QUANTITY OF HEAT SIMPLIFIED PHYSICS NOTES

<p>Chapter Nine<&sol;p>&NewLine;<p>QUANTITY OF HEAT<&sol;p>&NewLine;<ul>&NewLine;<li>Heat is a form of energy that &fllig;ows from one body to another due to a temperature difference between them&period;<&sol;li>&NewLine;<li>The absorption of heat by a body results in rise of its temperature while loss of the same results in fall of temperature&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>HEAT CAPACITY<&sol;p>&NewLine;<p>It takes shorter time to prepare tea for fewer people as compared to preparing tea for many&period;<&sol;p>&NewLine;<p>This is because less amount of energy is needed to prepare tea for fewer people&period; On a hot day&comma; the land surface is much warmer compared to the sea&period; This is because of the nature of the surfaces&period; Different materials have different rates of heat absorption&period;<&sol;p>&NewLine;<p>EXPERIMENT&colon; To investigate the relationship between the mass of a body and the quantity of heat required to cause a unit temperature rise in it<&sol;p>&NewLine;<p>Apparatus Water&comma; beaker&comma; Bunsen burner&comma; thermometer&comma; stopwatch&comma; wire gauze&period;<&sol;p>&NewLine;<p><strong>Procedure<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Heat about 150 cm3 of water at room temperature&comma; as shown in &filig;gure 9&period;1<&sol;li>&NewLine;<li>Record the time taken for the temperature to rise to about 60 °C&period;<&sol;li>&NewLine;<li> Pour out the water and cool the beaker to room temperature&period;<&sol;li>&NewLine;<li>Repeat the experiment with about 200 cm3 of water in the beaker&period;<&sol;li>&NewLine;<li>Record the time taken for the temperature to rise to about 60 °C&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Observation<&sol;strong><&sol;p>&NewLine;<p>It takes a longer time for the larger volume of water to attain the same temperature rise than for the smaller volume of water&period;<&sol;p>&NewLine;<p><strong>Explanation<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>The different volumes are heated from the same initial temperature to &filig;nal temperature&period;<&sol;li>&NewLine;<li>The larger volume takes more time to attain the same temperature change&comma; hence absorbs more heat energy&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Conclusion<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Since the different volumes of water have different masses&comma; the quantity of heat energy required to cause a given temperature change depends on its mass&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ul>&NewLine;<li><strong>Heat capacity is de&filig;ned <&sol;strong>as the quantity of heat energy required to raise the temperature of a given mass of a material by one degree Celsius or one Kelvin&period; It is denoted by C&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>The SI unit of heat capacity is <strong>JK-1<&sol;strong><&sol;p>&NewLine;<p><strong>Example 1<&sol;strong><&sol;p>&NewLine;<p>Calculate the quantity of heat required to raise the temperature of a metal block with a heat capacity of 460 IK-1 from 15 °C to 45 °C&period;<&sol;p>&NewLine;<p>Solution<&sol;p>&NewLine;<p>Heat capacity&comma; C &equals; 460 J K-1<&sol;p>&NewLine;<p>Temperature change 9 &equals; &lpar;45°C — 15°C&rpar; &equals; 30 °C<&sol;p>&NewLine;<p><strong> Q &equals; CΔT<&sol;strong><&sol;p>&NewLine;<p>&equals; 460 x 30<&sol;p>&NewLine;<p>&equals; 13 800 J<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>SPECIFIC HEAT CAPACITY<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Speci&filig;c heat capacity is de&filig;ned as the quantity of heat required to raise the temperature of a unit mass of a substance by one Kelvin &lpar;K&rpar;&period; It is denoted by c&period; Speci&filig;c heat capacity is heat capacity per unit mass&period; &OpenCurlyQuote;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>c &equals;             <u>quantity of heat                                 &lpar;H&rpar; <&sol;u><&sol;p>&NewLine;<p>Mass &lpar;m&rpar; x change in temperature &lpar;ΔT&rpar;<&sol;p>&NewLine;<p><strong>H &equals; mc ΔT<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>The SI unit for speci&filig;c heat capacity is Jkg-1K-1&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Note&colon;<&sol;strong>   If two different substances of the same mass are subjected to the same amount of heat&comma; they acquire different temperature changes&period;<&sol;p>&NewLine;<p>For example&comma; the speci&filig;c heat capacity of copper is 390 Jkg-1K-1&period; This means that 1 kg of copper would take in or give out 390 J when its temperature changes by 1 K&period;<&sol;p>&NewLine;<p>Example 2<&sol;p>&NewLine;<ol>&NewLine;<li>A block of metal of mass 1&period;5 kg which is suitably insulated is heated from 30 °C to 50 °C in<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>8 minutes and 20 seconds by an electric heater coil rated 54 watts&period; Find&colon;<&sol;p>&NewLine;<p>&lpar;a&rpar; the quantity of heat supplied by the heater&period;<&sol;p>&NewLine;<p>&lpar;b&rpar; the heat capacity of the