDED:

1.	A school laboratory technician left a sample of concentrated sulphuric (VI) as boiling tube for 24 hours and she found out that the volume had increased slight	-
	a) What property of concentrated sulphuric (VI) acid was shown by the abo	ve observation? (1 mark)
	b) Give one use of concentrated sulphuric (VI) acid based on the property nar above.	med in (a) (1 mark)
	c) Determine the oxidation state of Sulphur in $S_2O_7^{2-}$.	(1 mark)
2.	Brown gas L Blue solution Reagent R Pale blue ppt Reagent R Deep blue solution	
	(a) Give the identity of reagents Q and R	(2 marks)
	(b) Write equation leading the formation of the deep blue solution.	(1 mark)
3.	(a) State Charles' Law.	(1 mark)

	(b) The volume of gas Y at a temperature of 25 °C and 600 mmHg pressure is 9.6 x 10 ⁻² m ³ . Calculate the temperature at which the volume of the gas would be 6.4 x 10 ⁻² m ³ pressure remains constant. (2 marks)
4.	A form three student from KASSUMEC High school was interested in determining the pigments present in amaranthus leaves that makes it have the green and yellow colourations
	a) Identify the substances responsible for the green and the yellow colourations. (2 marks)
	b) State the two processes that make the separation of the pigments possible. (1 mark)
5.	The combustion of a hydrocarbon compound gave 4.4g carbon (IV) oxide and 2.25g water. i) Calculate the mass of carbon and hydrogen in the hydrocarbon sample. (1 mark)
	ii) Calculate the empirical formula and hence determine the molecular formula of the hydrocarbon given that it has a molecular mass of 58. (C=12.0, H=1.0) (2 marks)
6.	a) Define hydrocarbons. (1 mark)

	b) Name the following of CH ₃		(2 marks
	CH ₃ — C – CH ₃		
	СН ₃ (СН ₂) ₃ СН	CH ₂	
· .	State one role of Chemis	try in the society.	(1 mark)
' .	State one role of Chemis	try in the society.	(1 mark)
			(1 mark)
7. 3.	Use the bond enthalpies	given below (at 298K) to a	
	Use the bond enthalpies	given below (at 298K) to a	aswer the questions that follow.
	Use the bond enthalpies $N_{2(g)} + 3H_{2(g)}$	given below (at 298K) to a	aswer the questions that follow.
	Use the bond enthalpies $N_{2(g)} + 3H_{2(g)}$ Bond	given below (at 298K) to a 2N Bond energy kJ /mol	aswer the questions that follow.

• • •	 ••					• • •			• • •								••				•••		• •					••				• •			•••	. .				• • • •		
• • •	 ••	••			••	• • •		••	• • •						• •		• •				•••		• •	• • •			• • •	• •			• • •	• •		• • •	• • •		, .	• • •	•••			••
• • •	 • •	• •	• •		••	• •		••	• • •		••	• •	• • •		• •		••				• • •		• •					• •				• •			• • •		. .	• • •	• • •	• • • •		••
• • • •	 ••	••	• •		• •	• •		• •	• • •		· • •		• • •		• •		••				• • •		• •	• • •		• • •	• • •	• •	• • •	• • •	• • •	• • •		• • •	• • •		. 	• • •	• • •	• • • •		••
																																								• • • •		
•••	 • •	••			• •	• •		• •	• • •		• •	• •	• • •		• •		••			••	• • •		• •	• • •		• • •	•••	• •	• • •	• • •	• • •	• •	• • •	• • •	•••			• • •	•••	• • • •		••
•••	 • •	••			• •	• •		• •	• • •		••	• •	• • •		• •		••			••	• • •		• •	•••	• • •	• • •	•••	••	• • •	• • •	• • •	• •	• • •	• • •	••••	••••	••••	••••	••••	••••	••••	•••
b)	D	ra	W	aı	16	en	er	gy	1	ev	el	l d	lia	gr	ar	n	sh	OV	vi.	ng	t t	he	a	cti	va	ıti	on	eı	ner	gy	/ fe	or	th	e a	ıbc	νe	e re	eac	ctic	on.		
																																							(2	2 m	arl	ks)

9. The diagram below shows part of the Solvay process.

10.

Brine saturated	В	Carbon (IV) oxi	de A	Solid Y
With ammonia		-		Soliu .
NH ₄ Cl _(aq)	- C		Solid E	
	NaHCO _{3(s)}	process D	Na_2CO_3	
L				
a) Name process D				(1 mark)
b) State the process taking	place in ch	namber C		(1 mark
c) State two uses of sodium				(2 marks)
•••••				
•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
One of the methods of rem	oving water	r hardness is by use	e of ion excha	ınge.
a) Explain how the method	_	-		(2 marks)
				•••••

Give one disadvantag	e of hard water.	(1 ma
ne set up below was us mple of a dry sample o	ed by a form one student in an attempt to pof hydrogen gas.	repare and collect
·_	Hydrochloric acid Card	dboard
Zinc granules	Liquid Y	
Give a reason why the	e aim of the experiment was not achieved.	(1 m
Identify the entelyet the	ant can be used in the reaction in the round	hottomad flask (1 m
	nat can be used in the reaction in the round	
se the data given in the	table below to determine the molar enthal	py of formation of eth (3 ma
Combustion of:	Molar enthalpy in kJmol ⁻¹	
Carbon	-394	
Hydrogen	-286	

 13. Using dots (●) and crosses (x) diagrams to represent electrons, show bonding in: (i) the compound formed when fluorine and nitrogen combine. (atomic numbers N =7. fluorine = 9) 	(1mark)
(ii) potassium oxide. (Atomic numbers K = 19, O=8)	(1 mark)
14. a) Define the term rust.	(1 mark)
b) Use the diagram below to answer the question that follows Iron nail Copper strip Copper strip magnesium strip	
X Y	
State the observations made in X and Y if the set- ups are exposed to air for lo	ng. (2 marks)
15. A dynamic equilibrium between chromate (VI) and chromium (III) ions is as show	wn below
$Cr_2O_7^{2-}(aq) + 14H^+(aq) \longrightarrow 2Cr^{3+}(aq) + 7H_2O_{(i)}$ (Orange) (Green)	

the equilibrium mixture.	(2 marks)
6. Name and give the uses of the following pieces of apparatuses	
o. Name and give the uses of the following pieces of apparatuses	
Q. Comments of the comments of	
a)	
Name	(½ mark)
Use	(½ mark)
b)	
Name	(½ mark)
Use	(½ mark)
7. "JIK" is common house hold bleach which contains sodium hypochlorite as the a) Write down an equation to show how the active ingredient in "JIK" bleached	_
b) Name the process by which "JIK" bleaches a coloured dye.	(1 mark)
c) Suggest why it is better to use "JIK" as bleach when washing clothes instead water.	

	••••		•••••
18.	a)	P grams of a radioactive isotope sample takes 160 days to disintegrate to 7 life of the isotope is 40days. Find the initial mass P.	g. The half- (2 marks)
•••			
•••	b) S	State one danger associated with radioactivity.	(1 mark)
19.		arting with recycled copper, describe how copper (II) sulphate crystals can b laboratory.	e prepared in (3 marks)
20.		anedioic acid, (COOH) ₂ , was used to prepare carbon (II) oxide instead of molooh, in the laboratory. It gave equal volumes of carbon (II) oxide and carbon	ethanoic acid,
	a) V	Write an equation for the dehydration of ethanedioic acid.	(1 mark)
	b) E	Explain how pure carbon (II) oxide can be obtained from the mixture of the	
	-	State two physical properties of carbon (II) oxide which make it be referred to killer."	to as a "silent (1 mark)

21.	a) What are isotopes?	(1 mark)
	b) Element W has two isotopes 36 W and 40 W which occur in the ratio K:4. Given R.A.M of W is 37.25. find the value of K.	(2 marks)
	a) What is meant by an acid-base indicator?	(1 mark)
	b) Give two disadvantages of using flower extract as acid-base indicator compar	ed to
	commercial indicators.	(2marks)
22.	The data below was recorded when metal M was completely burnt in air (M is n symbol of the element, R.A.M; $M=207$, $O=16$) Mass of the empty crucible and lid $=10.2$ g Mass of crucible, lid and metal $M=16.41$ g Mass of crucible, lid and metal oxide $=17.37$ g	ot the actual
	a) Determine the mass of: i) Metal M	(½ mark)
	ii) Oxvgen	(½ mark)

b) Determine the empirical formula of the metal oxide.

(2 marks)

23. The products formed by the action of heat on the nitrates of elements K, M and N are given in the table below.

Nitrate	Products formed
K	metal + nitrogen (IV) oxide + oxygen
M	metal oxide+ nitrogen (IV) oxide + oxygen
N	metal nitrite + oxygen

a) Which element forms a soluble carbonate.	(1 mark)
b) Arrange the metal elements in increasing order of reactivity.	(1 mark)
c) Give one example of K.	(1 mark)

24. The set-up below illustrates an experiment to investigate conduction of electric of lead (II) bromide. Study it and answer the questions that follow.

a)	State	the	mistake	ın	the	set-	up.
----	-------	-----	---------	----	-----	------	-----

(1 mark)

.....

	_			(2 mai	rks)
. The follow	ing are reduction p	potentials of so	ome elements.		
	Half reaction		$\underline{\mathrm{E}}^{_{oldsymbol{ heta}}}$	<u>volts</u>	
	$Zn^{2+}(aq) + 2e^{-} \rightarrow Z$			0.76	
	$Al^{3+}_{(aq)} + 3e^{-} \rightarrow$ $Fe^{2+}_{(aq)} + 2e^{-} \rightarrow F$	$Al_{(s)}$		1.66).44	
	$\Gamma e (aq) + 2e \rightarrow \Gamma$	C(s)	-(J .44	
	nformation above, aluminium contain		her it is advisable or r) sulphate narks)
	• • • • • • • • • • • • • • • • • • • •				
	pelow shows organ questions that foll	-	s A, B, C, D and E.	Use the information	on given to
Substance	A	В	С	D	Е
Symbol		CH ₂ OH		R-COOCH ₂	
	R-COO-Na+	СНОН	$-CH_2 - CH_2 - n$	R- COOCH	R-OSO ₃ -N
		CH ₂ OH		R- COOCH ₂	
a) Identi	fy				
I. As	soapless detergent				(1 mark)
II. An	ester				(1 mark)
b) Give (se of substance C.		(1 mark)
	(a) Both water gas (carbon (II) oxide and hydrogen) and producer gas (carbon (II) oxide and nitrogen) can be used as fuels. Explain why water gas is a better fuel. (2 m				
			enyltrichloroethane"		

1(a) S	State the condition under which a Buns (1mk)	en burner produces a non-lumino	ous flame.
(b)	Write an equation for the reaction th laboratory gas is butane.	nat takes place in a luminous flam	(1mk)
(c)	One of the regions in the non-luminor presence of this region can be shown		on. Describe how the (1mk)
2.		model of the structure of element lear Charge	t T.
a)	State the type of bonding that exist i	n T.	(1mk)
b)	In which group of the periodic table		
3.	A radioactive isotope of lead underg	goes radioactive decay in two stag	
(a	$ \begin{array}{c} 216 \\ 85 \\ Pb \end{array} $ (i) $ \begin{array}{c} 212 \\ 83 \\ X \end{array} $ (i) Identify the particle emitted at each	(ii) 212 ₈₄ Y stage.	(2mks)
(b) State one use of radioactive isotopes	s.	(1mk)

4(1)	State the observations made when Hydrogen Sulphide gas is bubbled through ac (II) Nitrate solution.	queous Leac (1mk)
•••••		
(ii)	Write an ionic equation for the reaction above.	(1mk)
5.	The set up below was used to investigate the reaction between dry hydrogen gas (II) Oxide.	s and Copper
	Copper (II) oxide	
Hyd	Progen gas — Heat Combustion tube Substance A	
(a	i) Name substance A.	(1mk)
(b	s) State the observation made in the combustion tube.	(1mk)
(c	Explain the observation in (b) above.	(1mk)
6(a)	Consider the following equation. $A_{(g)} + B_{(g)} \longrightarrow AB_{(g)}$	
	Energy content Boaction noth	
	Reaction path On the same axis, sketch the graph when a catalyst is added.	(1mk)
	, 0 1	` '

(b) Hydrazine H - N - H is used as a fuel in rockets. Using the bond energies in the table below. Calculate the enthalpy change for combustion of hydrazine. (3mks)

$$N_2H_4(l) + O_2(g)$$
 $N_2(g) + 2H_2O(g)$

Bond	Bond energy kJ/mol
N-H	388
N - N	163
O = O	496
$N \equiv N$	944
O – H	463

7. The diagram below represents large scale manufacture of hydrochloric acid. Study it and answer the questions that follow:

(a) Identify

(i) Gas A (1mk)

(ii) Gas B (1mk)

	b) Write the chemical equation for the reaction between gas A and gas B.	(1mk)
	e) State the role of glass beads in the process.	(1mk)
	Use the following information on substances S, T, V and Hydrogen to answer the q that follow. T displaces V from a solution containing V ions.	uestion
(ii)	Hydrogen reacts with the heated oxide of S but has no effect on heated oxide of F.	
a)	Arrange substances S, T, V and Hydrogen in order of increasing reactivity.	(2mks)
) If T and V are divalent metals, write an ionic equation for the reaction in (i) above	•••••
 9. 	Describe how the PH of anti-acid (Actal tablet) can be determined in the laborator	ry. (3mks)
10(a)	cathode.	(1mk)
• • • • • •		
(b)	Calculate the time in minutes required to deposit 1.184 grams of Copper if a curre was used. (1 Faraday = 96500 coulombs, Cu = 63.5)	
• • • • • •		
11.	When steam was passed over heated charcoal as shown in the diagram below, hyd and Carbon (II) oxide were formed.	drogen gas

8	a) Write a balanced equation for the reaction which takes place in the combustion to	ıbe. (1mk)
ł	b) Name two uses of Carbon (II) oxide gas, which are also the uses of hydrogen gas	
A12	. A given sample of ink is a mixture of red dye, blue dye and orange dye. The blue absorbed than the rest and the red dye is the most sticky.	dye is least
a)	Complete the paper chromatogram below showing their separation.	(1½mks)
	solvent front ink spot	
(b)	The above dyes are soluble in water. Describe how a pure sample of blue dye can obtained.	be (1mk)
••••		
c)	Name the solvent used in paper chromatography.	(½ mk)

13. In an experiment to investigate the conductivity of substances, a student used the set up shown below.

The student noted that the bulb did not light. a) What had been omitted in the set up.	(1mk)
b) Explain why the bulb lights when the omission is corrected?	(2mks)
 The results of an experiment to determine the solubility of potassium chlorate ir were as follows. Mass of dish = 15.86g Mass of dish + saturated solution at 30°C = 26.8g 	n water at 30°C
Mass of dish + solid potassiumchlorate after evaporation to dryness = 16.68g Calculate the mass of saturated solution containing 60g of water at 30°C.	(3mks)
15(a) Give the systematic names of the following compounds. CH ₃ (i) CH ₃ - C - CH ₃ CH ₃	(2mks)

(ii) $CH_3C \equiv CCH_2CH_3$

(b)	Describe a chemical test that can be carried out inorder to distinguish between.	
	CH_3 $CH_3 - C - CH_3 \text{ and } CH_3C \equiv CCH_2CH_3$ CH_3	(2mks)
•••••		
16(a)	Draw a labelled diagram showing the atomic structure of $^{23}_{11}Na$	(2mks)
(b)	The atomic number of phosphorous is 15. Draw a dot (*) and cross (x) diagram compound formed when phosphorous react with chlorine.	for the (1mk)
17(i)	State Gay-Lussaic's Law.	(1mk)
ii)	15cm³ of a gaseous hydrocarbon reacted completely with 45cm³ of Oxygen gas carbon (IV) oxide were formed. Determine the formula of the hydrocarbon give volume of gases were measured under same conditions of temperature and present the conditions of temperature and the conditions of temperature and the conditions are conditions as the	. 30cm ³ of en that all
18.	Consider the following reactions $N_2(g) + 3H_2(g)$ \longrightarrow $2NH_3(g)$	
a)	The enthalpy is -92.4kJ per mole of nitrogen. Give the enthalpy change per mole of ammonia.	(1mk)
1.		
(i)	State and explain how each of the following affects the yield of ammonia: Increase in temperature.	(1mk)

(ii)	Finely divided	iron.							(1mk)
 19.	Excess iron wa						was meas	sured at 1	 I
	Day	0	1	3	4	5	6	7	8
	Volume (cm ³)	2000	1900	1720	1660	1620	1600	1600	1600
	(i) Write an eo	quation fo	or the forn	nation of 1	ust.				(1mk)
	(ii) On which	day was tl		n complet	e. Explai				(1mk)
	(iii) What is the	-	ige volum		en in air.	Show you	ur workir	ıg.	(1mk)
20. (i)	Element P ³⁺ ar Write the elect					riodic tabl	e.		(2mks)
							•••••		
ii)	Write the form	nula of the		nd formed	by P and	Q.			(1mk)
21(i) Give the IUPA CH ₃ CH ₂ COO	C name o	of the follo	owing:					(1mk)
ii)	Give the chem	ical name	to which	the comp	ound you	have nan	ned in (i)	above be	elongs.(1mk
iii)	Name the two								(1mk)
							•••••		

22. The set up below was used to investigate some properties of two gases M and N.

experi	beaker A was filled with gas M, the level of water in the glass tube rose to point II ment was repeated using gas N, the level of water dropped to point III. Explain the vations.	
23. (a)	Nitric (V) acid may be prepared in the laboratory by the action of concentrated su (VI) acid on a suitable nitrate and distilling off the nitric V acid. Why is the apparatus used in the preparation of nitric (V) acid made of glass.	lphuric (1mk)
(b)	Pure nitric (V) acid is colourless but the products in the laboratory preparation is yellow. Explain.	usually (2mks)
 24.	Starting with copper metal, describe how a pure sample of Copper (II) carbonate of prepared.	can be (3mks)

25. (a)	Aluminum is both malleable and ductile. Differentiate between malleable and ductile.	(2mks)
(b) (i)	State one use of aluminium based on: Malleability	(1mk)
(ii)	Ductility	(1mk)
26. (i)	Sulphur (IV) oxide and nitrogen (IV) oxide reacts as shown in the equation below SO ₂ (g) + NO ₂ (g) → SO ₃ (g) + NO(g) Using the oxidation numbers of either sulphur or nitrogen, show that this is received.	edox (2mks)
(ii) Identify the reducing agent.	(1mk)

1.	a) What is meant by allotropy? (1 mark)
	b) Name the allotrope of Sulphur that is stable below 96 °C. (1 mark)
	c) Temperature of 96 °C is the transition temperature of Sulphur allotropes. Define the term
	transitional temperature? (1 mark)
2.	Define the following terms as used in Chemistry i) Flame (1 mark)
	ii) Optimum conditions (1 mark)
	iii) End point of a reaction (1 mark)
3.	Why is solid carbon (IV) Oxide (Dry ice) preferred in cool boxes than the normal ice (solid water)? (2mks)
4.	30cm ³ of ethene gas was exploded in 60cm ³ of oxygen gas. Write a balanced chemical equation of the reaction that will take place and hence determine the volume of the residue gas at room temperature. (3mks)
5.	When solid M is dissolved in water, it dissolves and forms a blue solution. Addition of ammonia solution to this solution forms a blue precipitate which dissolves in excess to form a deep blue solution. Write the formula and name of the ion responsible for the deep blue solution. (2mks)

6. The solubility of Iron (II) Sulphate crystals at 22°C is 15.65g per 100g of water.

C	alculate the mass of iron (II) s	sulphate crystals in 45g of saturated	d solution at the same temperature.
(2	mks)		
••			
• •			
• •			
• •			
7. The ta	able below gives bond energie	es of some covalent compound	
	Bond	Bond energy KJ mo	ol ⁻¹
	C – H	413	
	0=0	497	
	C=O	804	
	Н-О	464	
Calc	ulate the enthalpy change for	the combustion of methane in exce	ess oxygen gas. (3mks)
•••			
••			
8 .Study	the following equilibrium equ	ation.	
•			
	$2X_2(g) + Y_{2(g)}$		
Sı	nggest two ways of increasing	the yield of X_2Y . (2mark)	
••		· · · · · · · · · · · · · · · · · · ·	
• •			
9. A stud		in a gas jar full of Sulphur (IV) oxi	
	(i) State two observations	s made in the gas jar. (2 marks	
(::) W:4		that to all place (1 months)	
(11) Writ	e an equation for the reaction	that took place. (1 mark)	
	s extracted from its ore by the the chief ore from which ire	<u> </u>	
	nce of iron in the ore. (2 mar	nly iron. Describe a method that caks)	

• • • •	• • • •	• • • •	• • • •	• • •	• • • •	• • •	• • • •	• • • •	• • •	• • • •	• • • •	• • • •	• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • •	• • • •	• • •	• • •	• • • •	• • • •	• • •	• • • •	• • •	• • • • •	• • • • •	•			
11	TI	20.0	1:	T #0:	m l	2014	\11 7	oho	333 76		atox	70 t	hat	110	00.	aha	roo	1	00.	o fi	101	in	0.11	₇₀ 11	110	nti1	oto	d =0	om	Ctu	4.7	and	

11. The diagram below shows a stove that uses charcoal as a fuel in a well-ventilated room. Study it and answer the questions that follow.

a)	Write	ne chemical equation for the reaction that takes place at
	i)	Region A (1mark)

-/	1108101111	(IIIIIIII)		

ii) Region C(1 mark)	
----------------------	--

••	 •	 	

b)	State the reason why the stove above should be used in a well ventilated room.	(1 mk)

12.	During electrolysis of dilute sulphuric (VI) acid, a current of 0.63 A was passed through the electrolyte for 7-
	nutes. Calculate the volume of gas produced at the anode.