block&period;<&sol;p>&NewLine;<p>&lpar;c&rpar; its speci&filig;c heat capacity&period;<&sol;p>&NewLine;<p>Solution<&sol;p>&NewLine;<ul>&NewLine;<li>Quantity of heat supplied &equals; power x  time<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Q &equals; 54  x  500<&sol;p>&NewLine;<p>&equals; 27000J<&sol;p>&NewLine;<p>&lpar;b&rpar; Heat capacity&comma; C &equals; Q&sol;ΔT<&sol;p>&NewLine;<p>But Q &equals; 27000 J and ΔT&equals; 50 &&num;8211&semi; 30 &equals;20K<&sol;p>&NewLine;<p>C  &equals; <u>27000<&sol;u><&sol;p>&NewLine;<p><strong>     20 <&sol;strong><&sol;p>&NewLine;<p>&equals; 1350 JK-1<&sol;p>&NewLine;<p>&lpar;c&rpar;           Specific heat capacity&comma; c &equals; C&sol;m<u><br &sol;>&NewLine;<&sol;u>But c &equals; 1 350 and m &equals; 1&period;5<&sol;p>&NewLine;<p>C &equals; <u>1350<&sol;u><&sol;p>&NewLine;<p>1&period;5<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&equals;900Jkg-1K-1<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>Find the temperature of water if a heater rated 42 W heat 50 g water from 20C in five minute&period; &lpar;Specific heat capacity of water is 4200Jkg-1K-1&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Assuming no heat losses&semi;<&sol;p>&NewLine;<p>Heat supplied by the heater &equals; heat gained by the water&period;<&sol;p>&NewLine;<p>42 x 5 x 60 &equals; mcΔT<&sol;p>&NewLine;<p>42 x 300 &equals; 50 X 10-3 X 4 200 x ΔT<&sol;p>&NewLine;<p>ΔT &equals;       <u>42 x 300 <&sol;u><&sol;p>&NewLine;<p>50 X 10-3 X 4 200<&sol;p>&NewLine;<p>ΔT&equals; 60<&sol;p>&NewLine;<p>But ΔT&equals; T &&num;8211&semi; 20&comma; where T is the final temperature&period;<&sol;p>&NewLine;<p>60&equals; T- 20<br &sol;>&NewLine;T &equals; 60 &plus; 20<&sol;p>&NewLine;<p>T &equals; 80°C<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>A piece of copper of mass 60 g and specific heat capacity 390 Jkg-1K-1cools from 90°C to 40°C Find the quantity of heat given out&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Solution <&sol;em><&sol;p>&NewLine;<p>Q &equals; mcΔT&equals; 60 x 10<sup>&&num;8211&semi;<&sol;sup>3 x 390 x 50<br &sol;>&NewLine;&equals; 1 170 J<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>DETERMINATION OF SPECIFIC HEAT CAPACITY<&sol;strong><&sol;p>&NewLine;<p><strong>Method of Mixtures<&sol;strong><&sol;p>&NewLine;<p><strong>Solids<&sol;strong><&sol;p>&NewLine;<p>EXPERIMENT&colon; To determine the speci&filig;c heat capacity of a solid by the method of mixtures<&sol;p>&NewLine;<p>Apparatus<&sol;p>&NewLine;<p>Metal block&comma; thread&comma; beaker&comma; water&comma; tripod stand&comma; heat source&comma; well-lagged calorimeter&comma; stirrer&comma; thermometer&comma; cardboard&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Procedure<&sol;p>&NewLine;<ul>&NewLine;<li>Weigh the solid metal block&period; &equals; ms<&sol;li>&NewLine;<li>Set up the apparatus as shown in &filig;gure above&period; Allow the water to boil&period;<&sol;li>&NewLine;<li>Weigh the calorimeter together with the stirrer and pour some water into it&period; &equals; mc<&sol;li>&NewLine;<li>Weigh the calorimeter with its contents and place it in the insulating jacket&period; &equals; m1<&sol;li>&NewLine;<li>Mass of water &equals; m1- mc &equals; mw<&sol;li>&NewLine;<li>Measure the temperature of the cold water&period; &equals; T1<&sol;li>&NewLine;<li>Measure temperature of boiling water in beaker &equals; T2<&sol;li>&NewLine;<li>When the water in the beaker has boiled for sometime&comma; quickly transfer the metal block&comma; from the beaker into the cold water in the calorimeter&period;<&sol;li>&NewLine;<li>Cover the calorimeter with a piece of cardboard&comma; as in &filig;gure&period;<&sol;li>&NewLine;<li>Stir the mixture and record the &filig;nal temperature&period; &equals; T3<&sol;li>&NewLine;<li>Change of temperature of water in the calorimeter on addition of hot metal block &equals; T3- T1<&sol;li>&NewLine;<li>Temperature change of hot metal block when dropped into the cold water &equals; T2- T3&comma;<br &sol;>&NewLine;Assuming no heat losses to the surroundings during the transfer of the metal block from the beaker to the calorimeter and thereafter&comma; the specific heat capacity of the solid can be calculated as follows&semi;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Heat lost by           heat gained by                          gained by<&sol;p>&NewLine;<p>metal block     &equals;    calorimeter with stirrer   &plus;       water in calorimeter<&sol;p>&NewLine;<p><strong>mscs &lpar;T2 – T3&rpar; &equals;  mccc &lpar;T3 &&num;8211&semi; T1&rpar; &plus; mwcw &lpar;T3 &&num;8211&semi; T1&rpar; <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>cs &equals; <u>m<sub>c<&sol;sub>c<sub>c<&sol;sub>&lpar;T<sub>3<&sol;sub> – T<sub>1<&sol;sub>&rpar; &plus; m<sub>w<&sol;sub>c<sub>w<&sol;sub> &lpar;T<sub>3<&sol;sub> – T<sub>1<&sol;sub>&rpar;<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>                      &lpar;T2-T3&rpar;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Where CcCs and Cw are specific heat capacities of the calorimeter&comma; the solid and water respectively&period;<br &sol;>&NewLine;The