(1 Faraday = 96500 coul)	ombs; MGV 24dm° at re	oom temperature) (3mark	(S)

13. The table below gives the rate of decay for a radioactive element K;

Number of days	Mass (g)
O	12.8
280	0.8

Determine the half – life of the radioactive element K.(2mks)	

14. The chromatogram below shows the constituents of ink sample M using methylated spirit as solvent.

State two factors that allow separation of the pigm	ent above. 2mks
15. Starting with magnesium sulphate solution, describe laprepared in the laboratory. (3mks)	now a solid sample of magnesium oxide can be
16. When solid F was added into a beaker containing dist When two drops ofacidified barium chloride solution was formed. There was effervescence when solid sodium carb a) Identify the cation and the anion present in solid	added to the sample solution F, a white precipitate was onate was added to another sample of solution F.
Cation	
Anion	
b) Write ionic equation for formation of white prec	cipitate formed upon adding acidified barium (ii) chloride
(1 mark)	
•••••	••••••
17. The scheme below was used to prepare a cleansing ag	gent. Study it and answer the questions that follow.
Fat	Solution of cleansing
Step I	agent + alcohol
	↓Step II
	Solid cleansing agent
i) What name is given to the type of cleansing agent scheme?	
ii) Name onechemical substance added in step II	
(iii) What is the purpose of adding the chemical substa	nce named in (ii) above.(1mk)

18 (a) Identify the acid and base in the forward reaction given by the equation below:	
$HSO_{4(aq)}^{-} + H_2O_{(l)} \iff H_2SO_{4(aq)} + OH_{(aq)}^{-} (1\text{mark})$	
Acid	
Base	
b) Using the above equation and your answer in (a) above, define the term acid.	
(1 marks)	
19. i) Name the compound formed when chlorine gas reacts with hot concentrated sodium hydroxide solution. (1mk)	
ii) Name use of the compound in (i) above other than bleaching.(1mk)	
20. Started and the large of an extension of a fall and the fall and the control of the control o	
20. Study the set- up below and answer the questions that follow that was used to prepare oxygen gas in the process.	ie
laboratory.	
Lead II nitrate U- tube Heat Freezing mixture of ice and water.	
a) i) Identify:-	
Liquid Y (½ mark)	
ii) What colour is liquid Y (½ mark)	
b) Write the chemical equation for the reaction taking place in the Ignition tube.	
(1mark)	
c) Complete the diagram to show how oxygen was collected (1mark)	
21. Write the electronic configuration of Sulphur in;	
ii) SO_3^{2-} (1mark)	

 $H_2S(1mark)$

iii)

22. (a) Sta	ate Grahai	m's law	of diffusion.	(1 mark)
		ide to d	iffuse through the same hole under the (2 marks)	seconds. How long will it take 80cm^3 of the same conditions? (S = 32, O = 16).
	ature of m	agnesiu	m powder and copper powder was re	
	(a)	(i)	The residue	(1mark)
		(ii)	The filtrate	(1mark)
	(b)Wri	te an io	nic equation for the reaction that tak	es place (1mk)
24. Name				
a)	When an (1mk)	hydrou	s calcium chloride is left in an open	beaker overnight a solution was formed.
b)	When so into a po		arbonate decahydrate crystals are left	t in an open beaker for some days it turned (1mk)
25. Comp	are the ato	omic siz	zes of sodium and magnesium. Expla	nin. (2mks)

26. The graphs below were drawn when 15 g of marble chips in different physical states were reacted with 50cm³ of 2M Hydrochloric acid. They are drawn by measuring the volume of carbon (iv) oxide produced with time.

FOR MARKING SCHEMES INBOX 0724351706 OR VISIT www.goldlitekcserevision.co.ke

a) Which curves corresp chips with the dilute acid		ns involving powdered calcium carbonate andlarge sized marble
i) Powdered calci	um carbonate	(1mark)
ii) Large sized ca	lcium carbonate	(1mark)
		e same level but at different time. Why do the graphs flatten out
	ll labelled diagram to oride.(2marks)	to show the set-up that can be used to separate mixture of iodine
		e compound formed when methanol and ethanoic acid are reacted lphuric (VI) acid. (2 marks)

1.	The elec	tronic configuration of two particles a ²⁷ X and b ³² Y are 2.8 and 2.8.8 res	spectively.
	a)	Write the values of	
		a	(½ mark)
		b	(½ mark)
	b)	Identify the period and group of the periodic table to which element Y b	pelong.
		Period	(½ mark)
		Group	(½ mark)
2.	You are	provided with the following; thermometer, boiling tube, beaker, Bunser	n burner, pure
	solid X,	whose boiling point is about 80°C, water and any other apparatus	that may be
	required	. Draw a labeled diagram for an experiment that would be used to	determine the
	melting	point of X.	(3marks)
	•••••		
			•••••
3.	(a) Othe	r than sulphur, name an element that shows allotropy.	(1mark)
(1	o) Draw tl	ne structure of the allotrope of sulphur that is stable below 96°C.	(1mark)
(0	e) State ar	ny one use of sulphur apart from manufacture of sulphuric (VI) acid.	(1mark)
4.	Study th	e organic compounds below and answer the questions that follow.	
	I.	C_3H_8O	
	II.	CH ₃ CHCH ₂	
	III.	CH ₃ CH ₂ CH ₂ COOH	
	IV.	CH ₃ (CH ₂) ₂ CH ₃	
	V.	CH ₂ CH ₂	
		Select,	
		(a) One compound which is a saturated hydrocarbon.	(1mark)

<i>,</i> .	Liquid	Boiling point(°C)	
 7. '	The table below gives the boiling poir	nts of three liquids	
(b	Name one suitable drying agent for h	ydrogen chloride.	(1mark)
•••			
6	(a) Explain why calcium oxide is not t	used to dry hydrogen chloride gas.	(2marks)
	(b) A bee keeper stung by a bee app	nes baking powder onto the stung sur	(1mark)
	(h) A hee keeper stung by a hee ann	lies baking powder onto the stung sur	face for relief
	(a) When air is bubbled into distille	d water, the p ^H of the water drops from	n 7.0 to 6.0. (1mark)
5.]	Explain the following observations.		
	compound.		(1mark)
		will react together to produce a	
	(b) Two compounds which a	are members of the same homologous	series. (1mark)
	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

99.5

Butan-1-ol

	(a)	Des	cribe how the following mixtures can be separated.	
		(i)	Hexane and Butan – 1 – ol	(1½ marks)
		(ii)	Hexane and Water	(1½ mks)
8.	In an	exp	eriment, 2.4g of sulphur was ontained by reacting hydrogen sulphide and	chlorine as
	show	n in	the equation below.	
			$H_2S(g) + Cl_2(g)$ \longrightarrow $S(s) + 2 HCl(g)$	
	(a)	Stat	e the chemical property of chlorine shown in the reaction above.	(1mark)
	(b)	Giv	en that the yield of sulphur in the above reaction is 75%, calculate the	volume of
		hyd	rogen sulphide gas used. (molar gas volume = 24dm³, H=1, S= 32).	(2marks)
	 (a)	Write	e the equation for the reaction when a piece of graphite is completely burnt in a	ir.
				(1mark)
	(b)	Give	e one use of graphite and diamond and relate the use to properties of each. Graphite: Use	(2marks)
			Property	

100

water

II.	Property	•••••
0 The die		
	agram below shows a section of a dry cell. Study it and answer the que	stions that
follow.		
	Brass terminal — Cardboard cover wered carbon maganese(IV)oxide — Zinc container — A	
(a) Na	ame the part labeled B.	(1mark)
(b) Tl	he part labeled A is a paste. Give a reason why it is not used in dry form.	(1mark)
•••		•••••
(c) (i)) What is the purpose of zinc container.	(1mark)
•••		
•••		
(ii	i)Apart from the use in c(i) above, state any other use of zinc.	(1mark)
•••		
•••		
10. (a) A st	tudent electroplated a spoon with copper metal. Write the equation for the	reaction on
the surf	face of the spoon.	(1mark)

(b)Calculate the amount of steady current that was passed for 30 mi	nutes if 1.184g of copper was
deposited. (1 Faraday = 96500C,Cu = 63.5)	(2marks)
11. (a) State Gay Lussac's Law.	(1mark)
(b) 60cm^3 of methane was mixed with 200cm^3 of oxygen.	The mixture was sparked to
complete reaction. If the final volumes were measured at room	m temperature, determine the
volume of the resultant gaseous mixture.	(2marks)
12. (a) State Le Chatelier's principle.	(1mark)
(b)State and explain the observation made when drops of 2M sod	ium hydroxide solution were
added to the system in equilibrium shown below.	(2marks)
$2CrO_4^{2-}(aq) + 2H^+(aq)$ Cr	$^{2}O_{7}^{2}$ (aq) + H ₂ O (l)

13. Study the structures given in the diagrams below to answer the questions that follow.

(a) Identify the structure with:

- (i) Simple molecular structure. (1mark)

 (ii) Giant atomic structure (1mark)

 (b) Which structure conducts electric current both in solid and molten state. (1mark)
- 14. The set up below was used to demonstrate the effect of heat on hard water.

(a)	Name substance A.	(1mark)
(b)	Explain why heating of hard water produced substance A.	(2marks)
		•••••

15. (a) Distinguish between deliquescent and efflorescent salts.	(2marks)
(b)You are provided with the following; Potassium carbonate, Lead (II)	sulphate, Sodium
hydroxide, nitric (V) acid and Copper (II) carbonate. Select any:	(1mark)
(i) Two that would produce neutralization reaction.	
(ii) One that would decompose on heating to produce carbon (IV) oxid	e,
16. The scheme below was used to prepare a cleansing agent. Study it and ans	swer the questions
that follow.	
Fat NaOH _{aq} Boil Solution of cleansing agent and alcohol	Solid cleaning agent
Name;	
(a) The cleansing agent.	(1mark)
(b) Process in step I.	(1mark)
(c) Chemical substance added in step II.	(1mark)

17. The curves below represent the change in mass when equal amounts of powdered zinc and zinc granules were reacted with excess 2M hydrochloric acid. Use the graph to answer the questions that follow.

Time (min)	
(a) Identify the curve for zinc granules. Explain.	(2marks)
(b) Other than the factor demonstrated above, state one factor that may be	varied to affect
the rate of the above reaction.	(1mark)
18. A white solid Q was heated. It produced a brown gas Y and a colourless gas	Z that relights a
glowing splint. The residue left was yellow after cooling.	
(a) Identify:	(1mark)
(i) Gas Y	•••••
(ii) The residue	
(b) Write the equation for the decomposition of solid Q.	(1mark)

-	ne sample of sodium carbonate, Na ₂ CO ₃ . XH ₂ O nge. The mass of the residue reduced by 14.5%.	
ormula.	nge. The mass of the residue reduced by 14.5%.	(3mar
•••••		
• • • • • • • • • • • • • • • • • • • •		
n an expe	riment to identify the compound in an aqueous	solution, three properties of
i aii expe	innent to identify the compound in an aqueous	solution, tillee properties of
olution in	test tubes were tested and the results obtained w	ere recorded in the table be
olution in	test tubes were tested and the results obtained w	ere recorded in the table be
		ere recorded in the table be
	test tubes were tested and the results obtained wanswer the questions that follow.	ere recorded in the table be
		ere recorded in the table be
tudy it to	answer the questions that follow.	
		ere recorded in the table be Observation
tudy it to	answer the questions that follow.	
tudy it to Portion	answer the questions that follow. Test	Observation Effervescence. Forms
tudy it to Portion	answer the questions that follow. Test	Observation Effervescence. Forms
tudy it to Portion	answer the questions that follow. Test	Observation Effervescence. Forms white precipitate with limit water.
Portion 1	Test Add a few drops of dilute nitric (V) acid.	Observation Effervescence. Forms white precipitate with limit water.
Portion 1	Test Add a few drops of dilute nitric (V) acid. Add aqueous sodium hydroxide drop wise until	Observation Effervescence. Forms white precipitate with limit water. A white precipitate soluble in excess.
Portion 1	Test Add a few drops of dilute nitric (V) acid. Add aqueous sodium hydroxide drop wise until excess.	Observation Effervescence. Forms white precipitate with limit water. A white precipitate soluble in excess.
Portion 1 2	Test Add a few drops of dilute nitric (V) acid. Add aqueous sodium hydroxide drop wise until excess. Add aqueous ammonia drop wise until excess.	Observation Effervescence. Forms white precipitate with limit water. A white precipitate soluble in excess. A white precipitate soluble in excess.
Portion 1	Test Add a few drops of dilute nitric (V) acid. Add aqueous sodium hydroxide drop wise until excess. Add aqueous ammonia drop wise until excess.	Observation Effervescence. Forms white precipitate with limit water. A white precipitate soluble in excess. A white precipitate soluble in excess.

(1mark)

(b) Write the formula of the colorless solution formed in portion 3.

	•••••
21. Excess zinc powder was added to 50cm ³ of 2M copper (II) sulphate solution and	the reaction
allowed to complete. The highest temperature change was 15°C.	
(a) State the observations made in the above reaction.	(1mark)
(b) If the molar enthalpy of displacement is -63kJmol ⁻ . Calculate the concentration	on in moles
per liter of the copper (II) sulphate solution.	(3marks)
22. Draw a well labeled diagram of a set up that can be used to prepare and collect dr chlorine gas using manganese (IV) oxide and concentrated hydrochloric acid.	y sample of (3marks)
23. An oxide of K has the formula K_2O_5 . (a) Determine the oxidation number of element K.	(1mark)
(b) Which group of the periodic table does element K belong.	(1mark)
24. An experiment was set up as shown in the diagram below.	

	Given the following sub ubstances as acidic, bas Acidic	stances; soap, potassium chloride and ic or neutral. Basic	aluminium chloride, classify the (2marks) Neutral
26. (Given the following sub	stances; soap, potassium chloride and	aluminium chloride, classify the
•••			
	²³⁹ ₉₂ U —	\xrightarrow{x} y Th +2 α + 2 β	(2marks)
25. (nd y in the following nuclear equation.	
	into the environme	nt.	(1mark)
	(c) Describe how the	other product of the burning candle of	could be prevented from getting
	(b) Identify substance	D.	(1mark)
	(a) Suggest the unit of	•	(1mark)
	(a) Suggest the aim of	the experiment.	(1morts)

27. The diagram below represents the set up used for electrolysis of acidified water.

(a)	Name the electrode B.	(Imark)
(b)	Why is water acidified.	(1mark)
		• • • • • • • • • • • • • • • • • • • •
(c)	Write the equation for the reaction on the surface of electrode A.	(1mark)
		•••••

SERIES 5

1. (a) Using dot(.) and crosses(x) to represent electrons draw the structure of POCl ₃ (P=15,0=8, Cl=17)	(2 marks)
(b) Explain why a molecule of H ₂ O can form a bond with H ⁺ to form H ₃ O ⁺	(1mark)
2.A hydrocarbon contains 80% carbon by mass. Given that 1dm³ of the compound at s.t.p has Calculate the molecular formula of the compound. (Molar gas volume at s.t.p. = 22.4dm³, C =	s a mass of 1.34g.
	(3marks)
3.Write the chemical equation to show the reaction between Lead (II) oxide and the following (i) Sodium hydroxide.	
(ii) Dilute hydrochloric acid	(1mark)
(b) State the property of Lead (II) oxide demonstrated above.	(1mark)
4. Sulphur (IV) oxide reacts with potassium dichromate (VI) according to the equation below $3SO_{2(g)} + Cr_2O_7^{2-}_{(aq)} + 2H^+_{(aq)} \rightarrow 3SO_4^{2-}_{(aq)} + 2Cr^{3+}_{(aq)} + H_2O_{(I)}$ (i) What is the oxidation number of chromium ion in $Cr_2O_7^{2-}$.	
(ii) State and explain the observation made in the above reaction	
	•••••
5.Nitrogen(I)oxide is a colourless gas with pleasant smell and causes insensitivity when inhale reactive at room temperature. However, it relights a glowing splint(a) Explain why the gas relights a glowing splint	(1mark)

(b) One of the uses of nitric(V) acid is purification of metals such as Gold, explain why Nitric(V in purification of metals	/) acid is used (1mark)
(c) To a sample of a salt in a test tube, add 2cm ³ of freshly prepared Iron (II) sulphate solution. Strest tube and slowly add concentrated sulphuric (VI) acid. Which ion does this test aim to confidence to the confidence of t	Slant the
6. Name the apparatus drawn below and give its use	
(a) Name	(1mark)
(b) Use	(1mark)
metal was deposited. Determine the charge on the ion of metal Z. (1 Faraday = 96500 coulombs, Relative atomic mass of Z = 52)	(3marks)
3. The scheme below shows the energy changes that take place between ice, water and steam. Study it and answer the questions that follow: - $H_2O_{(s)}$ $H_2O_{(g)}$ $H_2O_{(g)}$	
(a) What name is given to the energy change ΔH_1^{43}	(1mark)
(b) What is the sign ΔH_3 , give a reason	(2marks)

9. The table below gives three experiments on the reaction of excess hydrochloric acid and 1.8g of zinc done under different conditions. In each the volume of gas was recorded at different time internals

Experiment	Form of Zinc	Hydrochloric acid solution
I	Powder	1.0M
II	Granules	1.0 M

III		Powder	2.0 M	
On the axis bel	ow draw and lab	el three curves that could	be obtained from such results.	
/	\			(3 marks)
13)				
(cm				
$ m fH_2$				
)e 0				
Volume of $ m H_2(cm^3)$				
V				
			\longrightarrow	
	7	Γime (sec)		
10. The solubilit	ty of copper (II)sul	lphate at 75 0 C is 55 g/ 100 g	of water and 19g/100g of water at	15^{0} C.
	=	_	on was made by dissolving X g of	f Copper
(II) sulphate in 1	150g of water at 75	5°C then cooled to 15°C		(3marks)
•••••		•••••		• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
				••••••
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
	_		M) of 39.5, work out the percentage	ge
abundance of ea	ch isotope. The th	ree isotopes are ³⁹ K, ⁴⁰ K an	d ³⁸ K (0.01%)	(3marks)
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
			•••••	
			ge. The following observations w	
· ·		on the cooler parts of the tes	· ·	cre maac.
	-	<u>=</u>	omate (VI) to green was formed	
(iii) Brown resid	•	1	, , <u>,</u>	
(a) Give the idea	ntity of solid D			(1mark)
(b) How can you	ı chemically test tl	ne colourless liquid		(1mark)
		•••••	•••••	
(c) Name the res	siaue S			(1mark)

13.(i) State the most effective method of preventing rusting?	(1mark)
(ii) Explain why galvanizing rather than tinning is a better method of prevention of rusting.	(1mark)
(ii) Write an equation for the formation of rust	(1mark)
14.Nylon polymer has the structure below. $ \begin{pmatrix} H & H & O & O \\ N - (CH_2)_6 - N - C - (CH_2)_4 - C - O \\ N - (CH_2)_6 - N - C - (CH_2)_4 - C - O \\ N - (CH_2)_6 - N - C - (CH_2)_6 - O \\ N - (CH_2)_6 - O - O - O - O - O - O - O - O - O - $	
(i) Determine the structure of the monomers	(2marks)
(ii) State the type of polymerization.	(1mark)
15.(a) State and explain the function of tartaric acid in baking powder.	(2marks)
(b) By which process does silica gel protect electronic equipment from damage due to moisture	
	(1mark)
16.A mixture contains Lead (II) chloride, Iron fillings and Silver chloride. Describe how each the substance can be obtained from the mixture.	of (3marks)
17.In the industrial extraction of lead metal, the ore is first roasted in a furnace. The solid mixt obtained is then fed into another furnace together with coke, limestone and scrap Iron. State th of each of the following in this process.	ure
(a) Coke	(1 mark)
(b) Limestone	(1 mark)
(c) Scrap Iron	(1 mark)

(3 marks) n at the anode our
n at the anode
our
R, S, T and U.
(nm)
(1 mark) (1 mark)
(1 mark)
(1 mark)
en peroxide. The colution. Explain (3 marks)

21. (a) When an electric current was passed through molten substances P and Q in different containers the observations below were made:

.....

Molten **P** – Conduct electricity and is not decomposed.

Molten Q – Conduct electric current and a gas is formed at one of the electrodes.	(1 moult)
	(1 mark)
(i) Substance P	•••••
(ii) Substance Q	
(b) The cell convention for an electrochemical cell is shown below.	
$Zn_{(s)}$ / $Zn^{2+}_{(aq)}$ // $Pb^{2+}_{(aq)}$ /Pb $_{(s)}$	
(i) Name one substance that can be used as electrolyte in the above cell.	(1 mark)
(ii) Which of the electrodes is the anode?	(1mark)
	` ,
22. Radioactive polonium (Po)mass number 212 and atomic number 84 was detected in a sample	
water. The water had an activity of 1000 counts per second.	
(a) If the water is boiled, explain whether the activity would be affected or not.	(1 mark)
(b) Given that polonium resulted from Bismuth (Bi) following emission of a beta (β) particle,	•••••
write a nuclear equation for the decay.	(1 mark)
(c) State one application of radioactivity in the paper industry.	(1 mark)
23.A mixture of magnesium powder and copper powder was reacted with dilute hydrochloric ac	
solution was the filtered.	
Name:	(1 m o mls)
(a)(i) The residue	(1mark)
(ii) The filtrate	(1mark)
(b) Write an ionic equation for the reaction that takes place	(1mark)
	` ′
24.Element A has atomic mass 23 and element B has atomic mass 7 and also have 12 neutrons a	and 4
neutrons respectively. (a) Write the electron arrangement of A and B	(1mark)
(a) Write the electron arrangement of A and B	
(b)Which alamont has higher ionization anargy? Evaluin	
(b)Which element has higher ionization energy? Explain	(2marks)

25.Study the scheme below and answer the questions that follow

State;

(i)The conditions for process R	(1mark)
(ii)The type of the reaction represented by process S	(1mark)
(iii) Name of compound U	(1mark)

26.Study the set-up below and answer the questions that follow.

After sometimes, the cotton wools X, Y and Z changed colour in turn.

(a) What were the colour changes?	(1mark)
(b)Which cotton wool changed colour first?	(1 mark)
(c) Explain why the cotton wools did not change colour at the same time.	(1 mark)
27.A sample of unknown compound gas X is shown by analysis to contain Sulphur requires 28.3 seconds to diffuse through a small aperture into a vacuum. An identic oxygen molecules pass through the same aperture in 20 seconds. Determine the mo $(O=16, S=32)$	and oxygen. The gas al number of

SERIES 6

1. An extract colouring matter was placed at the centre of a filter paper and allowed to dry. Drops of ethanol were added to the centre and eventually the following was observed.

(a) Name a process by which dilute extract can be made more concentrated.	(1mk)
(b) Give the name of the process by which the circles were produced.	(1mk)
 (c) Explain why water is not suitable for this process.	(1mk)

2. Study the table below and answer the questions that follow.

Solution	N	P	K	L	Q
P ^H	1.0	14.0	6.5	7.0	8.0

(i)	Which of the solutions would be suitable for use in the manufacture of anti-acid tablets?
	(1mk)
•••••	

(ii) Give a pair of the above solutions for which zinc oxide can dissolve. Give a reason. (2mks)

•••	• • • • • • • •		•
3.	The o	experiment to prepare oxygen gas, black solid B was added to hydrogen peroxic xygen produced was then used to produce gas D which changes orange acidific omate (VI) to green. Gas D was prepared by heating a yellow solid A in oxygen	de solution. d potassium
	(i)	Identify Solid B	(¹ /2 mk)
•••	••••••		••••••
•••	•••••	Gas D	(¹ / ₂ mk)
	(ii)	Write an equation for formation of oxygen gas from the above experiment.	(1mk)
	(iii)	What volume of oxygen gas would be produced at r.t.p of 20 cm^3 of $2M$ hydroperoxide was used in the experiment? (M.G.V at r.t.p = 24000 cm^3)	(2mks)
•••	••••••	•••••••••••••••••••••••••••••••••••••••	••••••
4.	Given ΔΙ	: H _{1att} LiCl = 891 kJmol ⁻¹	•
		L_{hyd} $L_{i^{+}(g)} = 484 \text{ kJmol}^{-1}$ ΔH_{hyd} $2Cl^{-}(g) = 800 \text{ kJmol}^{-1}$	
	(i)	Determine the enthalpy of solution of lithium chloride.	(2mks)
	•••••		•••••

•••		,
		2mks)
	65 g of a solution contains 5 g of solute. The solubility of the salt is 25 g per 100cm ³ of 20 °C. 30 g of the salt was added to the solution at 20 °C. Determine the mass of the remained undissolved.	e salt that (3mks)
•••	Using dots (.) and crosses (X) to represent electrons show bounding in phosphonium in (2mks)	
7.	(a) Describe how you can prepare a dry sample of ammonia (Na ₂ CO ₃ .NaHCO ₃ .2H ₂ O)	
•••	laboratory, starting with sodium carbonate solid. (2	2mks)
•••		
	(b) If the crystals prepared above are left exposed overnight. It is observed that it turns white powder. Explain.	s into a 1mk)
•••		

8. The set-up below was used in the laboratory preparation of carbon (II) oxide. Liquid H Ethanedioic acid (H₂C₂O₄) Complete the set up to show how carbon (II) oxide was collected. **(i)** (2mks)(ii) Identify liquid **H** and state its function (1mk) (iii) Write an equation for the reaction producing carbon (II) oxide gas. (1mk)**9.** A student electrolyzed magnesium sulphate solution graphite electrodes. Calculate the amount of current required to liberate 1.2dm³ of the gas produced at the (i) anode at r.t.p. (M.G.V at r.t.p = $24 dm^3$, 1F = 96500C). (3mks)Explain the changes in concentration of the electrolyte as the electrolysis progresses. (ii)

(1mk)

10. (i) S	state Graham's law of diffusion	(1mk)
	•••••••••••••••••••••••••••••••••••••••	
taken	00 cm^3 of ozone (O ₃) diffused through a certain apparatus in by 100 cm^3 of carbon (IV) oxide to diffuse through the santtions. (O = $16.0 \text{ C} = 12.0$)	
solid	experiment to confirm the presence of nitrate ions in a solu M followed by sodium hydroxide solution the warming. He litmus papers.	
(i)	Identify solid M	(1mk)
(ii)	Complete the table below by listing down the observation nitrate ions were present.	
Observ	ation	Inference
		NO ₃ ⁻ present
	(2mks)	

••••	(iii)	What is t	he role of calc	cium oxid	e in the mixture?	••••	(1mk)
••••	(ii)	Identify s	solid X				(1mk)
	(i)	Complet	e the set-up to	show ho	ow the gas is collected.		(2mks)
					X + sodium hydroxide + calcium oxide		
	(b) TI	he diagram	n below shows	s an incon	nplete set-up of the laborator	y and collection	of propane.
		•••••	••••••	••••••	mers of butene.		
••••	(C=12	2, O = 16)			Q is 1g of the carbonate react		(3mks)
	QCO ₃		2 HCl _(aq)	w. →	$QCl_{2(aq)} + CO_{2(aq)} + H_2O_{(1)}$		
14.			equation belo		ts completely with 20 cm3 of	I IM nydrocnior	ic acid

abundance of P-40 being 60%. If the R.A.M of P is 39.8, determine the percentage	
abundances of the other two isotopes.	(2mks)
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • •
••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • •
(b) If the atomic number of P is 9, illustrate the structure of an ion of P-39.	(2mks)
15. Hydrogen sulphide gas reacts with chlorine gas according to the following equation.	
$H_2S_{(g)}$ + $Cl_{2(g)}$ \longrightarrow $2HCl_{(g)}$ + $S(s)$	
$\Pi_2 S(g)$ $CI_2(g)$ $S(S)$	
Use oxidation numbers to identify the reducing agent in the equation.	(2mks)
•••••	• • • • • • • • • • • • • • • • • • • •
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
16. (i) Write a balanced chemical equation for the reaction between chlorine gas and hot	
concentrated sodium hydroxide solution.	(1mk)
	•••••
(ii) Give one use of the major product formed in (i) above.	(1mk)
(ii) Give one use of the major product formed in (i) above.	(IIIK)
	•••••
(i) Write PTFE in full.	(1mk)
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
17. (a) Identify the acid in the backward reaction. Give a reason for your answer.	
$NH_{4^{+}(aq)} + H_{2}O_{(l)} \longrightarrow NH_{3(aq)} + H_{3}O^{+}_{(aq)}$ (2mks)	
	• • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

18. The column below was used to soften hard water.

	,	Briefly explain now the resin works.	(1mk)
	(ii)	How is the resin re-activated after some time?	(1mk)
•••••	•••••		
•	•	chloride gas dissolved in water conducts electric current while hydrog in methylbenzene does not. Explain.	gen chloride gas (2mks)
• • • • • • •	•••••		

20. (a) Name the chief one from which lead is extracted.	(1mk)
(b) State two uses of copper metal.	(2mks)
21. Describe the process of preparation of soap.	(2mks)
22. (i) Name the type of polymerization by which the polymer nylon– 6, 6 below is for	
$ \begin{array}{c c} C & \downarrow & \downarrow \\ C & \downarrow & \downarrow \\ 0 & \downarrow & \downarrow \\ 0 & \downarrow & \downarrow \\ H & \downarrow & \downarrow \end{array} $	
(1m	nk)
(ii) Write the equation for the process taking place in (b) above. (1m)	nk)
23. (a) Distinguish between nuclear fusion and nuclear fission. (1m	
	• • • • • • • • • • • • • • • • • • • •

•••••		
	mole of hydrazine gas (NxHy) reacts completely with oxygen to a 80 cm ³ of steam.	from 40 cm ³ of nitrogen ga
(i)	Determine the volume of oxygen gas used in the reaction.	(2mks)
•••••		
(i)	Write the equation for the reaction.	(1mk)
	udent accidentally added potassium chloride into a mixture of zince. Describe how you can help him obtain pure potassium chloride f	c oxide and iron (III)
•••••		
•••••		
•••••		
•••••		••••••
28 Dray	w and name an apparatus used to support a crucible while heating	in the laboratory (1mk)

END.

SERIES 7

1.Two miscible accidentally,	e liquids K and	H have boiling points of	f 58°C and 93°C.If the	liquids are mixed
		to separate the mixture.		(1mark)
	-	llected first? Explain.		(1mark)
c) State tw	o industrial app	lications of the method io	dentified in (a)	(1mark)
•••••				
		umber is 31 has two isoundance for each isotope	-	w shows the mass
	Mass	Relative abundance %		
	69	60.4		
	71	39.6		
a) Determi	ine the number o	of neutrons in the isotope	with mass number 69	(1mark)
b) Calculat		omic mass of element J		(2marks)
	• • • • • • • • • • • • • • • • • • • •			
		ve an electron arrangement on arrangement of:	nt of 2.8.8.	
P				(1mark)
Q				(1mark)

b)	The mass number of element Q is 31.	. Draw the structure of the atom of Q.	(2mark)
c)	Write the formula of the compound for	ormed when P is burnt in chlorine gas.	(1mark)
	e table below shows characteristics of the questions that follow.	f selected hydrocarbons. Study the info	rmation and
	Number of carbon atoms	Relative molecular mas of	
	per molecule 4	hydrocarbon 56	
	5	70	
	6	84	
	above. Calculate the relative mol	per of the homologous series represented ecular mass of compound T.	(1mark)
	relative molecular mass of 32760. the polymer V. $(C = 12; H = 1)$	ndergoes polymerization to form a poly Determine the number of monomers use 1)	d to produce (2marks)
5.	a) Define half-life.		(1mark)
	_	s a half-life of 10 seconds. Sketch a graph mass varies with time if it decays for 20 s	
	50—		(2marks)
	40 — 30 — sg 20 — 10 — 10 — 10 — 10 — 10 — 10 — 10 —		
]	FOR MARKING SCHEME <u>S INBOX 072435</u>	1706 OR VISIT www.goldlitekcserevision.co.ke	

Time (sec)

6. The set- up below was used to study one of the chemical properties of ammonia. Study it and answer the questions that follow. SIIII Concentrated ammonia a) Identify metal M (1mark) b) State **two** observations that would be made during the experiment above. c) Write an equation for the reaction that occurs. (1mark) 7. Starting with 50 cm³ of 2M sodium hydroxide describe how crystals of sodium sulphate can be prepared in the laboratory. (3marks) 8. Below are PH values of some solutions. Solution | A D 2.2 PH 6.5 13.5 a) Which solution is likely to be Rain water(1mark) Potassium hydroxide

.....(1mark)

b) A basic subst	ance V reacted with bo	oth solutions B and C	2. What is the nature of	of V.
				(1mark)
9. The solubility curv	ve for potassium nitrate	e is shown below.		
	200			
1	60			
00 g water	20	/		
Solubility g/100.g water	80			
	40			
	0 20	40 60	80 100	
	V 254	Temperature °C	80 100	
a) Define	e the term solubility.			(1mk)
b) Determ	mine the molarity of sa (K=39.0, O=16.0, N=			(2mks)
		• • • • • • • • • • • • • • • • • • • •		
•••••				
				• • • • • • • • • • • • • • • • • • • •
•••••				

10. Study the set-up below and use it to answer the questions that follow:

a) Writ	e a balanced chemic	cal equation for the reaction that takes p	
b) Give	e a reason why the n	nagnesium ribbon was coiled.	(1mark)
c) State	e and explain the pre	ecaution that should be taken at the end	of the experiment. (1mark)
		Methane undergoes complete combustic cal equation for the reaction that takes p	
	the bond energies ir bustion of methane.	n the table below to calculate the enthal	py change for complete (3marks)
	BOND	BOND ENERGY kJ/mol	, ,
	O = O	496	
	O – H	463	
	С-Н	412	
	C=O	743	
	·	<u> </u>	

12. The set up be	low was	used to	nrenare a	und colle	t hvdroger	 sulnhide		
Dilute		used to	ргераге а	ind cone	—	rsurpinde	gas	
a) Complete the	set up to	show h	now the g	as is coll	ected		(2n	narks)
b) State the obse			hen hydro	ogen sulp	ohide gas is	bubbled i		ion of marks)
13. A piece of phospamount of hot was a) Write an equation	ater to n	nake a so	olution.		_		ed was sh	naken with a small (1mark)
b) State the observation resulting solution		would t	oe made v	vhen bot	h red and b	lue litmus	papers are	e dipped into the (1mark)
14. Study the information	ation in t	he table	below ar	nd use it	to answer t	he questio	ns that fol	low:
Elements	Na	Mg	Al	Si	P	S	Cl	
Atomic numbers	11	12	13	14	15	16	17	_
a) Compare the	0.157 atomic r	0.136	0.125	0.117	0.110 inium Exp	0.104 Jain	0.099	(2marks)
					Lxp			

	(2 marks)
15. The equation below represents the reaction between marble chips and dilute hydrogeneous control of the cont	
$CaCO_{3(s)} + 2HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$	
The rate of reaction between marble chips and hydrochloric can be increased by	using calcium
carbonate powder instead of marble chips. State two other ways in which reaction above can be increased.	(2mark)
16. a) State the condition required for a Bunsen burner to produce a non-luminous	flame. (1mark)
b) Describe an experiment that can be used to identify the hottest region of the no flame.	(2marks)
17. In the manufacture of sodium carbonate by solvay process, ammoniated brine the carbonator while carbon (IV) oxide rise up. (a) What is ammoniated brine.	
(b) What is the main source of carbon (IV) oxide in the above process.	(1 mark)
c) State one use of carbon (IV) oxide and state the property of the gas which the	
on	(1mark)
	(1mark)

·····	and pressur	the gaseoure.					was car	owed to ried out at (2marks)
ne of a suitable i	method that	can be use	ed to extr	act potas	sium fro	m its or	e. Expla	ain (
dy the table belo	ow and ansv	wer the que	estions th	at follow				
Substance		A	В	С	D	Е	F	
Melting point	(°c)	801	113 119	39	-101	1356		
Boiling point	°c	1410	445	457	54	-36	2860	
Electrical	Solid	poor	Poor	Good	Poor	Poor	Poor	
Conductivity	Liquid	Good	Poor	Good	Poor	Poor	Poor	
ify the substanc	e that has a		•••••	Explain.				(1mark)
stance A and C of	conduct ele s of electric	ctric currer current.	nt in the l	iquid stat	te. State			(2marks)
nen excess chlo	rine gas is	. hijhhled 1	mronion <i>a</i>	() (

24. D	escribe an experiment that ca		(1mark)
c) Ex	escribe an experiment that ca	an be used to determine the perce	(1mark) ntage of air used for rusting.
c) Ex	xplain your observation in (b) above.	(1mark) ntage of air used for rusting.
c) Ex	xplain your observation in (b) above.	(1mark) ntage of air used for rusting.
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
above		•	,
obovo	(FU = 207, T = 127)	1	(Imortin)
U_j $U_{\rm L}$	_		
		e with an \mathbf{X} the likely position \mathbf{x}	
ŕ	te the observation that would		(1mark)
	Potassium iodide crystal) nitrate crystal
with v	water as shown below.		
		d potassium iodide were placed of	
			(2marks)
		uish between dilute sulphuric (VI) acid and ethanoic acid.
	c) Other than bleaching state	e one use of chlorine	(1mark)

Element	Atomic radii (nm)	Ionic radii (nm)
X	0.071	0.136
Y	0.099	0.181
Z	0.114	0.195

			ii of the elements.		•••••	
		gest oxidizinį	g agent.			 1m
Alkanol is			series of organic c			• • • •
		_	al formula of the fo	-	this series	
I)	name;				(1	lma
II)	structural f	formula			([1m
,					,	
······						
b) Write a	an equation f	for the compl	lete combustion of t	the fourth memb	er of this series	(1m
b) Write a	nn equation f	for the compl		the fourth memb	er of this series	(1m
b) Write a	an equation f	for the compl	lete combustion of t	the fourth memb	er of this series	(1m
b) Write a	an equation f	for the compl	lete combustion of t	the fourth memb	er of this series	(1m
b) Write a	an equation f	for the compl	lete combustion of t	the fourth memb	er of this series ries with tempera of water)	(1m
b) Write a	an equation f	for the comples how solubil	lete combustion of t	the fourth members onces in water var	er of this series ries with tempera of water)	(1m
b) Write a	an equation f	for the comples how solubile Change of solution of the complex control of the	lete combustion of the combust	nces in water var berature (g/100g 40°C	er of this series ries with tempera of water)	(1m
b) Write a	an equation f	for the comples how solubil Change of s	lete combustion of the combust	nces in water var berature (g/100g 40°C	er of this series ries with tempera of water) 6 0.0058	(1n

SERIES 8	
----------	--

1	[a] State Boyle's law [1mk]	ık]	
	[b] At 400°C,850cm³ of a gas exert a pressure of 560mmHg. What volume of the same would exert a pressure of 640mmHg at the same temperature?	e gas [3mks]	
2.	When burning magnesium is lowered into a gas jar containing nitrogen(I) oxide, it continuforming a white solid [a] Name the white solid	ues to burn	
	[b] Write a chemical equation of the reaction that occurred	[1mk]	
3.	Carbon {IV} oxide is one of the gases used in fire extinguishers [a] State any other possible use of carbon {IV} oxide	[1mk]	
	[b] Name any two reagents that can be reacted together ti generate carbon {IV} oxide	[2mks]	
4.	Rusting is a process that causes massive destruction of iron structures [a] State one condition that accelerates rusting	[1mk]	
	[b] State one advantage of rusting	[1mk]	
5	At 60°C,38 grams of lead{II} nitrate saturate 56cm³ of water. Determine the solubility of nitrate at this temperature	[2mks]	

[a] [b]	Dolymer can be represented as	
[a] [b]	The contraction of the monomer Name and draw the structure of the monomer	
[a] [b]	The contraction of the monomer Name and draw the structure of the monomer	
[a] [b]	The contraction of the monomer Name and draw the structure of the monomer	
[b]		[2mks
[c]	What type of polymerization occurs in the above case?	[1mk
[c]	What type of polymerization occurs in the above case?	[1mk
[c]	What type of polymerization occurs in the above case?	[1mk
[c]	What type of polymerization occurs in the above case?	[1mk
[c]	What type of polymerization occurs in the above case?	[1mk
[c]	What type of polymerization occurs in the above case?	[1mk
		• • • • • • • • • • • • • • • • • • • •
	Given that the molecular mass of the polymer is 25620, how many units of t	he monomer
	make the polymer	[2mks]
	······································	
		• • • • • • • • • • • • • • • • • • • •
A re	action can be represented as;	
	$_{4[g]} + HBr_{[g]} \longrightarrow C_2H_5Br_{[g]}$	
	en the bond energies of C-H, C=C, C-C, C-Br, and H –Br as	
	J/mol,580Kj/mole,446Kj/mole,438KJ/mole and 396kJ/mole respectively.De	termine the heat
	ormation of C ₂ H ₅ Br	
	[3mks]	

9	[a	.] Defin	ne the term, dynamic equilibrium	[1mks]
•••••	• • • • • • • • • •	• • • • • • • • •		
•••••	[b		action at equilibrium can be represented as	•••••
		2CrC	$O^{2}_{4[aq]} + 2H^{+}[aq]$ $Cr_{2}O^{2}_{[aq]} + H_{2}O_{\{1\}}$	
		Yelle	ow orange	
		State	and explain the observation made when;	
		[i]	NaOH is added to the equilibrium mixture	[2mks]
•••••	•••••	[ii]	HCl is added to the equilibrium mixture	[2mks]
	• • • • • • • • •	• • • • • • • • •		
•••••	• • • • • • • •	• • • • • • • • •		
10.			lectrolysis of dilute copper {II} chloride using carbon electrodes, a cu	
	passe	d throug	gh the solution for 2 hours and 30 minutes	
	[a]	Write	e the ionic equation of the reaction that occurred at the cathode	[1mk]
	• • • • • • • • •	• • • • • • • •		•••••
	[b]	Giver	n R.A.M of copper=64 and 1F=96500C, calculate the change in mass	of the cathode
				[3mks]
•••••				
	• • • • • • • • •	• • • • • • • • •		
11.	[a]		ne the term half-life	[1mk]
[b]		Name	e two particles likely to be emitted when a radioactive nuclide underg	-
				[2mks]