specific heat capacity of the material of the cube can therefore be calculated as&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>A lagged copper calorimeter of mass 0&period;75 kg contains 0&period;9 kg of water at 20⁰<em>C&period; <&sol;em>A bolt of mass 0&period;8 kg is transferred from an oven at 400⁰<em>C <&sol;em>to the calorimeter and a steady temperature of <em>50<&sol;em><em>⁰C <&sol;em>is reached by the water after stirring&period; Given Specific heat capacity of copper is 400 Jkg-1K-1and that of water 4200 Jkg-1K-1&period; Determine&colon;<&sol;li>&NewLine;<li>Heat lost by the bolt<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Let c be the specific heat capacity of the material of the bolt&period;<&sol;p>&NewLine;<p><strong>&equals;<&sol;strong>0&period;8 x c x &lpar;400 &&num;8211&semi; 50&rpar;<&sol;p>&NewLine;<p><strong>&equals;280c<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Heat absorbed by the water<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&equals;0&period;9 x 4200 x &lpar;50 &&num;8211&semi; 20&rpar;<&sol;p>&NewLine;<p><strong>&equals;113&comma;400J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Heat absorbed by calorimeter<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>HC&equals;mc∆T<&sol;strong>&equals; 0&period;75 x 400 x &lpar;50 &&num;8211&semi; 20&rpar;<&sol;p>&NewLine;<p><strong>&equals;9000J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Specific heat capacity of the bolt<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Solution <&sol;em><&sol;p>&NewLine;<p>Heat lost by bolt &equals; heat gained by calorimeter &plus; heat gained by water<&sol;p>&NewLine;<p>280c &equals; 9000&plus; 113 400<&sol;p>&NewLine;<p>280c &equals; 122 400<&sol;p>&NewLine;<p>c &equals; 437 Jkg-1K-1<&sol;p>&NewLine;<p>Specific heat capacity of bolt is 437 Jkg-1K-1&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>Liquids <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Using a solid of known specific heat the capacity and replacing the water in the calorimeter with liquid whose specific heat capacity is to be determined&comma; the same procedure as in experiment 9&period;2 is repeated&period;<&sol;p>&NewLine;<p><em>Calculations <&sol;em><&sol;p>&NewLine;<p>Replacing the mass of water and the specific heat capacity of water with those of the liquid&comma; <em>ml <&sol;em>and <em>cl <&sol;em>and making the same assumptions on heat losses to the surroundings&comma; the specific heat capacity of the liquid can be calculated as below&semi;<&sol;p>&NewLine;<p>Heat lost by       &equals;     heat gained by            &plus; heat gained by liquid<&sol;p>&NewLine;<p>The hot solid             calorimeter and stirrer     in the calorimeter<&sol;p>&NewLine;<p>mscs &lpar;T2 &&num;8211&semi; T3&rpar; &equals; mccc &lpar;T3 &&num;8211&semi; T1&rpar; &plus; mlcl &lpar;T3 – T1&rpar;<&sol;p>&NewLine;<p>mscc &lpar;T2 &&num;8211&semi; T3&rpar; &&num;8211&semi; mccc &lpar;T3 – T1&rpar; &equals; mlct &lpar;83 &&num;8211&semi; 81&rpar;<&sol;p>&NewLine;<p>Hence&comma; the specific heat capacity of the liquid can be calculated as&semi;<&sol;p>&NewLine;<p><strong>    cl &equals;   <u>m<sub>s<&sol;sub>c<sub>s<&sol;sub> &lpar;T<sub>2<&sol;sub> – T<sub>3<&sol;sub>&rpar; &&num;8211&semi; m<sub>c<&sol;sub>c<sub>c<&sol;sub> &lpar;T<sub>3<&sol;sub> – T<sub>1<&sol;sub>&rpar; <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>               ml&lpar;T3-T1&rpar;<&sol;strong><&sol;p>&NewLine;<p><em>Note&colon; <&sol;em><&sol;p>&NewLine;<p>The following precautions need to be taken to minimize heat losses to the surroundings&colon;<br &sol;>&NewLine;&lpar;i&rpar; Use of a highly polished calorimeter&period;<&sol;p>&NewLine;<p>&lpar;ii&rpar; Heavy lagging of the calorimeter&period;<&sol;p>&NewLine;<p>&lpar;iii&rpar; Use of a lid of poor conduction&period;<&sol;p>&NewLine;<p><strong><em>Example 6 <&sol;em><&sol;strong><&sol;p>&NewLine;<p>A block of iron of mass 1&period;25 kg at 120°C was transferred to an aluminium calorimeter of mass 0&period;3 kg containing a liquid of mass 0&period;6 kg at 25°C&period; The block and the calorimeter with its contents eventually reached a common temperature of 50 °C&period; Given the specific heat capacity of iron as 450 Jkg-1K-1 and that of aluminium 900 Jkg-1K-1&comma; calculate &semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Heat lost by the iron<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Hm&equals;mc∆T<&sol;strong> &equals;1&period;25 x 450 x 70<&sol;p>&NewLine;<p><strong>&equals;<&sol;strong>39 375J<&sol;p>&NewLine;<ol>&NewLine;<li>Heat absorbed by the liquid<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Let c be the specific heat capacity of the liquid&period;<&sol;p>&NewLine;<p><strong>Hl&equals;mc∆T&equals;<&sol;strong>0&period;6 x c x 25<&sol;p>&NewLine;<p><strong>&equals;<&sol;strong>15c<&sol;p>&NewLine;<ol>&NewLine;<li>Heat absorbed by calorimeter<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>HC&equals;mc∆T<&sol;strong>&equals; 0&period;3 x 900 x 25<&sol;p>&NewLine;<p><strong>&equals;<&sol;strong>6 750 <strong>J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Specific