• • • • • • • •		
[c]	The half-life of a radioactive nuclide is 3 hours. Given that its initial mass is 288g, remaining mass after 12 hours.	determine the
12.	Thereduction potentials of elements M and N are; $\mathbf{M}^{2+}_{[aq]} + 2\mathbf{e} - \mathbf{M}_{[s]}, E^{\theta} = +0.44 \mathbf{V}$	
	$N^{+}_{[aq]} e^{-}$ $N_{[s]}, E^{\theta} = -1.64V$	
	Using the above reduction potentials, predict whether a reaction would occur between $N^+_{[aq]}$ and $M_{[[s]}[3mks]$	
•••••		
13.	An hydrocarbon can be represented as: C_2H_2	
	[a] Name the hydrocarbon [1mk]	
	[b] State two reagents that can be reacted together to generate the hydrocarbon	[2mks]
	[c] Identify the group of hydrocarbons into which C ₂ H ₂ belongs to	[1mk]
14.	[a] Name two allotropes of sulphur	[2mks]
• • • • • • • •	[b] In an experiment to investigate a certain property of sulphur, Maina added few	
	HNO ₃ to sulphur in a test tube and warmed the mixture	
• • • • • • • •	[i]State one observation made	[1mk]
• • • • • • • • • • • • • • • • • • • •	[ii]Write a chemical equation of the reaction that occurred	[1mk]

•••••	• • • • • • • • • •		• • • • • • • • • • • • •
 15.	Chlori	ine is commonly used in the manufacture of Ca(OCl) ₂	• • • • • • • • • • • • • • • • • • • •
	[i]	State one use of the above compound of chlorine	[1mk]
	[ii]	Write a chemical equation leading to the production of Ca(OCl) ₂	[1mk]
 16.	A com	npound can be represented as	
Н	H - C - H a	H H O	[1mk]
	[a]	what hame is given to the above class of compounds	
	[b]	Name two reagents that can be reacted together to generate the above compound	[2mks]
•••••	[6]	State two conditions necessary for the reaction leading to formation of the above of	
	[c]	State two conditions necessary for the reaction leading to formation of the above of to occur	[2mks]
 17.	Using	dots and crosses, show bonding in carbon{II} oxide	[2mks]
18.	carbor	20g of a compound containing carbon, hydrogen and oxygen was burnt in the air,2th [IV] oxide and 11.7g of water were produced. Determine its empirical formulae. 2, H=1, O=16}[3mks]	9.3g of

•••••				
19.	{a}	drops of hydrochloric acid were added into	_	ead {II} Nitrate solution [1mk]
	{b}	Write an ionic equation of the reaction the	hat occurred in the test to	ube [1mk]
 20.	{a}	industrial manufacture of Ammonia one of Name one other raw material	of the raw materialsis nit	rogen gas [1mk]
	{b}	Name two possible sources of the raw m		
	{c}	Name two substances that can be used a		
•••••				
	{d}	State one use of ammonia		[1mk]
	•••••			
21.	Gas Σ	Y can be collected as shown below in gas X Name the method used to collect gas Y	in gas Y	[1mk]
	լսյ	Traine the method used to contect gas I		[111117]

[a]	Give an example of a	a gas that can be collected using t	he same method as gas Y [1mk]
	7.25, find the value of x	m W - 36 and W-40 which occur is	n the ratio x:4. Given that R.A.M of W
Des			r a given sample of a liquid is pure [2mks]
	•		econds while a similar mass of gas R cm3, find the density of gas R [2mks]
•	•		_
diffi	use in 70 seconds. Given	that the density of gas T is 0.6g/	cm3, find the density of gas R [2mks]
diffi	use in 70 seconds. Given	that the density of gas T is 0.6g/	cm3, find the density of gas R [2mks]
diffi	ctron configuration of ele Element A	that the density of gas T is 0.6g/	ren below ectron configuration 2, 8, 1
diffi	etron configuration of ele Element A B	that the density of gas T is 0.6g/	ren below ectron configuration 2, 8, 1 2, 8
diffi	etron configuration of ele Element A B C	that the density of gas T is 0.6g/	cm3, find the density of gas R [2mks] en below ectron configuration 2, 8, 1 2, 8 2, 7
diffi	etron configuration of ele Element A B C D	that the density of gas T is 0.6g/	ren below ectron configuration 2, 8, 1 2, 8 2, 7 2, 8, 6
diffi	etron configuration of ele Element A B C D E	ements A,B,C, D and E are as giv	ren below ectron configuration 2, 8, 1 2, 8 2, 7 2, 8, 6 2, 8, 3
diffi	etron configuration of ele Element A B C D E	that the density of gas T is 0.6g/	ren below ectron configuration 2, 8, 1 2, 8 2, 7 2, 8, 6
diffi	etron configuration of ele Element A B C D E Which element has the	ements A,B,C, D and E are as giv	ren below ectron configuration 2, 8, 1 2, 8 2, 7 2, 8, 6 2, 8, 3

SERIES 9

1.	Air is a mixture of different components. Identify; i) A compound that turn lime water to a white precipitate	[1 mk]
	ii) A compound that changes cobalt(ii)chloride from blue to pink	[1 mk]
	iii) A diatomic gas that has triple bond	[1 mk]
2.	A mixture contains potassium chloride and lead(ii)sulphate. Describe how you would of potassium chloride from this mixture	obtain crystals [3 mks]
3.	Oxygen is prepared in the laboratory through catalytic decomposition of hydrogen perca) Name the catalyst in this experiment	oxide. [1 mk]
	b) What mass of hydrogen peroxide would be needed to produce 120cm ³ of oxygen g this experiment? (Molar gas volume at RTP = 24000cm ³ , H = 1, O = 16)	as at r.t.p in [3 mks]

4. Carbon(iv)oxide gas was passed over heated copper(ii)oxides shown in the diagram below.

a)	State the observation made in the tube P	[1 mk]
b)	Write an equation for the reaction which took place in tube P	[1 mk]
c)	Name the gas burning at point X	[1 mk]

5. The diagram below illustrates the steps involved in the industrial manufacture of of nitric(v)acid. Use it to answer the questions that follow.

6. Draw a well labelled setup for the laboratory preparation and collection of dry sample of hydrogen chloride gas [3 mks]

7. Account for the following observations made when a piece of sodium is placed in a trough half filled with water.

a) Hissing sound [1 mk]

b) Darts on the water surface

[1 mk]

c) Solution formed turns red litmus paper blue

[1 mk]

8. The diagram below shows the structure of iodine

a) Name;

i) Part X

[1 mk]

ii) Type of bond in the solid

[1 mk]

iii)	Explain why iodine has very low melting point	[1 mk
9. 20g of sa salt X at	lt X dissolves in 80g of water to form a saturated solution at 45°C. calculat 45°C	te the solubility of
acts as b	cess chlorine gas is bubbled through dilute sodium hydroxide solution, the eaching agent. e an equation for the reaction between chlorine gas and sodium hydroxide	resulting solution
b) Expl	nin how the resulting solution acts as a bleaching agent	[2 mks]
	Z has initial mass of 80g. After 5 years the remaining mass was 5g. is meant by the term half-life	[1 mk
b) Calc	nlate the half-life of element Z	[2mks]

12. Complete the table below

[3 mks]

Metal	Aluminum	Lead	Sodium
Chief ore	Bauxite		Rock salt
Chemical formulae			
Method of extraction		reduction	

13. Use the reaction scheme below to answer the questions that follow.

a) Draw the structure of alcohol X

[1 mk]

b) Name process Y

[1 mk]

c) Write the molecular formulae of the 5th member of the homologous series in which propene belongs

[1 mk]

14. Calculate the enthalpy for the reaction:

$$C_2H_{4(g)} + H_{2(g)} \longrightarrow C_2H_6$$

[3 mks]

Give the following bond energies

C-C	347 kJ/mol
C = C	612 kJ/mol
C – H	413 kJ/mol
H-H	436 kJ/mol

15. Study the reactions below and answer the questions that follow.

	eaction	Equation		
J		$Ba^{2+}_{(aq)} + SO_{3(aq)}^{2-}$	→ BaSO _{3(S)}	
K		$Br_{2(g)} + 2I_{(aq)}$	$ 2Br^{-}_{(aq)} + I_{2(g)} $	
1		$HSO_{4(aq)} + OH_{(aq)} -$	$SO_{4(aq)}^{2-} + H_2O_0$	1)
	hich of these reactions indicate:			[3 mks]
i)	A precipitation reaction			
ii)	A displacement reaction			
iii)	Neutralization reaction			
	n atom of element A has mass numbe	er 39 and 19 protons. (A is r	not the actual symbol of th	e
	ement) Using crosses (x) to represent elect	trons, draw the atomic struc	ture of element A	[1 mk]
b)	State the group and period to which Group	element A belongs		[1 mk]
	Period			
c)	Name the type of structure adopted	by element A		[1 mk]
17 a)	State Graham's law of rate of diffus	sion of gassas		 [1 mk]
17.a)	State Granam 3 law of face of diffus	ordi or gusses		

b) It take 44 seconds for nitrogen(iv)oxide to diffuse through a porous pot. Calculate how long it will take an equal volume of chlorine gas to diffuse through the same porous pot under the same conditions.(N = 4, O = 16, Cl = 35.5)[2 mks]

18. The setup below represents electrolysis of dilute sulphuric (vi) acid.

a) Name gas: [2mks] M - _____

b) At what electrode does oxidation take place? [1 mk]

Dichromate (V1) 10118 are confidence of the following equation at equilibrium $2CrO_{4(aq)}^{2-} + H_2O_{(l)}$ 19. Dichromate (vi) ions are orange in colour while chromate (vi) ions are yellow. Consider the

State and explain the observation which would be made if a few drops of dilute sulphuric(vi)acid were added to the equilibrium mixture [2 mks] 20. An element has an electron configuration of 2.8.6

a) Name the element

[1 mk]

b) This element forms a puckered ring. Draw the ring

[1 mk]

c) Write the formulae of the puckered ring

[1 mk]

21. The melting point of sodium oxide is 1193°C while that of sulphure(iv)oxide is -72°C. In terms of the structure and bonding, explain why there is a large difference in the melting points of the two oxides

[2 mks]

22. The diagram below illustrates some steps involved in manufacturing sodium carbonate. Use it to answer the questions that follow

a) Name the industrial process illustrated by the above flowchart	[1 mk]
b) Write an equation for the reaction that takes place in chamber M	[1 mk]
c) Name the process which takes place in chamber N	[1 mk]
d) How is sodium carbonate obtained in this process	[1 mk]
23. Explain why potassium is kept under paraffin while phosphorous is kept under water.	[2 mks]
24. Dilute sulphuric (vi) acid was added to each of the three beakers containing the substance below	ces shown

State the observation made in each beaker

A - ______
B - _____
C -

25. Hydrogen chloride gas was separately dissolved in water and methylbenzene and the solutions labelled B and A respectively. A piece of magnesium ribbon was placed in each of the solutions.

observations	ubbles 1	n solution A but no bubbling occurred in solution B. Explain the	[3 mks
26. Give the IUPAC nar	nes of t	he following compounds	[3 mks
	(A)	Вr СH ₃ СH СH СН ₃	
		CH ₃	
	(B)	CH_3 CH CH_2 CH_3	
	(C)	$\mathrm{CH_3}\mathrm{CH_2}\mathrm{COOCH_2}\mathrm{CH_2}\mathrm{CH_3}$	

27. A solution contains 40.32g per litre of compound XOH. $25cm^3$ of this solution was exactly neutralized by $30cm^3$ of 0.3M sulphuric(vi)acid. Determine the relative atomic mass of X(O = 16, H = 1) [4 mks]

THIS IS THE LAST PRINTED PAGE!

SERIES 10

1. The samples of equal volumes of water were put in 100cm³ conical flasks and heated for 5 minutes on a Bunsen flame. It was observed that sample 1 registered a low temperature than sample II

(a) Name flame I (1mk)

(b) State one disadvantage of using flame I for heating (1mk)

2. Study the diagram below and answer the questions that follow.

The diagram shows the method used to separate component of mixture P

(a) Name X . (½mk)

(b) What is the name given to the method used in separation of mixture P (½mk)

(c) What would happen if the inlet and outlet of water were interchanged (1mk)

(c) What would happen if the fillet and outlet of water were interchanged (This)

	nows the sol		WATE		∠ , and		ΓWATE	D	
SOLID P		Soluble		21/		solu		IX	
		insolul					bie luble		
Q									
R		insolul	oie			solu	bie		
How would you o	btain pure s	samples o	f R,P a1	nd Q				• • • • • • • • • • • • • • • • • • • •	(2m
			•••••				•••••		
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •
State one physical	property th	nat would	SIIOOES	t the pre	esence o	of each o	of the fol	 Iowing	gases fr
leaking gas cylin		ide would	5 4 8865	t the pre	octice o	1 cacii ()1 the 101		8436311
n) H ₂ S									(1m
o) N ₂ O									(1m
			· • • • • • • • • • • • • • • • • • • •						
e) Cl ₂									(1ml
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • •
The PH values of se	oma colutio	ne ara giv	en held	NTA7					
rrie i varues or si	onie solutio	ns are giv	en beid	, vv					
	4.0	1.0		8.0		65		7.0	
P ^H 14	4.0 1	1.0		8.0 N		6.5 P		7.0 Z	
PH 14 Solution M	1	L	st conc	N	n of hy	P	ion Giv	Z	on for v
PH 14 Solution M a) Identify the so	1	L	st conc	N	n of hy	P	ion. Giv	Z	-
PH 14 Solution M	1	L	st conc	N	n of hy	P	ion. Giv	Z	on for y
PH 14 Solution M a) Identify the so answer	1	L the lower		N entration		P drogen		Z ve reaso	(1r
PH 14 Solution M a) Identify the so answer	1 olution with	L the lower		N entration		P drogen		Z re reaso	(1r
PH 14 Solution M a) Identify the so answer	1 olution with	L the lower		N entration		P drogen		Z re reaso	(11
PH 14 Solution M a) Identify the so answer b) Which solution	1 olution with	L the lower		N entration		P drogen		Z re reaso	(1r
PH 14 Solution M a) Identify the so answer D) Which solution your answer	1 olution with	the lower	ın anti-	N entration acid for	treatin	P drogen g stoma	ach upse	Z ve reaso et. Give	(1r reason (1r
PH 14 Solution M a) Identify the so answer b) Which solution your answer The data below given	I olution with n would be	the lower	ın anti-	N entration acid for	treatin	P drogen g stom	ach upse	Z ve reaso et. Give	(1r reason (1r
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion	olution with n would be	tronic con	in anti-	entration acid for C ² -	treatin	P drogen g stoma	oms and	Z ve reaso et. Give	reason (1r
PH 14 Solution M a) Identify the so answer b) Which solution your answer The data below given	olution with n would be	the lower	n anti-	N entration acid for ion of so	treatin	P drogen g stom	ach upse	ze reaso et. Give	reason (1r
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion Electronic configure 14	n would be	used as a	in anti-	entration acid for C ² -	treatin	P drogen g stoma	oms and	ze reaso et. Give	(1r reason (1r H 2.8.2
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion	n would be	used as a	in anti-	entration acid for C ² -	treatin	P drogen g stoma	oms and	ze reaso et. Give	reason (1r
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion Electronic configuration Select an atom	n would be ves the elected at that is a not seen to the elected at the elected a	used as a tronic con A ²⁺ 2	figurat B 2.4	entration acid for ion of so C ² 2.8	treatin ome sele D ²⁺ 2.8.8	P drogen g stome	oms and	ze reasont the rea	(1r reason (1r H 2.8.2
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion Electronic configure 14	n would be ves the elected at that is a not seen to the elected at the elected a	used as a tronic con A ²⁺ 2	figurat B 2.4	entration acid for ion of so C ² 2.8	treatin ome sele D ²⁺ 2.8.8	P drogen g stome	oms and	ze reasont the rea	(1r reason (1r H 2.8.2
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion Electronic configuration Select an atom	n would be that is a note omic number	used as a tronic con A ²⁺ 2	figurat B 2.4	entration acid for C2- 2.8	treatin ome sele D ²⁺ 2.8.8	P drogen g stoma ected at E 2.8	oms and F- 2.8.8	ze reaso 	(1r reason (1r H 2.8.2 (1n
Solution M a) Identify the so answer b) Which solution your answer The data below gir Atom/ion Electronic configuration Select an atom What is the atom	n would be ves the elected at that is a note that it is a not that it is a no	used as a tronic con A ²⁺ 2 ble gas r of C and	figurat B 2.4	entration acid for ion of so C²- 2.8	treatin ome sele D ²⁺ 2.8.8	P drogen g stoma	oms and	ze reaso et. Give ions G ⁺ 0	(1r reason (1r
Solution a) Identify the so answer b) Which solution your answer The data below gir Atom/ion Electronic configuration Select an atom What is the atom Select an element	dent that below	tronic con A ²⁺ ble gas ong to grow	figurat B 2.4 I A	entration acid for ion of so C ² 2.8	treatin ome sele D ²⁺ 2.8.8	P drogen g stomateted at E 2.8	oms and F- 2.8.8	ze reasont the reasont to the reason	(1r reason (1r H 2.8.2 (1n
Solution a) Identify the so answer b) Which solution your answer The data below given Atom/ion Electronic configuration Select an atom What is the atom Select an element	n would be ves the elect guration that is a not omic number.	tronic con A ²⁺ ble gas ong to grow	figurat B 2.4 I A	entration acid for C2- 2.8	treatin ome sele D ²⁺ 2.8.8	P drogen g stomateted at E 2.8	oms and	ze reasont det. Give	(1r reason (1r / 1r
Solution a) Identify the so answer b) Which solution your answer The data below given Atom/ion Electronic configuration Select an atom What is the atom Select an element	delution with solution with the second secon	tronic con A ²⁺ ble gas	figurat B 2.4 I A	entration acid for considering the second	treatin ome sele D ²⁺ 2.8.8	P drogen g stoma ected at E 2.8	oms and F- 2.8.8	ze reasont set. Give	(1r reason (1r / 1r

1.96g of Zinc metal were reacted with 100cm ³ of 0.2M hydrochloric acid a) Determine the reagent that was in excess Zn=65.2; Molar gas volume at s.t.p 22.4 liters	(2mks)
(b) Calculate the total volume of hydrogen gas that was liberated at s.t.p	(1mk)
9. Give the IUPAC names of the following compounds (i) .CH ₃ CH ₂ CH ₂ CH CH ₃ CH ₃	(1mk)
(ii) CH ₃ CH=CHCl	
(i) Write an equation of the reaction which takes place	(1mk)
(ii) Determine the number of moles of the acid used	(1mk)
(iii) Calculate the mass of potassium chloride in the mixture (K=39.0; C=12.0; O=16.0	(1mk)
11. Study the flow chart below and answer the questions that follow Metal M	
Dilute Hydrochloric acid — Colourlesss gas	
White ppt soluble in excess I Solution E Solution E Process 2 White ppt soluble in excess White ppt soluble in excess White ppt soluble in excess NaOH added drop wise	S
•	(1mk)
(ii) Colourless gas:	(1mk)
(iii) Write an equation that leads to the formation of white precipitate in proce	ess (1mk)
12. a) Define the term dynamic equilibrium	(1mk)

Page 3 of 7. For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

1- \ A		• • • • • • • • • • • • • • • • • • • •
b) A	reaction at equilibrium can be represented as $2CrO^{2}_{4[aq]} + 2H^{+}[aq] \qquad Cr_{2}O7^{2}_{[aq]} + H_{2}O_{\{1\}}$	
	Yellow orange	
Sta	te and explain the observation made when NaOH is added to the equilibrium mixtur	re (2mks)
		• • • • • • • • • • • • • • • • • • • •
13. Few dro	ops of hydrochloric acid were added into a test tube containing lead {II} Nitrate solution observation made	ution (1mk)
b)	Write an ionic equation of the reaction that occurred in the test tube	(1mk)
	pound of carbon, hydrogen and oxygen contains 57.15% carbon, 4.76% hydi	0
the res O = 16	t oxygen. If its relative molecular mass is 126, find its molecular formula. (0	C = 12, H = 1, (3mks)
	<i>,</i> 	
a) Sta	te Grahams law of diffusion. (1mark)	
b) The	a mote of diffusion of sulphym(N) avide and through a manage material is 40 cm ² c ⁻¹	
b) The	e rate of diffusion of sulphur(IV)oxide gas through a porous material is 40cm3s ⁻¹ . Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous	s
b) The	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous	s arks)
b) The	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous	
	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32, O=16, C=12)$ (2 m	arks)
	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous	
	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32, O=16, C=12)$ (2 m	(1mk)
	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 method).	(1mk)
15. a) Dis	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 method).	(1mk)
b). A s	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 method).	(1mk)
b). A s	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 m	hile a (2mks)
b). A s	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 m stinguish between strong and concentrated acid solution of ammonia in methylbenzene has no effects on red litmus paper wation of ammonia in water turns red litmus paper blue. Explain	hile a (2mks)
b). A s	Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 m	hile a (2mks)
b). A s	Calculate the rate of diffusion of carbon(IV) oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 m) tinguish between strong and concentrated acid solution of ammonia in methylbenzene has no effects on red litmus paper what one of ammonia in water turns red litmus paper blue. Explain the process which takes place when Iodine changes directly from solid to gas	hile a (2mks)
b). A s solution	Calculate the rate of diffusion of carbon(IV) oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 m stinguish between strong and concentrated acid solution of ammonia in methylbenzene has no effects on red litmus paper what it is a material in water turns red litmus paper blue. Explain the process which takes place when I lodine changes directly from solid to gas $Fe^{2+}(aq) \text{ changes to } Fe^{3+}(aq)$	(1mk) (1mk) (1mk) (1mk)
b). A s solution ii.	Calculate the rate of diffusion of carbon(IV) oxide gas through the same porous material $(S=32,O=16,C=12)$ (2 m stinguish between strong and concentrated acid solution of ammonia in methylbenzene has no effects on red litmus paper we ution of ammonia in water turns red litmus paper blue. Explain the process which takes place when Iodine changes directly from solid to gas $Fe^{2+}_{(aq)} \text{ changes to } Fe^{3+}_{(aq)}$	(1mk) (1mk) (1mk) (1mk)

	n the last stage of the solvay process, a mixture of sodium hydrogen carbonate and mmonium chloride is formed	
a)	State the method of separation used	(1mk)
b)	Write an equation showing how lime is slaked	(1mk)
c)	Name the product recycled in the above process	(1mk)
18. T	he diagram below is a section of a model of the structure of element K	
	— —	
a)	State the type of bonding that exist in K	(1mk)
b)) In which group of the periodic table does element K belong. Give a reason	(2mks)
	tudy the diagram below and answer the questions that follow Sodium metal Cold water State two observations made in the above experiment when sodium react with water	er (2 mks)
b)	Write a chemical equation for the reaction that takes place	(1mk)
20. (a	n) Explain why permanent hardness in water cannot be removed by boiling	(2mks)
(t	n) Name two methods that can be used to remove permanent hardness from water	(1mk)

Page **5** *of* **7.** For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

22.	Write i)	an equation to show the effect of heat on the nitrate of: - Potassium	(2mks)
	(ii)	Silver	•••••

23. Study the diagram below and use it to answer the questions that follow.

25. Bond energies for some bonds are tabulated below: -

BOND	BOND ENERGY KJ/mol
H - H	436
	(10)
C = C	610
C- H	410
C - C	345

Use the bond energies to estimate the enthalpy for the reaction. (3mks) $C_2H_{4(g)} + H_{2(g)} \longrightarrow C_2H_{6(g)}$

.....

26. Study the set up below and answer the questions that flows

Page 6 of 7. For www.goldlitek

contact us on **0724351706** or visit our website

	State all the observations that would be made when the circuit is complete	ed (3mks)
27	7. Describe how solid samples of salts can be obtained from a mixture of lead sodium chloride and ammonium chloride.	d (II) chloride, (3mks)
28	3. The diagram below represents a set-up used to prepare oxygen gas.	
	Water Solid Q	
	(a) Name substance Q.	(1mk)
•••	(b) Complete the set-up to show how oxygen gas is collected.(c) Write the equation for the reaction that occur.	
29	P. Two reagents that can be used to prepare chlorine gas are potassium mang (VII) and hydrochloric acid. (a) Write an equation for the reaction.	ganate (1mk)
	c) Give the formula of another reagent that can be used instead of potassium ma	
	(c) Using an equation illustrate how chlorine bleach coloured substances.	(2mks)

SERIES 11

1.	Element A has atomic mass 23 and element B has atomic mass 7 and also have 12 neutrons and 4
	neutrons respectively.

a.	Write the electronic arrangement of A and B .	(1mk)
• • • •		
• • • •		
b.	Which element has higher ionization energy? Explain	(2mks)

2. a. A student used the reaction between steam and heated magnesium metal to collect a dry sample of hydrogen gas. Complete the diagram to show how the gas is collected (2mks)

ł	b. '	W	rite	e t	he	e	qı	ua	ti	oı	1	fo	r	tŀ	ie	r	e	ac	ct	ic	n	ı	pı	rc	od	lu	ıc	ir	18	ţ t	h	e	h	y	ď	rc	og	e	n	g	as	i	n	th	ıe	a	bo	Z	/e	r	ea	ıc	ti	or	ı.	(!	ln	nk	:)
	• • •		• •		• •	• • •		٠.	٠.	٠.	٠.	٠.	٠.		•	٠.	٠.			٠.	٠.		٠.		٠.	•	٠.	٠.	•	• •	٠.	•		٠.	٠.	•		٠.	٠.	٠.	٠.		٠.	٠.	٠.		. 	•	• •				• •	• •	• •	. . .	• •	• •	
																																																

3. During an experiment on the reduction of an oxide of copper, the following data was obtained.

Mass of empty boat = 25.0g

Mass of empty boat + oxide of copper = 29.0g

Mass of boat + copper (after reaction) = 28.2g

Determine its empirical formula. (Cu = 64, O = 16)

(3mks)

4. Lead (II) nitrate was heated completely.

a) Write an equation for heating lead (II) nitrate. (1mk)

.....

b) Calculate the mass of the oxide formed given that 0.2 moles of the nitrate was heated. (**Pb** = **207**, **O** = **16**) (2mks)

.....

.....

5. Study the diagram shown below to answer the questions that follow. The curve shows the heating curve of water in the laboratory.

(1mk)

(2mks)

6. Which type of Sulphur is formed under the following conditions? Above 96⁰C i. (½ mark) Pouring boiling Sulphur into cold water (½ mark)

Rapidly cooling Sulphur vapour (½mark)

Mixing sodium thiosulphate with dilute hydrochloric acid (1/2 mark)

.....

7. The diagrams below show the apparatus used to investigate the properties of carbon (IV) oxide gas.

8. (a) State Graham's Law of diffusion. (1mk)

For more resources and marking schemes contact us on 0724351706 or visit our website www.goldlitekcserevision.co.ke And Download

150cm ³ of nitrogen (IV) o O=16)	y) oxide diffuses through a porous pla oxide to diffuse across the same plate (2mks)	under similar conditions? (C=12, N=
	on is passed through a colourless solution is passed through a colourless solution P. esent.	tion Y . A white precipitate which (1mk)
b) Write down the formuli) White precipitate.	ıla of;	(1mk)
•••••		
		(1 1-)
ii) Complex ion in solu	ation P.	(1mk)
When 0.6g of element M 500cm ³ of water, the temporal mass of element M given	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water	the heat evolved was used to heat to 32°C. Calculate the relative atom
When 0.6g of element M 500cm ³ of water, the temporal mass of element M given 1.0gcm- ³ and molar heat of	was completely burned in oxygen, all perature of the water rose from 23.0°C	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks)
When 0.6g of element M 500cm ³ of water, the temporal mass of element M given 1.0gcm- ³ and molar heat of	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol.	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks)
• When 0.6g of element M 500cm ³ of water, the temperature of the second of the secon	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol.	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks)
When 0.6g of element M 500cm ³ of water, the temperature of element M given 1.0gcm- ³ and molar heat of	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol.	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks)
• When 0.6g of element M 500cm³ of water, the temperature of element M given 1.0gcm-³ and molar heat of the second	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol.	the heat evolved was used to heat to 32°C. Calculate the relative atom or is 4.2Jg-1K-1, density of water is (3mks)
• When 0.6g of element M 500cm³ of water, the temp mass of element M given 1.0gcm-³ and molar heat of the company of the compa	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol.	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks)
When 0.6g of element M 500cm³ of water, the temp mass of element M given 1.0gcm-³ and molar heat of the control	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol. This react to produce hydrogen bromides this reaction	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks) gas. (1mk)
When 0.6g of element M 500cm ³ of water, the temp mass of element M given 1.0gcm- ³ and molar heat of the control of the con	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol. This react to produce hydrogen bromide this reaction So given below to calculate the heat of the capacity of the capacity of water of the capacity of the capacity of the capacity of water of the capacity of water of the capacity of the capacity of water of water of the capacity of water o	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks) gas. (1mk) formation of hydrogen bromide.
When 0.6g of element M 500cm ³ of water, the temporal mass of element M given 1.0gcm- ³ and molar heat of the second mass of element M given 1.0gcm- ³ and molar heat of element M given 1.0gcm- ³ and molar heat of element M given 1.0gcm- ³ and molar heat of element M given 1.0gcm- ³ and molar heat of element M g	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol. This react to produce hydrogen bromides this reaction	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks) gas. (1mk) formation of hydrogen bromide.
When 0.6g of element M 500cm³ of water, the temp mass of element M given 1.0gcm-³ and molar heat of the second sec	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol. as react to produce hydrogen bromide this reaction given below to calculate the heat of the capacity of water of water of the capacity of water of water of the capacity of water of water of water of water of the capacity of water of	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks) gas. (1mk) formation of hydrogen bromide.
When 0.6g of element M 500cm³ of water, the temp mass of element M given 1.0gcm-³ and molar heat of the second sec	was completely burned in oxygen, all perature of the water rose from 23.0°C that the specific heat capacity of water of combustion of M is 380kJ/mol. This react to produce hydrogen bromide this reaction So given below to calculate the heat of the capacity of water of water of water of the capacity of water of wat	the heat evolved was used to heat to 32°C. Calculate the relative atomer is 4.2Jg-1K-1, density of water is (3mks) gas. (1mk) formation of hydrogen bromide.

For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

				ım. (3mks)
Study the table	e below and	answer the o	questions that follow	······································
substance	M.pt ℃	B.pt °C	Electrical conductivity in solid state	Electrical conductivity in molten state
J	365	463	Nil	Nil
K	1323	2773	Good	Good
L	1046	1680	Nil	Good
M	2156	2776	Nil	Nil
a) Metallic sob) Covalent rc) Ionic Solio5. A pupil analyz	olid network solid 1 zed a commention was rec	l		
-			vided into equal Port are tabulated below:	tions and each mixed with equal vo
Sample o	of Trea	tment bef	fore adding	Observations made on
water	soap		_	shaking with soap
I	Boil	ed		Lather form immediately

water	soap	shaking with soap
Ι	Boiled	Lather form immediately
II	No treatment	Slight lather form slowly
III	Treatment with washing soda	Lather formed immediately

a) What type of hardness is present in the water? Explain

(2mks)

17. The diagram below shows a 'jiko' when in use. Study it and answer the questions that follow.

b.	Using an equation, explain what happens at region A	(2mks)
• • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • • •		• • • • • • • • • • • • • • • • • • • •

18. The table below gives three experiments on the reaction of excess sulphuric (VI) acid and 0.5g of zinc done under different conditions. In each the volume of gas was recorded at different time intervals.

a) Write an equation for the re		((1mk)
b) Identify the oxidizing agent			(1mk)
c) State one environmental ha	zard of the nitrogen compo	ounds. ((1mk)
20. The scheme below shows some follow.	e reactions starting with eth	yne. Study it and answer	the questions that
CHBrCHBr]		
Reagent N	И		
HC≡CH	1 mole HBr (g)	Substance X	
Pt (s)	I		
Reagent Y (1 M	Conc. H ₂ SO ₄	Substance N	n and name the
			. .
b. Name:			(1mk)
21. Study the following equilibrium 2X ₂ (g) + Y _{2(g)} Give and explain two ways of i	$2X_2Y_{(g)}$ $\Delta H = -197Kj/mol$. ((3mks)
22. Given the following reagents: Sample of Lead (II) Carbonate			e. Describe how a

23. Study the information in the table and answer the questions below.

Substance	Solubility g/100g water	
\mathbf{V}	126	
W	2	

	Describe how a solid sample of substance V could be obtained from	m a solid mixture of V and W . (3mks)
24.	The pH of a soil sample was found to be 5.7. An agricultural office a. State two functions of the lime.	er recommended addition of lime. (2mks)
	b. Give the name of the process applied in (a) above.	(1mk)

25. The diagram below shows the set-up that was used to prepare and collect a sample of nitric (V) acid.

•••		(1mk)	
b) 	Name another substance that can be used instead of potassium n	iitrate.	(1mk)
c) 	Give one use of nitric (V) acid.		(1mk)
• • •		• • • • • • • • • • • • • • • • • • • •	• • • • •

26. The structure of water molecules can be represented as shown below.

i.	Name the bond type represented by letter \mathbf{X} and \mathbf{W} .	(1mk)
ii.	Relative molecular mass of methane and water are alm is 100°C while that of methane is -161°C. Explain.	nost similar; however, the boiling of water (2mks)

27. The set-up was used to electrolyse Lead (II) bromide. Study it and answer the questions that follow;

1	(1mk)
1	(2mks)
	State and explain what happened at the anode

SERIES 12

1. Below is a Bunsen burner flame. Study it and answer the questions that follow.

	a) How is this type of flame is produced?	(1 mark)
•••	b) Label on the diagram the least hot part of the flame.c) Name the gas produced by a burning candle that is a non-pollutant.	(1 mark) (1 mark)
 2.	a) A hydrocarbon consists of 92.3% carbon. Its molecular mass is 26. Calc (2 marks)	
	b) Draw the structure of the hydrocarbon.	(1 mark)
3.	Hydrogen sulphide gas is slightly soluble in water. The reaction is given by $H^{-}_{(aq)} \to H^{+}_{(aq)} + HS^{-}_{(aq)}$	
	State and explain the effect of addition of Potassium hydroxide pellets on t sulphide. (3 marks)	
4.		
•••		

	and chlorine reac		e product formed when equal volumes of ethat marks)
 5.		hows the bonding between aluminium H Cl	
	Н	— N → Al — H Cl	— Cl
	a) Name the types o	f bonds that exist in the molecule	(1 mark)
	b) How many electr	ons are used for bonding in the molecular	ule? (1mark)
••••	c) State one comme	rcial use of dry ice	(1 mark)
		ge of universal indicator over other in	
•••		nixture of barium sulphate and lead (II	(2) chloride be separated in to pure solids.
 7.	-	elting point of 15°C and boiling point of draw the heating curve for Q if temp	
	e		

b) State the physical state of substance \mathbf{Q} at room temperature (room temperature =25°C)

.....

8. The set-up below is used to investigate the properties of ammonia.

bustion tube to occur.
k) (½ mark)
(1 mark)
(1 mark)
(½ mark)
g of metal Q from its salt, was 3860
of Q? (2 marks)
mula Q ^{y+.} What is the numerical value

10. Study the diagram below which shows an energy level diagram.

Reaction	path
----------	------

i)	Name enthalpy				
	ΔH_1				
	$\Delta H_2 \\$				
	ΔH_3				

ii) Calculate the ΔH_1 from the energy level diagram (1½ mark)

.....

11. Below is a table of 1st ionization energies for elements A, B, C, and D which are metals.

Elements	A	В	C	D
Ionization energies kJmol ⁻¹	494	418	519	376

a) What is meant by 1st ionization energy? (1 mark)

b) With an explanation, arrange the elements in order of increasing reactivities.

(2 marks)

.....

12. In the manufacture of Sulphuric (VI) acid by contact process Sulphur (IV) oxide is made to react with air to form Sulphur (VI) oxide as shown: -

(i) Name the catalyst in this reaction

(1 mark)

.....

(ii) State effect of the following changes on the yield of Sulphur (VI) oxide

For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

I. Increasing	the pressure	(½ mark)		
II. Using a c	atalyst			(½ mark)
	ılphur (VI) oxide gas i			(VI) acid before dilution
3. a) What are isot	opes?			(1 mark)
b) Determine to	he number of neutrons		(1 mark)	
c) An isotone	of element E has 34 ne	eutrons and its	mass number is 64. E	forms a cation with 28 e
•	ormula of the cation for	rmed by the el	ement E. (1 mark)	
Write the fo	ectrode potentials of fo			
Write the fo		ur half-reactio		
Write the fo	ectrode potentials of fo	ur half-reactio	ons are: -	
Write the fo	ectrode potentials of fo $Sn^{2^{+}}_{(aq)} + 2e^{-} \rightarrow$ $Fe^{3^{+}}_{(aq)} + e^{-} \rightarrow$	ur half-reactio	ons are: - $E^{\theta} = -0.14V$	
Write the formal was a second with the second with the formal was a second with the formal was a second	ectrode potentials of fo $Sn^{2+}_{(aq)} + 2e^{-} \rightarrow$ $Fe^{3+}_{(aq)} + e^{-} \rightarrow$	our half-reaction $Sn_{(s)}$ $Fe^{2^+}\text{(aq)}$ $V_{(s)}$	ons are: - $E^{\theta} = -0.14V$ $E^{\theta} = +0.77V$	
Write the fo	ectrode potentials of fo $Sn^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow$ $Fe^{3^{+}}{}_{(aq)} + e^{-} \rightarrow$ $V^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow$	our half-reaction $Sn_{(s)}$ $Fe^{2^+}{}_{(aq)}$ $V_{(s)}$ $2Br^{\text{-}}{}_{(aq)}$	ons are: - $E^{\theta} = -0.14V$ $E^{\theta} = +0.77V$ $E^{\theta} = -1.20V$	(1 mark)
Write the formula was a second of the standard electric was a second o	ectrode potentials of for $Sn^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow Fe^{3^{+}}{}_{(aq)} + e^{-} \rightarrow V^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow Br_{2(aq)} + 2e^{-} \rightarrow strongest oxidizing against the section of th$	our half-reaction $Sn_{(s)}$ $Fe^{2^+}{}_{(aq)}$ $V_{(s)}$ $2Br^-{}_{(aq)}$ eent.	ons are: - $E^{\theta} = -0.14V$ $E^{\theta} = +0.77V$ $E^{\theta} = -1.20V$ $E^{\theta} = +1.07V$	(1 mark)
Write the fo	ectrode potentials of for $Sn^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow Fe^{3^{+}}{}_{(aq)} + e^{-} \rightarrow V^{2^{+}}{}_{(aq)} + 2e^{-} \rightarrow Br_{2(aq)} + 2e^{-} \rightarrow strongest oxidizing against the section of th$	our half-reaction $Sn_{(s)}$ $Fe^{2^+}{}_{(aq)}$ $V_{(s)}$ $2Br^-{}_{(aq)}$ eent.	ons are: - $E^{\theta} = -0.14V$ $E^{\theta} = +0.77V$ $E^{\theta} = -1.20V$ $E^{\theta} = +1.07V$ The memical cell construct	

200					
160					
water					
Solubility g/100g water			/		
Solubilit 80					
40					
0	20	40 Temperatu	60 re °C	80	100
Determine the sol	lubility of pot			(1	mark)
Determine the model 4.0 and density of				n nitrate at 50°0 2 marks)	C. $(K = 39.0, O = 39.0, O = 39.0)$
					. (

b) Other than galvanisation, name 2 methods of preventing rusting.	(1 mark)
c) State the use of the mixture of hydrazine with oxygen.	(1 mark)
18. a) Name 2 gases that are collected during fractional distillation when the ten raised from -200°C to -185°Cof the distillation chamber. (1 mark)	
b) Name 2 gases that are removed at the temperature between 25°C and -25°	°C (1 mark)
c) Why is it necessary to remove the gases named in (b) above before the co	
19. The structure of protein is shown below. Study it and answer the questions the following structure of protein is shown below. Study it and answer the questions the following structure of the monomer that undergoes polymerization to form	
b) Which type of polymerization is the formation of protein? Explain.	(2 marks)

Excess ZnO 1. Warm 2. Filter White Solid filtrate	Heat Strongly
Solution K Identify:	Brown gas + Gas M (3 marks)
b) Solid L c) Gas M 50cm ³ of oxygen gas diffused through a porous plu ulphur (IV) oxide to diffuse through the same plug	

• • • •										
23.	When excess a bleaching ag		bbled thro	ugh dilut	te sodiu	m hydr	oxide so	lution th	he resulti	ng solution acts as
••••	b) Explain h	ow the resulting s	olution act	s as a ble	eaching	agent.		(2	2 marks)	
• • •		e can be used to day calcium oxide i	lry ammoni	ia gas.						
• • • •		drying agent for h			•••••					
25.	a) Explain wi	hy it is not advisa ric(VI) acid.	ble to prepa	are a san	nple of		(IV)oxid 2 marks)		barium c	earbonate and
	b) State a met	thod that can be u	sed to colle	ect dry ca	arbon(I	V)oxide	gas. Gi		ison. mark)	
26.	Study the info	ormation in Table	3 and use i	it to ansv	wer the	question	ns that fo	ollow.	Cl	