heat capacity of the liquid<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Heat lost by iron block &equals; heat gained by calorimeter &plus; heat gained by liquid<br &sol;>&NewLine;1&period;25 x 450 x 70 &equals; 0&period;3 x 900 x 25 &plus; 0&period;6 x c x 25<&sol;p>&NewLine;<p>39 375 &equals; 6 750 &plus; 15c<&sol;p>&NewLine;<p>39 375 &&num;8211&semi; 6 750 &equals; 15c<&sol;p>&NewLine;<p>c &equals; 2 175 J kg-1K-1<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>A girl heats 5 kg of water to temperature of 800 When she adds m kg of water at 150 C the mixture attains temperature of 40⁰C&period; Determine the value of m&period; &lpar;ignore heat changes due to the container&rpar;           &lpar;3 marks&rpar;<&sol;li>&NewLine;<li>Equal masses of water and paraffin with specific heat capacities C­Wand CP respectively are heated using identical sources of heat&comma; for the same length of time&period; The final temperature θP of paraffin was found to be greater than final temperature  of water&comma; Show that CW is greater than CP&period; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Electrical Method <&sol;strong><&sol;p>&NewLine;<p><strong><em>Solids <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>EXPERIMENT&semi; To determine the specific heat capacity of a metal by electrical method <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>Apparatus <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Metal block with two holes&comma; heater&comma; thermometer&comma; ammeter&comma; voltmeter&comma; stopwatch&comma; lagging material&comma; power source&comma; rheostat&comma; connecting wires&comma; weighing balance&period;<&sol;p>&NewLine;<p><em>Procedure and sample results<&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Weigh the Mass of metal block &equals; m<&sol;li>&NewLine;<li>Set up the apparatus as shown in figure<&sol;li>&NewLine;<li>Record the readings of the ammeter reading &equals; I<&sol;li>&NewLine;<li>Record the readings of Voltmeter reading &equals; V<&sol;li>&NewLine;<li>Start the stopwatch as you switch on the heater circuit&period;<&sol;li>&NewLine;<li>Record Time taken to heat the metal block &equals; t<&sol;li>&NewLine;<li>Measure and record Initial temperature of the metal block &equals; T1<&sol;li>&NewLine;<li>Measure and record Final temperature of the metal block &equals; T2<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Temperature change of the metal block &equals; T2 &&num;8211&semi; T1<&sol;p>&NewLine;<p>Assuming no heat losses to the surroundings&comma; the specific heat capacity of the material of the metal block is calculated as follows&semi;<&sol;p>&NewLine;<p>Electrical energy supplied by the electrical heater coil &equals; heat gained by the metal block&period;<br &sol;>&NewLine;<strong>VIt &equals; mc &lpar;T2 &&num;8211&semi; T1&rpar;<&sol;strong><&sol;p>&NewLine;<p>where c is the specific heat capacity of the material of the block&period;<br &sol;>&NewLine;Therefore&comma; specific heat capacity c is given by&semi;<&sol;p>&NewLine;<p><strong>c &equals; <u>         VIt   <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>m&lpar;T2-T1&rpar; <&sol;strong><&sol;p>&NewLine;<p><em>Precautions <&sol;em><&sol;p>&NewLine;<p>&lpar;i&rpar; The metal block must be highly polished and heavily lagged&period;<&sol;p>&NewLine;<p>&lpar;ii&rpar;   The two holes should be filled with a light oil to improve thermal contact with the heater and thermometer&period;<&sol;p>&NewLine;<p><em>Example 7 <&sol;em><&sol;p>&NewLine;<p>A metal cylinder of mass 0&period;5 kg is heated electrically&period; If the voltmeter reads 15 V&comma; the ammeter 3&period;0 A and the temperature of the block rises from 20°C to 85 °C in 10 minutes&comma; calculate the specific heat capacity of the metal cylinder&period;<&sol;p>&NewLine;<p><em>Solution <&sol;em><&sol;p>&NewLine;<p>Heat supplied by the heater &equals; heat gained by the metal cylinder<&sol;p>&NewLine;<p>VIt &equals; mcΔT<&sol;p>&NewLine;<p>15 x 3 x 10 x 60 &equals; 0&period;5 x c x 65<&sol;p>&NewLine;<p>c &equals; <u>15 x 3 x 600 <&sol;u><&sol;p>&NewLine;<p>0&period;5 x 65<&sol;p>&NewLine;<p>&equals; 831 Jkg-1K-1<&sol;p>&NewLine;<p><strong><em>EXPERIMENT<&sol;em>&colon; <em>To determine the specific heat capacity of a liquid by electrical method <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>Apparatus <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Well-lagged calorimeter&comma; stirrer&comma; 12 V heating coil&comma; liquid &lpar;water&rpar;&comma; ammeter&comma; voltmeter&comma; weighing<br &sol;>&NewLine;balance&comma; thermometer&comma; stopwatch&comma; rheostat&period;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"50"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Fig&period; <&sol;em>9&period;4&colon; <em>Determination of specific heat capacity of a liquid by electrical method <&sol;em><&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Weigh the calorimeter with the stirrer&period; &equals; m1<&sol;li>&NewLine;<li>Pour water into the calorimeter&period;<&sol;li>&NewLine;<li>Weigh the calorimeter with the