Elements	Na	Mg	Al	Si	P	S	Cl
Atomic Numbers	11	12	13	14	15	16	17

	Atomic radii(nm)	0.157	0.136	0.125	0.117	0.110	0.104	0.099	
(a) Explain the trend in atomic radii from sodium to chlorine. (1 mark)									
(b) Explain ho	(b) Explain how the chloride of aluminium differs from those of other metals in the period. (2 marks)								
27. When solid m	agnesium carbonate v	vas adde	ed to a so	olution o	of hydro	gen chl	oride in	methylb	enzene, there was
no apparent re	eaction. On addition o	f water	to the re	sulting 1	nixture,	there w	as vigor	ous effe	rvescence.
Explain these	observations		(2	marks)					
		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	·••••
		••••••	••••••	•••••	•••••	••••••	•••••		••••
• • • • • • • • • • • • • • • • • • • •			••••••	•••••	•••••	•••••	•••••		
			•••••	•••••			•••••		
			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••		

The Last Printed Page

SERIES 13

· • • • • • • • • • • • • • • • • • • •	State Graham's law o			d mass of a gas. (1 mark)
	One litre of hydroger gas at 25°C and 736n	mmHg. (H = 1)	(3 mark	the mass of 2.56 litres of hydross)
	w a well-labelled dia	gram to show how a dry s	ample of sulphur (3 mark	(IV) oxide can be prepared in the
	-	de range of applications.		(2 marks)
(b) I	Uranium has three ra	dioisotopes.		
	Isotope	U-234	U-235	U-238
	% Abundance	0.01	0.72	99.27
•	Which of these isotop	pes has the longest half-lif	e?	(1 mark)
carri		ye used to make blue jean	s. Number of spots	rmed when chromatography wa
		1		
D	-)	
B C D	Which is the most ap	5 1 0)	y of denim dye? Give a reass)

1 For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

5.	Magnesium hydrogen carbonate causes temporary water hardness. (a) Describe how temporary water hardness is formed.	(2 marks)	
•••••	(b) Write an equation for softening hard water by addition of ammonia	solution.	(1 mark)
6.	Reaction rate can be determined by measuring how fast reactants are co formed. (a) State how a decrease in temperature affects the rate of reaction. (1 m		w fast products are
	(b) Sketch two curves on the same axis to show the volume of oxygen p of hydrogen peroxide, one with a catalyst and the other without a ca (2 marks)		e decomposition
7.	Using a diagram, illustrate the setup for an experiment to demonstrate C	Charles's Law. (3 marks)	
8.	Describe an experiment to prepare a sample of sodium chloride from so hydrochloric acid. (3 m	narks)	
9.	(a) Define latent heat of vaporization.	(1 mark)	
(b) Ex	plain why the temperature remains constant when ice is melting. (2 m	narks)	
	Classify the following substances as elements, compounds, or mixtures: (i) Water		
11	. (a) Explain the term 'hydrated salt'.	(1 mark)	

(b) Describe the procedure for testing the presence of chloride ions i (2 marks)	n a solution.
12. (a) Define isomerism.	(1 mark)
(b) Draw and name all the positional isomers of butanol.	(2 marks)
 13. Given the reaction: Mg(s)+CuSO₄(aq)→MgSO₄(aq)+Cu(s) (a) Identify the reducing agent. 	(1 mark)
(b) Explain the change in oxidation states for magnesium and copper. (
14. (a) Describe how you would test for the presence of hydrogen gas.	(2 marks)
(b) State one use of hydrogen in the field of metallurgy.	(1 mark)
15. (a) Give the difference between the bleaching action of chloride and (2 marks)	_
(b) Give the advantage of the bleaching action of chlorine over that (1 mark)	=

³ For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

16. (a) Explain why elements in the same group have similar chemical proj	perties. (2 marks)
(b) Explain why noble gases are chemically inert.	(1 mark)
17. (a) Define the term molar mass.	 (1 mark)
(b) 7.467g of a gas Q has a volume of 5.6dm ³ at r.t.p. Calculate its mol r.t.p = 24,000 cm ³) (2 marks)	ar mass. (Molar gas volume at
18. Study the flow chart below and answer the following questions. Black solid R	(1 mark)
(c) Write the equation for the formation of white precipitate T.	 (1 mark)
19. (a) What is a fuel?	 (1 mark)

⁴ For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

(c) State two environmental effects of fuels and suggest two Effects	alternative energy sources. (2 marks)
Alternative energy sources	
20. Describe an experiment to show that air is necessary for com	abustion. (3 marks)
21. The set up below was used to prepare a hydrocarbon, Study	it and answer the following questions.
Gas Solid X	Y Water
(a) Name: (i) Solid X	(1 mark)
(i) Solid X(ii) Gas Y(b) What is the function of the sand in the set-up?	
(c) Write an equation for the formation of gas Y.	(1 mark)
22 (a) Explain why water is considered a universal solvent (2 n	narks)

5 For more resources and marking schemes contact us on **0724351706** or visit our website www.goldlitekcserevision.co.ke And Download

e whether the re	ollowing substances and soluble or insolu	ible in water. (1 mark)
` '	Silver bromide	
, ,	Cobalt (II) chloride ram below and answer the following ques	
study the diagr	the following ques	itions.
		connecting
		wire
bulb —	<u> </u>	switch
)
		graphite rod
graphite rod — (anode)		(cathode)
(anode)		solution to be tested
(a) What does t	the set-up illustrate?	(1 mark)
(a) What does	are set up musicute.	(Timili)
solution.	observation on the bulb when the switch	is closed if the solution to be tested is un (1 mark) (1 mark)
solution. (c) Give the months. The table below		(1 mark) (1 mark)
solution. (c) Give the months The table below elements.	eaning of the term cathode. v shows some ions of elements J, K, L an	(1 mark) (1 mark)
solution. (c) Give the months. The table below elements. Ion	eaning of the term cathode. v shows some ions of elements J, K, L an Atomic number	(1 mark) (1 mark)
solution. (c) Give the months The table below elements.	eaning of the term cathode. v shows some ions of elements J, K, L an	(1 mark) (1 mark)
solution. (c) Give the model. The table below elements. Ion J ²⁺ K ³⁻ L ⁺	eaning of the term cathode. v shows some ions of elements J, K, L an Atomic number 12	(1 mark) (1 mark)
solution. (c) Give the months. The table below elements. Ion J ²⁺ K ³⁻	eaning of the term cathode. v shows some ions of elements J, K, L an Atomic number 12 13	(1 mark) (1 mark)
solution. (c) Give the model. The table below elements. Ion J ²⁺ K ³⁻ L ⁺	eaning of the term cathode. v shows some ions of elements J, K, L an Atomic number 12 13 3 17	(1 mark) (1 mark)
solution. (c) Give the model. The table below elements. Ion J ²⁺ K ³⁻ L ⁺ M ²⁻ (a) Select two selections.	eaning of the term cathode. v shows some ions of elements J, K, L an Atomic number 12 13 3 17 stable ions.	(1 mark) (1 mark) d M. (Letters are not actual symbols of t
solution. (c) Give the model. The table below elements. Ion J ²⁺ K ³⁻ L ⁺ M ²⁻ (a) Select two selections.	eaning of the term cathode. v shows some ions of elements J, K, L an Atomic number 12 13 3 17	(1 mark) (1 mark) d M. (Letters are not actual symbols of t

(b) Hydrogen is a reducing agent. Write an equation for the reaction that to is passed over heated copper (II) oxide in a combustion tube in the label (1 mark)	
26. Esters can be made by the reaction of many different types of alkanols (alc (carboxylic) acids.	cohols) and alkanoic
Draw the structural formula of the esters formed from: (i) Methanol and ethanoic acid.	(2 marks)
(ii) Ethanol and butanoic acid.	
27. Give three differences between a permanent chemical change and a tempo (3 marks)	orary physical change.

	ERIES 14	
1.	Describe an experimental procedure that can be used to extract oil from nut seeds.	
2.		(1mk)
3.	Ethanol and dimethyl ether have both molecular formulae C ₂ H ₆ O. Explain why eth	nanol boils at
	78.2°C and dimethyl ethen has a boiling point of -24°C.	(2mks)
		•••••
1	In an experiment, ammonium chloride was heated in a boiling tube with a moist rec	d and blue
4.	litmus paper at the mouth of tube. State and explain the observation made.	(3mks)
	names paper at the mouth of tube. State and explain the observation made.	` ′
_		
5.		. Study it and
	answer the questions that follow:	
	Biogas Ice old Calayin	pirator hydroxide
	water	
- \	Charles and a large for the man dead formed in talk W	(1 1-)
a)	State one chemical test for the product formed in tube Y.	(1mk)
L\	Ctate and avalous the absorbation which would be used in 7	(21)
U)	State and explain the observation which would be made in Z.	(2mks)
6.	The plots below were obtained when the atomic radii of some elements in group I a	and II were

6. The plots below were obtained when the atomic radii of some elements in group I and II were plotted against atomic number.

a) Explain the trends shown by Li, Na and K.	(1mk)
b) Explain why the atomic radius of elements Be, Mg and Ca are lower than those of IK.(2mks)	

7. (a) Ammonium ion has the following structure

Label on the structure:

8.

(i) Covalent bond	(1mk)
(ii) Dative bond	(1mk)
(b) Why does an ammonia molecule form an ammonium ion with a proton?	(1mk)
Hydrogen sulphide is highly toxic and flammable gas and is usually prepared in the chamber.	e flame
(a) Name any two reagents that can be used to prepare the gas in the laboratory.	(1mk)
(b) Other than vulcanization of rubber. Identify any other use of sulphur.	(1mk)

10. (a) The electronic arrangement of the ion of element Q is 2,8,8. If the formula of the ion is Q ³ -State the group and period to which Q belongs.	•
Group	
Period	
12. Study the flow chat below and answer the questions that follow.	
Concentrated HCI acid	
Chanber 2	
Chamber 1 Aqueous	
Chamber 1/2 Aqueous sodium hydroxide	
Soundar, Madroxide	

(a) Identify solid B.	(1mk)
(b) Name the type of reaction that takes place in chamber 2.	(1mk)
(c) Write an equation for the reaction that takes place in chamber 1.	(1mk)

a) On the axes provided, draw a labelled energy level diagram for the dissolution process of

(2mks)

13. The molar enthalpy of solution for potassium hydroxide is -42kJ/mole.

potassium hydroxide.

b) Calculate the enthalpy change when 5.6g of potassium hydroxide is completely dissolved in water (K=39, O=16, H=1) (2mks)

b) The diagram below shows the structure of one of the allotropes of carbon. (i) Identify the allotrope. (1mk) (ii) State two properties of the above allotrope and explain how it is related to its structure.(2mks) 15. Why is dilute nitric acid not used to prepare hydrogen gas. (1mk) 16. Starting with copper (II) oxide, describe how you can prepare copper (II) sulphate crystals.(3mks) 17. (a) State Boyles' Law. (1mk)	a) What is meant by allotropy.	(1mk)
(ii) State two properties of the above allotrope and explain how it is related to its structure.(2mks) 15. Why is dilute nitric acid not used to prepare hydrogen gas. (1mk) 16. Starting with copper (II) oxide, describe how you can prepare copper (II) sulphate crystals.(3mks)	b) The diagram below shows the structure of one of the allotropes of carbon.	
structure.(2mks) 15. Why is dilute nitric acid not used to prepare hydrogen gas. (1mk) 16. Starting with copper (II) oxide, describe how you can prepare copper (II) sulphate crystals.(3mks)	(i) Identify the allotrope.	(1mk)
16. Starting with copper (II) oxide, describe how you can prepare copper (II) sulphate crystals.(3mks)		o its
crystals.(3mks)	Why is dilute nitric acid not used to prepare hydrogen gas.	(1mk)
		phate
17. (a) State Boyles' Law. (1mk)		
	7. (a) State Boyles' Law.	(1mk)

	volume of the gas at -25°C and 780mmHg pressure.	(2mks)
		•••••
•	ated sample of calcium sulphate CaSO ₄ . nH ₂ O was heated until all wing data was recorded.	I the water was
Mass of cruci	ible = 30.296g ible + hydrated salt = 33.111g ible + unhydrous salt = 32.781g	
$H_2O=18$)	e empirical formula of the hydrate salt (Relative formula mass of	(3mks)
When excess was found to (Na=23, Pb=2	lead (II) nitrate solution was added to a solution of sodium chloric weigh 5.56g, determine the amount of sodium chloride in the solu 207, Cl=35.5, N=14, O=16)	de, the precipit
When excess was found to (Na=23, Pb=2	lead (II) nitrate solution was added to a solution of sodium chloric weigh 5.56g, determine the amount of sodium chloride in the solu 207, Cl=35.5, N=14, O=16) below shows how sulphur is extracted from sulphur deposits.	de, the precipit
When excess was found to (Na=23, Pb=2) The diagram	lead (II) nitrate solution was added to a solution of sodium chloric weigh 5.56g, determine the amount of sodium chloride in the solution, Cl=35.5, N=14, O=16) below shows how sulphur is extracted from sulphur deposits.	de, the precipit
When excess was found to (Na=23, Pb=2) The diagram A	lead (II) nitrate solution was added to a solution of sodium chloric weigh 5.56g, determine the amount of sodium chloride in the solu 207, Cl=35.5, N=14, O=16) below shows how sulphur is extracted from sulphur deposits.	de, the precipit
When excess was found to (Na=23, Pb=2) The diagram A	lead (II) nitrate solution was added to a solution of sodium chloric weigh 5.56g, determine the amount of sodium chloride in the solu 207, Cl=35.5, N=14, O=16) below shows how sulphur is extracted from sulphur deposits. Culphur deposits process represented above.	de, the precipit ation. (3mks)

(1mk)		- 	
(a) Write	the formula of the complex ion ir		Colourless solution P
(b) Write	an equation for the reaction in ste	ер IV.	(1mk)
	an equation for the reaction in ste		(1mk)
	rell labelled diagram used to prepa		
23. (a) What	are Isotopes.		(1mk)
	ent Q (not the actual symbol of the If the relative atomic mass of Q i	· · · · · · · · · · · · · · · · · · ·	
	m is extracted from aluminium or than the cost of electricity, give a		
	late the mass of aluminium obtair =96500C, Al=27)	ned when a current of 20A	(3mks)

25. (a) Name two ores of iron.	(2mk)
(b) Give the name of the suitable method used in extracting iron from	the ore. (1mk)
(c) Name one impurity present in pig iron and state one effect of the in property of iron.	(2mks)
26. The consentration of a solution of aluminium sulphate is 0.02M. How contained in 150cm ³ of the solution. (Avogadros constant 6.0 x 10 ²³)	(3mks)
 27. At room temperature, nitrogen (iv) oxide exists as an equilibrium mixt	
oxide. $NO_{2(g)}$ \longrightarrow $N_2O_{4(g)}$ \triangle H is -ve (Yellow)	
State the observation made when the mixture is heated. Give a reason.	
28. Define solubility.	(1mk)

CF	B.	IES	1	5

1.	An atom of element A has mass number 23 and 12 neutrons. (a) Write the electron arrangement of the atom	(1 mark)
	(b) State the period and group to which element A belongs Group Period	(½ mark) (½ mark) (1 mark)
2.	(a) What is an indicator?	(1 mark)
	(b) Name the indicator which can be used to determine the pH value of ler a reason for your answer.	mon juice. Give (2 marks)
3.	At 20° C, NO_2 and N_2O_4 gases exist in equilibrium as shown in the equati $ \begin{array}{ccc} \mathbf{2NO}_{2(g)} & \mathbf{N_2O}_{4(g)}; \ \Delta \mathbf{H} = -\mathbf{ve} \\ \mathbf{Brown} & \mathbf{pale\ yellow} \\ \end{array} $ State and explain the observation that would be made when; (a) A syringe containing the mixture at 20° C is immersed in ice-cold wa	on below:
		(1 ½ marks)
	(b) The volume of the gaseous mixture in a syringe is reduced.	(1 ½ marks)
4.		•••••
	H CI (a) Draw the structure of its polymer that contains two monomers.	
	(b) A sample of the polymer formed from the monomer has a molecular molecula	1; Cl=35.5). (2 marks)
5.	(a) Name the gaseous pollutant produced during Contact Process (b) Describe how scrubbing of the gas named in (a) above is done to reduce	(1 mark) ce pollution. (1 mark)
6.	Use the table below to answer the questions that follow. (The letters are no symbols of the elements)	

Element	Atomic number	Boiling point (°C)
A	19	774
В	11	890
C	17	-35
D	13	2470
E	14	2360

(a) Identify an element that exists as a gas at room temperature. Explain. (2 marks)

(b) Using dots (•) and crosses(x) draw the bonding formed when element A and C react to form a compound. (1 mark)

7. Lead (II) chloride can be prepared from lead (II) carbonate using the following procedure:

.....

- Step 1: Add excess lead (II)carbonate to dilute nitric (v) acid.
- Step 2: Filter to obtain lead (II)nitrate solution as filtrate.
- Step 3: Add sodium chloride solution to the filtrate.
- Step 4: Filter off to obtain lead (II)chloride as residue.
- Step 5: Wash the lead (II)chloride residue with distilled water dry between filter papers.

Why are the following steps necessary?

- (a) Using **excess** lead (II)carbonate used in step 1 (1 mark)
- (b) Using dilute nitric(V) acid instead of sulphuric (VI) or hydrochloric acid in step 1 (1 mark)

- (c) Washing the lead (II)chloride residue with distilled water in step 5 (1 mark)
- 8. Phosphorus is in group (V) of the periodic table. Explain the following observations.

 (a) Phosphorus exhibits two melting points.

 (1 mark)

(b) The chloride of phosphorus forms musty fumes in damp air. (2 marks)

9. The apparatus below was used to separate a mixture of water and kerosene.

(a) State **two** properties of the liquids that make it possible to separate them using such apparatus. (1 mark)

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

- (b) Name the liquids **A** and **B**. (1 mark)
- (c) Give the name of the above method of separation. (1 mark)

10. The set up below was used to obtain a sample of iron.

.....

(a) Write **two** equations for the reactions which occur in the combustion tube.

(2 marks)

- (b) Identify Gas T (1 mark)
- 11. Chlorine gas was bubbled through potassium iodide solution.
 - (a) State the observation that would be made. (1 mark)
 - (b) Write the ionic equation for the reaction that took place in (a) above. (1 mark)

.....

- (c) Identify the oxidizing agent in the ionic equation (b) above. (1 mark)
- 12. Consider the reaction chain below.

$$^{214}_{83}$$
Bi \xrightarrow{I} $^{210}_{81}$ Ti \xrightarrow{II} $^{210}_{82}$ Pb \xrightarrow{III} $^{210}_{83}$ Bi \xrightarrow{IV} $^{210}_{84}$ Po \xrightarrow{V} $^{206}_{82}$ Pb

- (a) Identify the particles emitted in
 - (i) I (½ mark)

.....

(ii) II (½ mark)

- (b) Write the nuclear equation for the reaction that takes place in V. (1 mark)
- (c) State one environmental effect of radioisotopes. (1 mark)
- 13. 25cm³ of 0.1M sulphuric (VI) acid required 20cm³ of sodium carbonate solution for complete neutralization. Calculate the concentration of sodium carbonate in moles per litre. (3 marks)
- 14. Study the flow chart **below**.

......

19. Below are properties of some elements in period 3 of the periodic table

Element	Na	Mg	Al
Atomic radius (nm)	0.152	0.136	0.125
Melting points (^o C)	97.8	650	660

(a) Explain the trend in the melting points (2 marks)

(b) Why is there a decrease in size of the atoms from Na to Al? (1 mark)

20. The flow chart below shows steps used in the extraction of zinc from one of its ores.

(a) Name the process that is used in step 2 to concentrate the ore. (1 mark)
(b) Write an equation for the reaction which takes place in step 3. (1 mark)

(c) State one use of zinc other than galvanizing. (1 mark)

21. (a) What is the type of the heat change that occurs when one mole of a substance burns completely in oxygen? (1 mark)

(b) Methane reacts with oxygen according to the equation given below. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $\Delta H = 890 \text{ kJ mol}^{-1}$ Calculate the volume of methane which would produce 111.25 kJ when completely burnt. (Molar volume of a gas = 24 litres.) (2 marks)

.....

.....

22. (a) State the Graham's law diffusion. (1 mark)

(b) The molar masses of gases W and X are 16.0 and 44.0 respectively. If the rate of diffusion of W through a porous material is 12cm³s⁻¹ calculate the rate of diffusion of X through the same material. (2 marks)

23. Coal, oil and natural gas are major sources of energy. They are known as fossil. Hydrogen is also a source of energy.

	(a) State two reasons why hydrogen is a very attractive fuel compared to f	(2 marks)
		• • • • • • • • • • • • • • • • • • • •
	(b) State one disadvantage of using hydrogen fuel instead of fossil fuels.	
24.	(a) Other than salt, identify two substances that are formed when an acid recarbonate.	
		(1 mark)
	(b) When hydrogen chloride gas is dissolved in water, the solution formed litmus paper red but there is no effect on blue litmus paper, when the gas is methylbenzene.	s dissolved in (2 marks)
25.	When burning magnesium ribbon is introduced into a gas jar full of nitrogen, it coproducing a greenish yellow powder. (a) Write an equation for the reaction between nitrogen and magnesium.	
	(b) Explain why magnesium continues to bum in nitrogen but sulphur does not.	(2 mortes)
	(b) Explain why magnesium continues to built in introgen but sulphur does not.	` ′
	(c) State one use of nitrogen.	(1 mark)
		• • • • • • • • • • • • • • • • • • • •
26.	Describe how the presence of calcium ions in a water sample can be tested laboratory.	in the (3 marks)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
27.	(a) Name the particles that are responsible for electrical conductivity in: (i) Solids	(½ mark)
	(ii) Both melts and aqueous solution	(½ mark)
	(b) Give two properties of graphite that make it suitable for use as an elect	rode. (2 marks)
	(c) State one precaution that is necessary when carrying out electrolysis of lead (II) bromide	molten (1 mark)

SERIES 16

1. The set-up below shows the catalytic oxidation of ammonia in the laboratory.

(a) State and explain the observation made.	(2marks)
(b) Write a chemical equation for the first reaction taking place in the co	nical flask. (1 mark)

- 2. When sulphur is heated in a boiling tube in the absence of air, the yellow crystals melts into a golden yellow mobile liquid at 113°C. The liquid changes at 180°C into a dark brown liquid that is very viscous. Heating at 400°C produces a brown less viscous liquid.)
 - (a) Draw the molecular structure of sulphur in the yellow liquid. (1 mark)

(b) Name two allotropes of sulph		(2 marks)
3. Iron (III) oxide was found to be of pure sample of iron (III) oxide ca	contaminated with copper in be obtained.	(II) sulphate. Describe how a (3 marks)
	e it to answer the question	
a) Draw the wooden splint at the en quickly.	d of the experiment. If it v	vas slipped, then removed (1 mark)
b) Explain the appearance of the wo	oden splint in (a) above.	(2 marks)
5. Identify the acid in the following $NH_4^+(aq) + OH^-(aq) \rightarrow NH_3$ (aq	$)+H_{2}O(l)$	(2 marks)

(1 mark)

6. State **two** methods that can be used to remove water hardness.

		(1 mark)
(b) In an experiment to determ	ine the solubility of solid Q in wat	er at 50°C, the follow
data was obtained.		
Mass of empty evaporating		
1 0	saturated solution = 62.5 g	
Mass of evaporating dish +	dry solid $Q = 50.4 \text{ g}$	
Use the data to calculate the so	lubility of solid Q.	(2 marks)
8. What is meant by lattice energy	y?	(1 mark)
	to calculate the heat of solution of	calcium chloride.
	to calculate the heat of solution of	calcium chloride. (2 marks
	to calculate the heat of solution of -2195 kJ/mol	
(b) Use the information below		

	nark)
(b) A gas occupies 500 cm ³ at 37°C and 100,000 Pa. What will be its vo	olume at 10°C and
10. Describe how a solid sample of copper (II) carbonate can be prepared s copper metal. (3 r	tarting with
topper mean. (e -	
11. (a) Give the name of the 3 rd member of the alkene homologous series.	(1 mark)
(b) Draw and name all isomers of butane.	(2 marks)

13. (a) A molecule of a compound has a mass of 7.34 x 10^{-23} g. Calculate its $L = 6.023 \times 10^{23}$	s RMM. (2 marks).
(b) State Avogadro's law.	(1 mark)
14. The diagram below represents a set of apparatus used to study the prope water.	rties of chlorine
sunlight — gas X chlorine water	
Diagram A Diagram B	

12. Draw a diagram to illustrate the electrolysis of molten aluminium oxide. (3 marks)

(b) Write an equation for the reaction that produces gas X.

(1 mark)

(1 mark)

(a) Name gas X.

(c) Give one use of chlorine. (1)	 mark)
15. (a) What is the meaning of polymerization? (1)	mark)
(b) Draw and name the structure of polymer formed from propene. (2	marks)
16. A secondo of 0.62 of local accordance of discolar dis	.: 1 4 - C 1 - J
16. A sample of 0.63g of lead powder were dissolved in excess nitric (V) a (II) nitrate solution. All the lead (II) nitrate was then reacted with sodiu solution.	ım sulphate
(a) Write an ionic equation for the reaction between sodium sulphalead (II) nitrate solution.	(1 mark)
(b) Determine the mass of the lead salt formed in the reaction in (a) above.	(2 marks)
(Pb = 207, S = 32, O = 16)	

17. For each of the following experiments, give the observations and the type of change that occurs (*temporary physical or temporary chemical*) (3 marks)

Experiment	Observation	Type of change
A few drops of water are added to small amount of anhydrous copper (ii) sulphate		
A few crystals of iodine are heated gently in a test tube		

18	water and ethanol?	a mixture of
(i)	Fractionating column	(1 mark)
(ii)	Glass beads in the fractionating column	(1 mark)
(iii)	State any one application of fractional distillation process.	(1 mark)
	. (a) Carbon (IV) oxide does not support combustion but burning magnesiu burn in carbon (IV) oxide. Explain.	(2 marks)
(b)	Write an equation for the reaction in (a) above.	(1 mark)

	$\oplus \oplus \oplus \oplus \oplus$.	KEY				
	(+) (+) (+) (+)	\oplus	+ Chai	rged nuc	leus		
	\oplus \oplus \odot	\oplus	– An e	electron			
a) State the	e type of bonding	that exi	ists in T.			(1 mark)	
b) In which	n group of the peri	iodic ta	ble does e	element '	T belong	g? Give a reason.	(2 marks)
	•••••	•••••	•••••	••••••	••••••		
21. Bel	ow are pH values	of som	e solutior	18.	•••••		
	Solution	Z	Y	Х	W		
	рН	6.5	13.5	2.2	7.2		
i) Which	solution is likely	to be				J	
	eidic rain						(1 mark)
II. F	Potassium hydrox	ide	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •			(1 mark)
ii) Substand	ce V reacted with	both so	olutions Y	and X.	What is	the nature of V.	(1 mark)
			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
22. Dra	w a set up that ca	n be us	ed to prep	oare dry	hydroge	n gas in the labora	tory. (3 marks)

20. The diagram below is a section of a model of the structure of element T.

23. The grid below represents a part of the periodic table. Study it and answer the questions that follow. Letters are not actual symbols of elements.

F	I			M		0	
G	J	K	L		N	P	
Н							Q

(a) How does the atomic radius of K compare to that of L? Explain.	(2 marks)
(b) Element R forms an oxide of the formula RO ₂ and belongs to period 2.	Indicate in the
grid the position of R.	(1 mark)
(c) Write down the formula of the compound formed between K and P.	(1 mark)

24. When Na₂CO₃.XH₂O is heated strongly it loses 63.20% of its mass. Calculate the value

(3marks)

of **X**. (Na=23.0, C=12.0,O=16.0,H=1.0)

25. (a) Give the meaning of the term prescription.	(1 mark)
(b) A patient was given tablets with prescription 2 x 3 on the envelope. C the patient should take the tablets.	Clearly outline how (1 mark)
(c) State two long-term effects of drug abuse.	(1 mark)
26. Describe a chemical test that can be used to distinguish between aque sodium carbonate and sodium hydrogen carbonate.	
27. To which homologous series do the following general formulae confo	
C_nH_{2n}	
C_nH2_{n-2}	
C_nH_{2n+2}	
THIS IS THE LAST PRINTED PAGE	

SERIES 17

1. The samples of equal volumes of water were put in 100cm³ conical flasks and heated for 5 minutes on a Bunsen flame. It was observed that sample 1 registered a low temperature than sample II

- (a) Name flame I (1mk)

 (b) State one disadvantage of using flame I for heating (1mk)
- Study the diagram below and answer the questions that follow.The diagram shows the method used to separate component of mixture P

(a)	Name X .			(½mk)
(b)	What is the name given to the	ne method used in separation of	mixture P	(½mk)
(c)		nlet and outlet of water were int		(1mk)
(d)) Which physical property is	used to separate mixture P		(1mk)
3. Th	e table below shows the solu	bility of three solids P, Q, and R		
S	OLID	COLD WATER	HOT WATER	
P		Soluble	soluble	
Ç)	insoluble	insoluble	
R		insoluble	soluble	
Ho 	ow would you obtain pure sa	mples of R,P and Q		(2mks)
•••				
 4. Sta	ate one physical property that	t would suggest the presence of	each of the following ga	ses from
a l	eaking gas cylinder:			
a)	H_2S			(1mk)
b)	N ₂ O			(1mk)
c)	Cl ₂			(1mk)

5. The P ^H values	of some soluti	ons are g	iven belo	w					
$\mathbf{P}^{\mathbf{H}}$	14.0	1.0		8.0		6.5		7.0	
Solution	M	L		N		P		Z	
(a) Identify th	ne solution wit	h the low	est conc	entratio	n of hy	drogen	ion. Giv	e reaso	n for you
answer									(1mk)
	•••••					• • • • • • • • •			
		•••••				• • • • • • • • • • • • • • • • • • • •			
(b) Which sol	ution would b	e used as	an anti-	acid for	treating	g stom	ach upse	et. Give	reason for
your answ	ver								(1mk)
		•••••				• • • • • • • • • • • • • • • • • • • •			
		• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •			
6. The data below	w gives the ele	ctronic co	onfigurat	ion of so	me sele	ected at	oms and	ions	
Atom/ion		A ²⁺	В	C2-	D ²⁺	Е	F-	G ⁺	Н
Electronic c	onfiguration	2	2.4	2.8	2.8.8	2.8	2.8.8	0	2.8.2
(a) Select an a	tom that is a no	oble gas							(1mk)
•••••		•••••				• • • • • • • • •			
(b) What is th	e atomic numb	er of C ar	nd A						(1mk)
	•••••					• • • • • • • • •			
		• • • • • • • • • • • • • • • • • • • •				• • • • • • • • •			
(c) Select an e	lement that bel	long to gr	oup 2 an	ıd perioc	d four				(1mk)
		•••••				• • • • • • • • • • • • • • • • • • • •			
						• • • • • • • • •			
7. Helium is use	d instead of hy	drogen ir	n balloon	s for me	trologic	al rese	arch. Exp	olain	(1mk)
		• • • • • • • • • • • • • • • • • • • •							• • • • • • • • • • • • • • • • • • • •
8. Zinc metal an	d hydrochloric	acid reac	cts accord	ling to tl	he follo	wing e	quation		
$Zn_{(s)}$ + 2HCl (a	(q)	ZnCl _{2 (a}	$_{aq)} + H_{2(g)}$;)					
1.96g of Zinc	metal were rea	cted with	100cm ³	of 0.2M l	hydrocł	nloric a	cid		
a) Determine	the reagent th	at was in	excess						(2mks)
Zn=65.2; N	Molar gas volur	ne at s.t.p	22.4 lite	rs					

••••••			•••••
	e the total volume of hydrogen gas that was li		(1mk)
9. Give the IUF	AC names of the following compounds		(1mk)
(i) .CH ₃ CH ₂	CH ₂ CH CH ₃		
	CH ₃		
(ii) CH ₃ CH=	CHCl		(1mk)
10. 0.9g of potas	sium chloride and potassium carbonate mixt	ure completely reacted with 2	25cm³ of
0.2M hydroc	hloric acid		
(i) Write an	equation of the reaction which takes place		(1mk)
(ii) Determin	e the number of moles of the acid used		(1mk)
•••••			
(iii) Calculate	e the mass of potassium chloride in the mixture	e (K=39.0; C=12.0; O=16.0)	(1mk)
•••••			
	,		
11. Study the flo	w chart below and answer the questions that	follow	
	Metal M		
Dilute Hydrochlor	ic acid — C	olourlesss gas	
White ppt soluble in excess	Process I Ammonia Solution E Process 2	White ppt soluble in excess	
	solution added NaOH added drop wise drop wise		

	(i)	Identify metal M:	(1mk)
	(ii)	Colourless gas:	(1mk)
	(iii)	Write an equation that leads to the formation of white precipitate in process	(1mk)
12. a)	Defin	ne the term dynamic equilibrium	(1mk)
b) A re	action at equilibrium can be represented as	
		$2CrO^{2-}_{4[aq]} + 2H^{+}[aq]$ $Cr_{2}O7^{2}_{[aq]} + H_{2}O_{\{1\}}$	
		Yellow orange	
	State	and explain the observation made when NaOH is added to the equilibrium mixture	(2mks)
13. Fe	w drop	s of hydrochloric acid were added into a test tube containing lead {II} Nitrate solution	
	a) S	tate one observation made	(1mk)
		rite an ionic equation of the reaction that occurred in the test tube	(1mk)
14. A		ound of carbon, hydrogen and oxygen contains 57.15% carbon, 4.76% hydroge	
th	e rest	oxygen. If its relative molecular mass is 126, find its molecular formula. ($C = 1$	12, H = 1,
Ο	= 16)	(3:	mks)
•••			

a)	State	Grahams law of diffusion. (1mark)	
	b)	The rate of diffusion of sulphur(IV)oxide gas through a porous material is 40cm3s	1.
		Calculate the rate of diffusion of carbon(IV)oxide gas through the same porous	
		material $(S=32, O=16, C=12)$ (2 marks))
			•
			•
15. a)	Disti	nguish between strong and concentrated acid	(1mk)
•••••	• • • • • • •		•••••
•••••	•••••		•••••
•••••	•••••		•••••
•••••	•••••		
b). A so	lution of ammonia in methylbenzene has no effects on red litmus paper while	a
	solut	tion of ammonia in water turns red litmus paper blue. Explain	(2mks)
16. N	ame tl	ne process which takes place when	
	i.	Iodine changes directly from solid to gas	(1mk)
			, ,
	ii.	$Fe^{2+}_{(aq)}$ changes to $Fe^{3+}_{(aq)}$	(1mk)
	iii.	White sugar changes to black when mixed with concentrated sulphuric (VI) ac	cid (1mk)

am	nmonium chloride is formed	
a) :	State the method of separation used	(1mk)
b)	Write an equation showing how lime is slaked	(1mk)
c)	Name the product recycled in the above process	(1mk)
	e diagram below is a section of a model of the structure of element K	(1mk)
	In which group of the periodic table does element K belong. Give a reason ady the diagram below and answer the questions that follow Sodium metal cold water	(2mks)
a)	State two observations made in the above experiment when sodium react with wat	er (2 mks)

17. In the last stage of the solvay process, a mixture of sodium hydrogen carbonate and

b)	Write	e a chemical equation for the reaction that takes place	(1mk)
	Expl	ain why permanent hardness in water cannot be removed by boiling	(2mks
(b)	•••••	ne two methods that can be used to remove permanent hardness from water	(1mk
22.	Write	e an equation to show the effect of heat on the nitrate of: - Potassium	(2mks)
23. Stı	(ii) ady th	Silver e diagram below and use it to answer the questions that follow.	
		Mixture of Copper II Oxide and Carbon Gas P Heat	
(a) State	the observation made in the combustion tube.	(1mk)
(b) Writ	e an equation for the reaction that took place in the combustion tube.	(1mk)
(c)) Nam	e gas P	(1mk)

24. Sulphur exists in tw	vo crystalline forms.	
a) Name one crystalli	ine form of Sulphur.	(1
b) State two uses of S	ulphur.	(2
ond energies for some l	bonds are tabulated below: -	
BOND	ROND ENERCY KI/mal	\neg
DOND	BOND ENERGY KJ/mol	
H - H	436	
C = C	610	
C- H	410	
C - C	345	
he bond energies to es	timate the enthalpy for the reaction.	(3mks)
$C_2H_{4(g)} + H_{2(g)}$	\longrightarrow $C_2H_{6(g)}$	
		• • • • • • • • • • • • • • • • • • • •

26. Study the set up below and answer the questions that flows
Switch Carbon electrodes A thin bromide
State all the observations that would be made when the circuit is completed (3mks)
27. Describe how solid samples of salts can be obtained from a mixture of lead (II) chloride, sodium chloride and ammonium chloride. (3mks)
28. The diagram below represents a set-up used to prepare oxygen gas.
Water Solid Q

	(a)	Name substance Q.	(1mk)
• • • • •	(b)	Complete the set-up to show how oxygen gas is collected.	(1mk
	(c)	Write the equation for the reaction that occur.	(1mk)

9.	Two reagents that can be used to prepare chlorine gas are potassium manganate	
((VII) and hydrochloric acid.	
	(a) Write an equation for the reaction.	(1mk)
(c) Give the formula of another reagent that can be used instead of potassium manganate (VII).
		(1mk)
	(a) Using an aquation illustrate how shlaring blooch salaured substances	 (2mlca)
	(c) Using an equation illustrate how chlorine bleach coloured substances.	(2mks)
		••••••

THIS IS THE LAST PRINTED PAGE.

SERIES 18

1. The diagram below shows the heating curve of a pure substance. Study it and answer the questions that follow.

- a) What are the physical states of the substances at point W and Y. (2mks)
- b) Explain why the temperature remains constant between point B and C. (2mks)
- 2. Consider the reaction below.

 $Cr_2O_7(aq) \longrightarrow CrO^{2-}_4(aq) + 2H^+(aq)$

Using oxidation numbers explain whether the above reaction is a redox reaction or not. (3mks)

3. Dry sulphur (IV) oxide was passed through two pieces of coloured silk both in a gas jar as shown in the diagram.

a) State the observation in the gas jars.

(2mks)

b) Write equations to explain your observations in flask II.

(2mks)

4. The equations show some reactions. Use the equations to answer the following questions.

CH₃CH₂OH Step I CH₂=CH₂ Step II CH₃CH₃

a) Name the type of reaction in step I and II.

(2mks)

b) Explain why ethane burns with a more smoky flame than ethane.

(2mks)

5. The third number of the alkenes is converted to its corresponding saturated hydrocarbon by hydrogenation. Using the bond energy values given below, answer the questions that follow.

Bond	Bond energy kJ/mol
H-H	432
C=C	610
C-C	346
C-H	413

Determine the enthalphy change for the conversion of the third member of the alkenes to its corresponding saturated hydrocarbon by hydrogenation. (3mks)

6. a) Graphite is a non metal most commonly used as an electrode. State two properties that make it suitable for use as an electrode. (2mks)

- b) Graphite is an allotrope of carbon. Distinguish between allotropes and isotopes. (2mks)
- 7. Use the information in the energy cycle below to answer the questions that follow.

i. What is the name given to the energy changes?

(3mks)

- ΔH_{1-}
- ΔH_{2-}
- ΔH_{3-}
- ii. Given H_1 = 2237KJ/Mol and ΔH_2 = -2378KJ/Mol, calculate the value of ΔH_3 . (1mk)
- 8. The 1st 2nd and 3rd ionization energies in KJ/Mol of element G and R are given below.

Element	1 st I.E	2 nd I.E	3 rd I.E
G	520	7,300	9,500
R	420	3,100	4,800

i. Define the term 1st ionization energy.

(1mk)

- ii. Apart from the decrease in energy levels, explain the big difference between the 1^{st} and 2^{nd} ionization energies. (1mk)
- iii. Calculate the amount of energy for the process.

(1mk)

$$R(g) \longrightarrow R(g) + 3e$$

9. When solid Zinc carbonate was added to a solution of hydrogen chloride in methylbenzene, there was no observable change. On addition of some water to the mixture to the mixture there was effervescence. Explain theses observation. (2mks)

10. a) The diagram below represents an incomplete set-up of apparatus that can be used to prepare dry carbon (iv) oxide gas. Complete the diagram and answer the questions that follow.

- i. Write an equation for the reaction that takes place. (1mk)
- ii. Name liquid Z. (1mk)
- iii. State two advantages of using 'dry ice' over ordinary ice as a refrigerant. (2mks)

11. Study the chart below and answer the questions that follow.

- a) Name:
 - i. Cations present in mixture X.

(1mk)

ii. Anions present in the solution.	(1mk)
b) Write an equation to show how the white precipitate in step III dissolves.	(1mk)
 c) Name the process outlined in step IV above. 12. i) A student intending to prepare lead (II) sulphate reacted lead metal with dilute However, he was not successful. Explain why he was not successful. (1mk) 	(1mk) sulphuric acid.
ii) Suggest a method the student could have used to prepare lead (II) sulphate.	(2mks)
iii) Write an ionic equation that would take place in (ii) above.	(1mk)
13. In an experiment, ammonium chloride was heated in a test-tube. A moist red littre mouth of the test-tube first changed blue then red. Explain these observations. (2mks)	nus paper placed at the
14. An element X has two naturally occurring isotopes X-22 and X-20. If its relative calculate the percentage abundance of the more stable isotope. (2mks)	atomic mass is 21.8,
 15. Fractional distillation of crude oil used to produce the following fractions; petrol, gases, kerosene, naphtha and bitumen. Below is a simplified diagram of a fraction during the refining of crude oil. On the diagram, write the names of theses fractions in their correct position (3mks) 	nating column used

ii. Which fraction is used as a jet fuel?

(1mk)

iii. What process is used to convert higher fractions to lower fractions?

(1mk)

- 16. Carbon (iv) oxide and silicon (iv) oxide are both covalent oxides but carbon is a gas whereas silicon (iv) oxide is a solid with high melting point. Explain. (2mks)
- 17. The ability of hard water to conduct electricity falls when water is boiled but is not much affected when the water hardness is removed by addition of washing soda (sodium carbonate). Explain.

 (2mks)
- 18. When sulphur is heated in a boiling tube in absence of air, the yellow crystals melts into golden yellow mobile liquid at 113°C. The liquid changes at 180°C into a dark brown very viscous liquid. More heating to about 400°C, produces a brown less viscous liquid.
 - a) Draw the molecular structure of sulphur in the yellow crystals.