water&period; &equals; m2<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Mass of water &equals; m2 &&num;8211&semi;  m1 &equals; mw<&sol;p>&NewLine;<ul>&NewLine;<li>Place the Calorimeter in its insulating jacket&period;<&sol;li>&NewLine;<li>Measure the initial temperature of the water&period; &equals; T1<&sol;li>&NewLine;<li>Insert the heating coil into the water in the calorimeter<&sol;li>&NewLine;<li>Switch on the heater current and simultaneously start timing&period;<&sol;li>&NewLine;<li>Record the ammeter &equals; I<&sol;li>&NewLine;<li>Record voltmeter readings&period; &equals; V<&sol;li>&NewLine;<li>Stir the water and after about five to ten minutes&comma; switch off the heater current&comma; but continue stirring and note the highest final temperature of the water&period;<&sol;li>&NewLine;<li>Record the duration of the heating&period; &equals; t<&sol;li>&NewLine;<li>Record Final temperature of the water &equals; T2<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Assuming no heat is lost to the surroundings&comma; the specific heat capacity of the water can be calculated as follows&semi; &comma;<&sol;p>&NewLine;<p>heat supplied by electric heater &equals; heat gained by water &plus; heat gained by calorimeter<br &sol;>&NewLine;<strong>Vlt &equals; mwcw&lpar;T2 &&num;8211&semi; T1&rpar; &plus; m1cc&lpar;T2 &&num;8211&semi; T1&rpar; <&sol;strong><&sol;p>&NewLine;<p><strong>cw &equals;  <u>VIt – m&lpar;T<sub>2<&sol;sub>-T<sub>1<&sol;sub>&rpar;<&sol;u> <&sol;strong><&sol;p>&NewLine;<p><strong>            mw&lpar;T2-T1&rpar; <&sol;strong><&sol;p>&NewLine;<p>Where cw and cc are the specific heat capacities of water and material of the calorimeter respectively&comma;<&sol;p>&NewLine;<p><em>Example 8 <&sol;em><&sol;p>&NewLine;<p>In an experiment to determine the specific heat capacity of water&comma; an electrical heater was used&period; If the voltmeter reading was 24 V and that of ammeter 2&period;0 A&comma; calculate the specific heat capacity of water if the temperature of a mass of 1&period;5 kg of water in a 0&period;4 kg copper calorimeter rose by 6 &ring;C after 13&period;5 minutes&period; &lpar;Specific heat capacity of copper is 400 Jkg&plus;K&colon;&&num;8217&semi;&rpar;<&sol;p>&NewLine;<p><em>Solution <&sol;em><&sol;p>&NewLine;<p>Electrical energy supplied by heater &equals; heat gained by calorimeter &plus; heat gained by water 24 x 2 x 13&period;5 x 60 &equals; 0&period;4 x 400 x 6 &plus; 1&period;5 x c x 6&comma; where c is specific heat capacity of water&period; 38 880 &&num;8211&semi; 960 &equals; 9c<&sol;p>&NewLine;<p>c &equals; <u>37920<&sol;u><&sol;p>&NewLine;<p>9<&sol;p>&NewLine;<p>&equals; 4213 Jkg-1K-1<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>2002 Q19 P1 <&sol;strong><&sol;p>&NewLine;<p>An immersion heater rated 90W is placed is a liquid of mass 2kg&period;  When the heater   is switched on for 15 minutes the temperature of the liquid rises from 20oC to 30oC Determine the specific heat capacity of the liquid&period; &lpar;Assume no heat losses&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Continuous Flow Method <&sol;strong><&sol;p>&NewLine;<p><em>EXPERIMENT <&sol;em>9&period;5&colon; <em>To determine the specific heat capacity of water by the continuous flow method <&sol;em><&sol;p>&NewLine;<p><em>Apparatus <&sol;em><&sol;p>&NewLine;<p>Constant head tank&comma; electric heating coil&comma; two thermometers&comma; glass tube &lpar;surrounded by an evacuated glass jacket which prevents heat escape from the liquid by conduction or convection&rpar;&comma; stopwatch&comma; rheostat&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Set up the apparatus as in figure <em>5&period; <&sol;em><&sol;li>&NewLine;<li>Adjust the water flow from the constant head tank until no water flows through the waste<br &sol;>&NewLine;pipe &lpar;the water through the tube carrying the spiral heating coil has then attained a steady flow&rpar;&period;<&sol;li>&NewLine;<li>Switch on the heater circuit and let the water flow continue until the thermometers at the inflow and outflow ends of the tube attain steady readings&period;<&sol;li>&NewLine;<li>Record the ammeter and voltmeter readings&period;<&sol;li>&NewLine;<li>Record the inflow and outflow temperatures of the water&period;<&sol;li>&NewLine;<li>Weigh an empty beaker and place it below the outflow pipe and simultaneously start timing&period;<&sol;li>&NewLine;<li>When an appreciable quantity of water has collected in the beaker&comma; withdraw the flow pipe as you stop timing&period;<&sol;li>&NewLine;<li>Weigh the beaker with water and record the duration of heating&period;<&sol;li>&NewLine;<li>Repeat the procedure but with a different rate of flow of water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Results and Calculations <&sol;em><&sol;p>&NewLine;<p><em>First rate of flow of water <&sol;em><&sol;p>&NewLine;<p>Ammeter reading &equals; II<&sol;p>&NewLine;<p>Voltmeter reading &equals; VI<&sol;p>&NewLine;<p>Inflow temperature of water &equals; T1<br &sol;>&NewLine;Outflow temperature of water &equals; T2<br &sol;>&NewLine;Mass of the empty beaker &equals; ml<br &sol;>&NewLine;Mass of the beaker with water &equals; m2<br &sol;>&NewLine;Time of collecting the water &equals; t<br &sol;>&NewLine;Mass of water collected &equals; m2 &&num;8211&semi; ml &equals; mc<br &sol;>&NewLine;Temperature difference &equals; T2 – T1<&sol;p>&NewLine;<p><em>Second rate of flow of water<br &sol;>&NewLine;<&sol;em>Ammeter reading &equals; I2<&sol;p>&NewLine;<p>Voltmeter reading &equals; V2<&sol;p>&NewLine;<p>Mass of the beaker with water &equals; m3<br &sol;>&NewLine;Mass of water collected &equals; m3-m1&equals; mn<&sol;p>&NewLine;<p>Under steady conditions&comma; none of the electrical energy supplied is used in heating the apparatus<br &sol;>&NewLine;and&comma; therefore&semi;<&sol;p>&NewLine;<p>Electrical energy &equals; heat energy absorbed    &plus;        heat energy lost to<&sol;p>&NewLine;<p>Supplied                   by collected water                  the surrounding<&sol;p>&NewLine;<p>VIt &equals; mw c&lpar;T2 &&num;8211&semi; T1&rpar; &plus; H<&sol;p>&NewLine;<p>After the rate of flow is altered&comma; temperature difference is the same and the heat lost in time t is again H&period;<br &sol;>&NewLine;&colon;&period; V2I2t &equals; mn c&lpar;T2 – T1&rpar; &plus; H<&sol;p>&NewLine;<p>Hence&semi;<&sol;p>&NewLine;<p>&lpar;V2 I2 – V1I1&rpar; t &equals; &lpar;mn -mw&rpar; c&lpar;T2 &&num;8211&semi; T1&rpar;<&sol;p>&NewLine;<p><em>Advantages of the method over the other methods <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The presence of the vacuum prevents heat losses by convection or conduction&period;<&sol;li>&NewLine;<li>The steady temperature measured allows small temperature rises to be used and therefore suitable for determining the manner in which the specific heat capacity changes with temperature&period;<&sol;li>&NewLine;<li>Heat capacities of the apparatus not involved in the calculation&period;<&sol;li>&NewLine;<li>The method can be used for gases&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Exercise 9&period;1 <&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>A lady wanted to have a warm bath at 40°C&period; She had 5&period;0 kg of water in a basin at 85&ring;C&period; What mass of cold water at 25°C must she have added to the hot water to obtain her choice of bath&quest; Neglect heat losses and take specific heat capacity of water as 4 200 Jkg-1K-1&period;<&sol;li>&NewLine;<li>2 kg of iron at 100°C is dropped into 0&period;09 kg of water at 26 °C inside a calorimeter of mass 0&period;15 kg and specific heat capacity 800 Jkg-1K-1&period; Find the final temperature of the water&period; &lpar;Specific heat capacity of iron is 460 J kg-1K-1and that of water 4200 Jkg-1K-1&rpar;<&sol;li>&NewLine;<li>A copper calorimeter of mass 0&period;12 kg contains 0&period;1 kg of paraffin at 15°C&period; If 0&period;048 kg of aluminium at 100°C is transferred into the liquid and the final temperature of the mixture is 27°C&comma; calculate the specific heat capacity of paraffin&comma; neglecting heat losses&period; &lpar;Specific heat capacity of aluminium is 900 Jkg-1K-1and that of copper 400 Jkg-1K-1&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>CHANGE OF STATE <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Heating a material generally leads to a rise in temperature&period; However&comma; there are situations where no observable change in temperature is noted when a material is heated or cooled&period;<&sol;li>&NewLine;<li>When ice at -10⁰C is heated and temperature recorded at intervals as while stirring&comma; the following observations are made<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Observation <&sol;em><&sol;p>&NewLine;<ol>&NewLine;<li>The thermometer records a temperature rise of the ice until it reaches O°C&period;<&sol;li>&NewLine;<li>The temperature remains at 0 °C while ice changes to water at O°C&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>After all the ice has melted&comma; temperature raises again&comma;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Explanation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>When the ice at about -10 °C is heated&comma; the heat energy is used in raising its temperature to °C&period;<&sol;li>&NewLine;<li>The energy given to the ice at 0 °C is used to change ice from solid to liquid state&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Conclusion <&sol;em><&sol;p>&NewLine;<p>The heat supplied to ice at 0 °C does not change the temperature of the ice&comma; but changes its state from solid to liquid &lpar;melting&rpar;&period;<&sol;p>&NewLine;<p>The heat absorbed as the ice melts is called <strong>latent heat&period; <&sol;strong>The term &&num;8216&semi;latent&&num;8217&semi; means &&num;8216&semi;hidden&&num;8217&semi;&period; It is used thus because the ice at 0 °C is converted water at 0 °C without change in temperature&period;<&sol;p>&NewLine;<p><strong>Latent Heat of Fusion <&sol;strong><&sol;p>&NewLine;<p><strong>Latent heat of fusion<&sol;strong> is defined as the heat required to change the state of a material from solid to liquid without temperature change&period; Conversely&comma; as a liquid changes to solid