(1mk)

b) Explain why the molten liquid becomes viscous.

(1mk)

- c) If the brown liquid at 400°C is cooled rapidly by pouring it into cold water, which form of sulphur is produced? (1mk)
- d) State the observation made when sulphur is heated in a deflagrating spoon.(1mk)
- 19. The table below gives some information about certain chemical substances. The letters used are not the actual chemical symbols or formulae.

Substance	Melting	Boiling	Electrical conductivity		
	point (°C)	point	Of solid	Of liquid	In water
		(°C)		_	
A	1540	3000	Good	good	Insoluble

В	-114	-85	Poor	poor	good
C	712	1418	Poor	good	good
D	-39	357	Good	good	insoluble
E	2045	3000	Poor	good	insoluble
f	1700	2776	Poor	good	insoluble
				_	

- a) From the table, select;
 - i. Two substances that cannot be elements. (1mk)
 - ii. A substance that is likely to have giant atomic structure. (1mk)
 - iii. A substance that is likely to consist of molecules and which produce ions when added to water. (1mk)

(1mk)

(1mk)

20. Study the diagram below and answer the questions that follow.

- i. Write the equation for the combustion of propane.
- ii. The pH of substance K was found to be less than 7. Explain this observation. (1mk)
- 21. Explain how you would separate a mixture of nitrogen and oxygen gases given that their boiling points are -196°C and -183°C respectively. (2mks)
- 22. Dry carbon (iv) oxide gas reacts with heated lead (ii) oxide as shown in the equation below.

$$PbO(s) + CO(g) \longrightarrow Pb(s) + CO_2(g)$$

- a) Name the process undergone by the lead (ii) oxide.
- b) Give a reason for your answer in (a) above. (1mk)

- c) Name another gas that can be used to perform the same function as carbon(IV) oxide gas in the above reaction. (1mk)
- 23. The set-up below was used to collect gas F, provided by the reaction between water and calcium metal.

a) Name gas F.

(1mk)

- b) At the end of the experiment the solution was found to be a weak base. Explain why the solution is a weak base. (2mks)
- c) Give one laboratory use of the solution formed in the beaker.

(1mk)

24. In terms of structure and bonding, explain why graphite is used as a lubricant.

(2mks)

25. The reaction between a piece of magnesium ribbon with excess 2M hydrochloric acid was investigated at 25°C by measuring the volume of hydrogen gas produced as the reaction progressed. The sketch below represents the graph that was obtained.

- a) Name one piece of apparatus that may be used to measure the volume of hydrogen gas produced. (1mk)
- b) On the same diagram the curve that would be obtained if the experiment was repeated at 35° C. (1mk)
- 26. Methane reacts with oxygen according to the equation given below; $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) \ 2H_2O(g) \ \triangle H = -890 \text{KJMol}^{-1}$ Calculate the volume of methane whoch would produce 11.25 KJ when completely burnt at r.t.p (molar volume of a gas at r.t.p = 24 litre) (2mks)

SERIES 19

1. The table below gives some properties of gases M and N

GASES	Density	Effect of HCl(aq)	Effect of KOH(aq)	
M	Lighter than air	Reacts to form a salt	dissolves without reacting	
N	Heavier than air	Not affected	Not affected	

	(a) Describe how one would obtain a sample of gas N from a mixture of gases M and N	(2mks)
	(b) Name two neutral oxides	(1mk)
2.	Iron roofing sheets are coated with zinc as sacrificial metal;	
	(i) What is meant by the term 'sacrificial'?	(1mk)
	(ii) Give the name given to the process by which iron sheets are coated with zinc.	(1mk)
		• • • • • • • • • • • • • • • • • • • •
	(iii) Zinc is higher than iron in reactivity series yet it does not corrode as fast as iron.	
	Explain	(1mk)
3.	The set-up below was used to investigate the properties of hydrogen gas.	rogen
	H_2 flame	_
	Heat Lead(II) oxide	
	00000	
	00100000000000000000000000000000000000	
FOR I	MARKING S Drying agent X	

					nbustion		(1mk)
(ii) Sug	ggest a possible dryi	ing agent X.					(1 mk)
(iii) W	hich property of Hy	drogen is unde	er investigat	ion in the s	set up abo	ove?	(1mk)
The	table below shows	pH values of s	olutions A	to E			
	Solution	E	В	D	A	С	
	pН	3	14	7	6	9	
Whi	ich solution;						
			11 !	0			(11-)
a) Con	tains the largest cor	icentration of i	iyuroxyr ioi	15 :			(1mk)
••••							
(b) Cor	ntains the largest co	ncentration of	hydrogen ic	ons			(1mk)
(-)			,				()
••••	•••••	•••••					
					•••••		
••••				• • • • • • • • • • • • • • • • • • • •			
 (c) Is li	kely not to react wi	th solution A ?					(1mk)
 (c) Is li	kely not to react wi	th solution A ?					(1mk)
 (c) Is li 	kely not to react wi	th solution A ?					(1mk)
 (c) Is li 	kely not to react wi	th solution A ?					(1mk)
					£ 20.5		
······ Potassiu	um is isotopic and h	nas a relative at	omic mass			ork out the pe	
······ Potassiu		nas a relative at	omic mass			ork out the pe	
 Potassiu	um is isotopic and h	nas a relative at	omic mass			ork out the pe	rcentage abunda
 Potassiu	um is isotopic and h	nas a relative at	omic mass			ork out the pe	rcentage abunda
 Potassiu	um is isotopic and h	nas a relative at	omic mass			ork out the pe	rcentage abunda
 Potassiu	um is isotopic and h	nas a relative at	omic mass			ork out the pe	rcentage abunda
 Potassiv	um is isotopic and h	nas a relative at	omic mass			ork out the pe	rcentage abunda
 Potassiu	um is isotopic and h	nas a relative at	omic mass			ork out the pe	rcentage abunda

An ion of element Q can be represented as ${}^{32}_{16}Q^{2-}$	
(a) Draw the structure of the ion	(2mks)
(b) How does the ionic radius of Q compare with its atomic radius? Explain.	(1mk)
The electronic configuration for elements represented by letters A, B, C and D are	
A 2.8.6	
B 2.8.2	
C 2.8.1	
D 2.8.8	
(a) Select the element which forms;	
(i) A double charged cation	(1mk)
(ii) A soluble carbonate	(1mk)
(b) Which element has the shortest atomic radius	(1mk)
When concentrated sodium chloride was electrolysed for a long time. Two gases were	
Obtained at the anode;	
(i) Name the two gases	(1mk)
(ii) Explain why the gases were obtained.	(2mks)

9.	Using dots (●) and crosses (X) to represent electrons, draw diagrams to show bonding in;						
	(a) C_2H_4 (C=12 H=1)	(1mk)					
	(b) Hydroxonium ion H ₃ O ⁺ (H=1 O=8)	(1 mk)					
10.	A student reacted Silver Nitrate and Barium Chloride solutions to prepare two sa	ılts.					
	(i) Write an ionic equation for the reaction that took place.						
	(ii) Describe how a sample of Lead (II) Chloride and Silver Chloride can be differentiated in the						
	laboratory	(2 mks)					
11.	A monomer has the following structure.	(1mk)					
	CH=CH ₂ CH ₃						
	a) Draw the structure of its polymer that contains four monomers.	(1 mk)					

9.

number of monomers that formed the polymer ($C = 12$, $H = 1$)	(2mks)
	••••••
	•••••
Use the diagram below to answer the questions below:	
Copper (II) oxide	
Carbon (II) Oxide Gas G	
(i) Identify gas G	(1mk)
(ii) Write an equation for the reaction taking place in the combustion tube.	(1mk)
(iii) Carbon (IV) oxide is said to be a "silent killer". Explain why?	(1mk)
400cm ³ of Nitrogen gas diffuses through a porous plug in 70seconds. How long would	it 200cm ³
Carbon (IV) oxide to diffuse through the same porous pot? (C=12, O=16, N=14)	(3mks)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

14.	20.0cm ³ of NaOH solution containing 8.0gdm ⁻³ were required for complete neutralization of 0.118g						
	of a dibasic acid. Calculate the Relative Molecular Mass (R.M.M) of the acid. (Na=23, O=16, H=1)	(3mks)					
15.	The diagram below shows the combustion of ethane gas. Study it and answer the question	ons					
	that follow:						
	Delivery tube To suction	n pump					
	Ethane gasSubstance I						
	(a) Identify substance K	(1mk)					
	(b) Write an equation for the complete combustion of ethane gas.	(1mk)					
	(c) The pH of substance \mathbf{K} is found to be less than 7. Explain this observation	(1mk)					
16.	The structure of hydrogen sulphide can be represented as shown below:						
	S H X H						
	Y H						
	(a) Name the bond type represented by letters X and Y	(2mks)					
	X 7						

	(b) Give a chemical test for hydrogen sulphide gas	(1mk)
17.	In the Haber process, the industrial manufacture of ammonia is given by the following	
	$N_{2(g)} + 3H_{2(g)}$ \longrightarrow $2NH_{3(g)}\Delta H = -97KJmol^{-1}$	
	(i) What is source of the Hydrogen that is used in the process	(1 mk)
	(ii) Name the catalyst used in the above reaction	(1mk)
	(iii) What is the effect of increasing temperature on yield of ammonia? Explain	(1mk)
18.	The curves below were obtained when equal volumes of 1.5M HCl were reacted with chips (CaCO ₃). In one of the reactions, the acid was warmed before adding the marble volume of gas in cm ³	
	Time (sec)	
	(a) Write the equation for the reaction (b) Identify the curve representing the reaction where the acid was warmed.	(1mk) (1mk)
	(c) The volume of the gas produced in the two experiments is the same. Explain.	(1mk)

19. Chlorine gas was bubbled into a solution of hydrogen sulphide as shown below:

	(i) Explain the ob	servation made	e in boiling tube.		(2mks)
			• • • • • • • • • • • • • • • • • • • •		
	(ii) What precauti	ons should be t	aken in the experim	nent	(1mk)
20.	Given the bond er	nergies:	•••••		
	H-Cl		431kJ/m	ol	
	Н-Н		435kJ/m	ol	
	Cl-Cl		243kJ/n	nol	
	Calculate the mol	ar enthalpy cha	inge for the formation	on of hydrogen chloride	as per the equation below
	$H_{2(g)} + Cl_{2(g)}$		2HCl (g)		(3 mks)

21. Study the physical properties of Magnesium and Beryllium. Use it to answer the questions that follow:

Element	Be	Mg
Mp °C	1280	650
Bp °C	2450	1110
Atomic number	4	12
Atomic radius (nm)	0.086	0136

(ii) What observation would be made if the solution of hydrogen in methylbenzene was repla	(a) Explain why Beryllium has a higher m.p than Magnesium	(2mks
Study the diagram below and answer the questions that follow: Graphite Graphite Solution of hydrogen chloride in Methyl benzene (i) What observation was made during the experiment? Explain? (11/2)		
Graphite Solution of hydrogen chloride in Methyl benzene (i)What observation was made during the experiment? Explain? (ii) What observation would be made if the solution of hydrogen in methylbenzene was repla	(b) Write the electron arrangement of Magnesium in the following compound; Mg ₃ (l	PO ₄) ₂ (1m
Graphite Solution of hydrogen chloride in Methyl benzene (i)What observation was made during the experiment? Explain? (ii) What observation would be made if the solution of hydrogen in methylbenzene was repla		
Graphite Solution of hydrogen chloride in Methyl benzene (i)What observation was made during the experiment? Explain? (ii) What observation would be made if the solution of hydrogen in methylbenzene was repla		
(ii) What observation would be made if the solution of hydrogen in methylbenzene was replaced	Graphite Graphite Solution of hydrogen	
	(i)What observation was made during the experiment? Explain?	(1½m
with solution of hydrogen chloride in water? Explain (1½)	(ii) What observation would be made if the solution of hydrogen in methylbenzene v	vas replace
	with solution of hydrogen chloride in water? Explain	(1½m

Describe how you would prepare Copper (II) Ch	aloride, staring with copper metal.	(3mks)
0.28g of iron burns in air to form Iron (II) oxide.	. Calculate the mass of Iron (II) oxide	formed
(O=16, Fe=56)		(2mks)
a) Define the term solubility		(1 mk)
b) The following were the results obtained in an	experiment to determine the solubilit	y of potassiur
nitrate at room temperature.		
Mass of evaporating dish	= 20.66 g	
Mass of evaporating dish+ saturated solution	= 44.16 g	
Mass of residue on the evaporating dish	= 6.1 g	
Calculate the solubility of potassium nitrate from	n the above result.	(2 mks)
• •		

26.	Given that the E^{θ} of $Cu(s)$ / $Cu^{2+}(aq)$ is +0.34V and that of $Zn(s)$ / $Zn^{2+}(aq)$ is -0.76 V, drawn from the energy of $Zn^{2+}(aq)$ is -0.76 V, d	w a labeled
	diagram of zinc and copper electrochemical cell.	(3 mks)
27.	Aluminium is obtained from its ore, with formula Al ₂ O ₃ .2H ₂ O. The ore is first heated as	nd refined to
	obtain pure aluminium oxide (Al ₂ O ₃). The oxide is then electrolysed to get Aluminium	and Oxygen
	gas using carbon electrodes	
	a) Write the equation that takes place at the anode	(1mk)
	b) What would be the importance of heating the ore before electrolysed	(1 mk)
		• • • • • • • • • • • • • • • • • • • •
	c) Explain why Aluminium is used for making cooking pans yet it is a reactive metal	(1 mk)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	28. State two advantages of hard water	(1 mk)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

SERIES 20

1.	The electronic configurations for elements represented by letters A, B, C and D are				
		A 2.8.6 B . 2.8.2.	C.2.8.1. D .2.8.8		
	(a)	Select the element	which forms:		
		i) A double charged	l cation	(1 mark)	
•••		ii) A soluble carbor	nate	(1 mark)	
•••			the largest atomic radius	(1 mark)	
 2.	An eleme	nbers 6 and 7.	ber 3, relative atomic mass 6.9	94 and consist of two isotopes of	
	(i)	your answer.		isotope of R ? Give a reason for (2 marks)	
•••	(ii)	Complete the foll		(1 mark)	
		Element	Number of neutrons	Number of electrons	
		R			
3.	hydrocarb	oon chain.	-Na ⁺ represent two cleaning a		
	(b) Write	the formula of an ior	than causes:		
	(i) V	Vater hardness		(1 mark)	
	(ii) P	Permanent water hard	ness	(1 mark)	

.....

4. In an experiment, a student put equal volumes of mixtures of ethanoic acid in water and ethanoic acid in hexane in two test-tubes as shown below. In each test tube, equal amounts of solid sodium hydrogen carbonate were added.

Test-tube 1 Test-tube 2

	a) State the observation which was made in each test-tube Test tube 1	(1 mark)
	Test tube 2	
	b) Explain the observations in (a) above	(2 marks)
5.	Bromine reacts with ethane as shown below	
	$C_2H_6 + Br_2 \longrightarrow C_2H_5Br + HBr.$	
	(a) What condition is necessary for this reaction to occur?	(1 mark)
	(b) Identify the bonds which are broken and those that are formed.	(2 marks)

		• • • • • • • • • • • • • • • • • • • •
6.	Draw a well labelled diagram of the non-luminous flame	(3 marks)

6. Draw a well labelled diagram of the non-luminous flame

- 7. In an experiment 20cm³ of 0.1 M sulphuric (VI) acid were reacted with 20cm³ of 0.1 M sodium hydroxide.
 - (a) Write in equation of the reaction that took place. (1 mark)

(b) State the observations that were made when both red and blue litmus papers were dropped into the mixture. (1 mark)

(c) Give a reason for your answer in (a) above (1 mark)

8. The diagram below represents a paper chromatogram for three brands of juices suspected to contain banned food colourings.

The results showed the presence of banned food colourings in L and M only. On the same diagram:

a) Circle the spots which show the banned food colourings

(2 marks)

9.	A Compound whose general formula is M(OH) ₃ reacts as sho	own by the equat	ion.
	$M(OH)_{3(q)} + OH^{-}(aq) \longrightarrow M(OH)^{-}_{4(aq)}$		
	$M(OH) 3(q) + 3H^{+} (aq)$ \longrightarrow $M^{3+} (aq) + 3H^{2}$	2O(l)	
	(a) What name is given to compounds which behave like l	M(OH) ₃ in the tv	vo reactions.
			(1 mark)
	(b) Name two elements whose hydroxides behave like that		(2 marks)
10.	A compound contains 82.75% carbon and the rest is Hydroge	en. (C=12, H=1)	
	(a) Determine its empirical formula.		(2 marks)
			•••••
	(b) Determine the molecular formula if its molecular mass is	s 58.	(1 mark)
		•••••	
11.	A form four student wanted to determine the solubility of po	tassium nitrate.	He obtained the
	following results.		
	Mass of evaporating dish Mass of evaporating dish and solution Mass of evaporating dish and salt	= 15.13g = 36.51g = 19.41g	
	Use the information above to calculate the solubility of pota	ssium nitrate.	(3 marks)

(1 mark)

b) Show solvent front.

. Filtration is carried out in the apparatus shown belo	Filter paper
	— X — Funnel — Beaker — Y
a) Name X and Y	(2 marks)
b) State one application of filtration	(1 mark)
3. a) State Boyle's law	(1 mark)
b) A gas occupies a volume of 80dm ³ at s.t.p. At we the temperature rises by 105°C? (At s.t.p tempe	

	a) Give the name of the process represented by the above reaction.	(1 mark)
	b) Name the catalyst which is usually used in the above reaction.	(1 mark)
	c) State the observation made during the reaction of alkanols and alkano	oic acids. (1 mk)
15. H	Hydrogen sulphide gas was lighted in a gas jar of air using the arrangement	
	Hydrogen sulphide	
	a) Write an equation for combustion of hydrogen sulphide gas.	(1 mark)
	b) State what is observed if the product is passed through acidified pota (VI) solution.	
16. <i>i</i>	A set-up to investigate electrical conductivity of substances was assembled Graphite electrodes	
	PbI ₂ (s)	

The bulb did not light.

(a) What was missing in the set-up?	(1 mark)
(b) The bulb lit when the omission was corrected. Explain.	(1 mark)
(c) State one application of electrolysis.	(1 mark)
17. Steam is passed over heated iron filings in a combustion tube.(a) Name the two products of this reaction.	(2 mark)
(b) Why is it not advisable to react sodium metal with steam?	(1 mark)
18. Diamond and graphite are allotropes of carbon.	
(a) What are allotropes?	(1 mark)
(v)	
(b) In terms of structure and bonding explain why diamond is used in	drilling through hard
rocks while graphite is a lubricant	(2 marks)
19. Give the systematic name of each of the compounds represented by the	
(a) CH ₃ C≡CCH ₃	(3 marks)
(b) CH ₃ CH=CHCH ₂ CH ₃	
(c) CH ₃ CH ₂ COONa	

20. Study the flow chart below and answer the questions that follow.

Ammonia Drying Heated black solid	Copper metal G Nitrogen
(a) Name a suitable drying agent for ammonia.	(1 mark)
(b) Describe one chemical test for ammonia.	(1 mark)
(c) Name G.	(1 mark)
21. Describe how dry chlorine and hydrogen chloride gases in gas jars car dry blue litmus papers, distilled water and a fume chamber.	n be distinguished using (3 marks)
22. (a) State two factors that accelerate rusting.	(2 marks)
(b) Iron sheets are dipped in molten zinc to prevent rusting. Name this 23. Given the following substances: wood ash, lemon juice and sodium ch	

` '	Name one commercial indicator that can be used to show whether rain valemon juice and sodium chloride are acidic, basic or neutral. Classify the substances in 15(a) above as acids, bases or neutral.			water wood as (1 mark)		
(b) Class				(2 marks)		
	Acidic	Basic	Neutral			
Emission	,	nto the atmosphere has b	become one of the	world's major		
(a) State	one disadvantage of re-	leasing carbon (IV) oxid	le into the atmosph	nere. (1 mark)		
(b) What	(b) What causes the level of carbon (IV) oxide in the atmosphere to increase? (1 mark)					
(c) How	can the amount of carb	on (IV) oxide in the atm	osphere be reduce	d other than		
avoid	ling the causes in (b) ab	oove?		(1 mark)?		
		e solution were reacted v	with excess ammor	nium carbonate		
solution,	the mass of zinc carbon	nate formed was 12.5g.				
(a) Write	the ionic equation for t	the reaction that took pla	ice.	(1 mark)		
(b) Calcu	late the value of X. (C	= 12.0, Zn = 65.0, O = 1	6.0)	(2 marks)		
••••••						

26. Below is a sketch of an energ	y level diagram.	
4	\	
ol)	Products	
kJ/m		-
Energy (kJ/mol)	Reactants	
En		-
•	Reaction progress	-
a) On the diagram	show the heat of reaction $\Delta \mathbf{H}$.	(1 mark)
b) State and explai	n the type of reaction represented by the abov	ve energy level diagram.
		(2marks)
27. Starting with copper metal	describe how a sample of crystals of copp	per (II) chloride may be
prepared in the laboratory		(3 marks)