state&comma; latent heat of fusion is given out&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong><em>EXPERIMENT<&sol;em>&colon; <em>To explore the change of state of naphthalene using the <&sol;em><&sol;strong><strong><em>cooling curve<br &sol;>&NewLine;Apparatus <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Naphthalene is heated to melt and then allowed to cool&period;<&sol;p>&NewLine;<p>The temperature is recorded in intervals of time and a graph of temperature against time is plotted<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>                                       <&sol;em><&sol;p>&NewLine;<p><em>Observation <&sol;em><&sol;p>&NewLine;<p>During cooling&comma; the temperature of liquid naphthalene falls from about 90°C to about 80 °C&comma; where it remains constant for some time&period;<&sol;p>&NewLine;<p>At this temperature&comma; all the naphthalene gradually changes to solid&comma; after which the temperature falls further to room temperature&period;<&sol;p>&NewLine;<p>The graph of temperature against time is as shown in figure<&sol;p>&NewLine;<p><em>Cooling curve for naphthalene<&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Explanation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The portion OP represents the liquid naphthalene cooling&period;<&sol;li>&NewLine;<li>In PQ&comma; the liquid naphthalene changes to solid without change in temperature&period;<&sol;li>&NewLine;<li>Point P is the freezing point&comma; where the naphthalene is solidifying &lpar;and also the melting point&rpar;&period;<&sol;li>&NewLine;<li>In portion QR&comma; solid naphthalene cools to room temperature at R&period;<&sol;li>&NewLine;<li>During the period PQ&comma; the liquid naphthalene is losing latent heat of fusion as it solidifies&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Specific Latent Heat of Fusion <&sol;strong><&sol;p>&NewLine;<p><strong>the specific latent heat of fusion of a substance is defined as the quantity of heat energy required to change a unit mass of the substance from solid to liquid without change in temperature<&sol;strong>&period;<&sol;p>&NewLine;<p>Q &equals; mLf&comma; where Lf is the specific latent heat of fusion&period; The SI unit of specific latent heat is Jkg-1&period;<&sol;p>&NewLine;<p>Lf &equals; Q&sol;m<&sol;p>&NewLine;<p><em>Note&colon; <&sol;em>A unit mass of a material changing from liquid to solid would give out heat energy equal to its specific latent heat of fusion&period;<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>EXPERIMENT<&sol;em>&colon; <em>To determine the quantity of heat required to change unit mass of ice to water<br &sol;>&NewLine;Apparatus <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Water&comma; ice pieces&comma; thermometer&comma; calorimeter&comma; stirrer&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Determining latent heat of fusion of ice<br &sol;>&NewLine;Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Pour water previously heated to about 5 °C above room temperature into a clean dry copper calorimeter of known mass&period;<&sol;li>&NewLine;<li>Pour water previously heated to about 5&ring;C above room temperature into a clean dry copper calorimeter of known mass<&sol;li>&NewLine;<li>Find the mass of the calorimeter with water&period;<&sol;li>&NewLine;<li>Record the temperature of the contents and add pieces of dry melting ice one at a time&comma; each time stirring until the piece melts before adding the next&period;<&sol;li>&NewLine;<li>Continue the process until the temperature falls to about 5 °C below room temperature&period;<&sol;li>&NewLine;<li>Find the mass of the calorimeter with the mixture&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Note <&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Warming the water so that its temperature rises by a given value above room temperature then cooling it to a temperature which is the same value below room temperature balances the heat exchange between the calorimeter with its contents and the surrounding&period;<&sol;li>&NewLine;<li>&&num;8216&semi;Dry ice&&num;8217&semi; is one which has minimum water moisture on its surface&period; It is used so that any heat absorbed is utilized in changing of state from solid to liquid&comma; but not in warming the water&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Results and Calculations <&sol;em><&sol;p>&NewLine;<p>Mass of calorimeter and stirrer &equals; m1<br &sol;>&NewLine;Mass of water and calorimeter &equals;m2<br &sol;>&NewLine;Mass of calorimeter and mixture &equals; m3<br &sol;>&NewLine;Temperature of water in calorimeter &equals; T1<br &sol;>&NewLine;Final temperature of mixture &equals; T2<&sol;p>&NewLine;<p>Mass of water used &equals; m2 &&num;8211&semi; m1 &equals; mw<&sol;p>&NewLine;<p>Mass of ice melted &equals; m3 – m2 &equals; mm<br &sol;>&NewLine;Temperature change &equals; T2 – T1<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Heat lost   heat lost &equals;     heat gained         &plus;     heat gained      &plus;              heat gained<&sol;p>&NewLine;<p>&lpar;By warm water&rpar;          &lpar;By calorimeter&rpar;      &lpar;Ice at 0 °C to water at 0°C&rpar;    &lpar;Water at0 °C to final temp T2&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Let the quantity of heat required to melt a unit mass of ice at 0 °C to water at 0 °C be Lf<br &sol;>&NewLine;mw Cw &lpar;T1 &&num;8211&semi; T2&rpar; &plus; m2cc&lpar;T1 &&num;8211&semi; T2&rpar; &equals; mm Lf&plus; mw Cw &lpar;T2 -0&rpar;<&sol;p>&NewLine;<p>where Cw and Cc are specific heat capacities of water and calorimeter material respectively&period;<&sol;p>&NewLine;<p><strong>Lf &equals; <u>m<sub>w<&sol;sub> c<sub>w<&sol;sub> &lpar;T<sub>1<&sol;sub> – T<sub>2<&sol;sub>&rpar; &plus; m<sub>c<&sol;sub>c<sub>c<&sol;sub>&lpar;T<sub>1<&sol;sub> – T<sub>2<&sol;sub>&rpar; &&num;8211&semi; m<sub>w<&sol;sub> c<sub>w<&sol;sub> T<sub>2<&sol;sub><&sol;u> <&sol;strong><&sol;p>&NewLine;<p><strong>                  mm<&sol;strong><&sol;p>&NewLine;<p>This is the quantity of heat energy required to melt unit mass of ice at constant temperature and is referred to as the specific latent heat of fusion of ice&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong><em>EXPERIMENT&colon; To determine specific latent heat of ice by electrical method <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>Apparatus <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Crushed ice&comma; two filter funnels&comma; two beakers&comma; voltmeter&comma; ammeter&comma; rheostat&comma; heater&comma; two<br &sol;>&NewLine;thermometers&comma; and stopwatch&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Put equal quantities of crushed ice into two identical filter funnels P and Q&comma;<&sol;p>&NewLine;<ul>&NewLine;<li>Place an immersion heater connected to an ammeter&comma; voltmeter and rheostat in P&comma; making sure it is completely covered with ice&period;<&sol;li>&NewLine;<li>At the same time as you switch on the immersion heater&comma; place dry empty beakers of known masses under P and Q&period;<&sol;li>&NewLine;<li>Note the reading of the ammeter and voltmeter &lpar;adjust the rheostat to keep them constant throughout the experiment&rpar;&period;<&sol;li>&NewLine;<li>When a reasonable amount of water has collected in the beaker under P&comma; note the time&comma; remove the beakers and switch off the heater&period;<&sol;li>&NewLine;<li>Weigh the beakers and their contents&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Results and Calculations <&sol;em><&sol;p>&NewLine;<p>Mass of beaker under P before experiment &equals; m1<br &sol;>&NewLine;Mass of beaker under P after experiment &equals;m2<&sol;p>&NewLine;<p>Mass of ice melted in P during experiment &equals; &lpar;m2 &&num;8211&semi; m1&rpar; &equals; mn<br &sol;>&NewLine;Mass of beaker under Q before experiment &equals; m3<&sol;p>&NewLine;<p>Mass of beaker under Q after experiment &equals; m4<&sol;p>&NewLine;<p>Mass of ice melted in Q during experiment &equals; &lpar;m4 – m3&rpar; &equals;mm<br &sol;>&NewLine;Reading of ammeter &equals; I<&sol;p>&NewLine;<p>Reading of voltmeter &equals; V<&sol;p>&NewLine;<p>Time during which heater is switched on &equals; <strong>t <&sol;strong>seconds&period;<&sol;p>&NewLine;<ul>&NewLine;<li>The funnel Q and its contents is the control experiment&period;<&sol;li>&NewLine;<li>It enables the mass of ice melted due to the temperature of the room during the experiment to be obtained&period;<&sol;li>&NewLine;<li>It is reasonable to assume that the same mass will be melted in P&period;<&sol;li>&NewLine;<li>Thus&comma; the mass of ice melted by the heater is mm- mn &equals; m<br &sol;>&NewLine;Then&comma; heat energy supplied by the heater &equals; heat energy gained by melting the ice<br &sol;>&NewLine;<strong>VIt &equals; mLf <&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Lf &equals; <u>VIt<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>         m<&sol;strong><&sol;p>&NewLine;<p>where Lf is the specific latent heat of fusion of ice&period;<&sol;p>&NewLine;<p>The SI unit for specific latent heat of fusion is Jkg-1<&sol;p>&NewLine;<p><strong>Table gives values of specific latent heat of fusion of some common materials&period; <&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"144"><em>Material <&sol;em><&sol;td>&NewLine;<td width&equals;"291"><em>Specific latent heat of Jus ion &lpar;<&sol;em>x<em> 10<sup>5<&sol;sup> Jkg<sup>-1<&sol;sup>&rcub; <&sol;em><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Copper<&sol;td>&NewLine;<td width&equals;"291">4&period;0<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Alwninium<&sol;td>&NewLine;<td width&equals;"291">3&period;9<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Water &lpar;Ice&rpar;<&sol;td>&NewLine;<td width&equals;"291">3&period;34<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Iron<&sol;td>&NewLine;<td width&equals;"291">2&period;7<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Wax<&sol;td>&NewLine;<td width&equals;"291">1&period;8<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Naphthalene<&sol;td>&NewLine;<td width&equals;"291">1&period;5<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Solder<&sol;td>&NewLine;<td width&equals;"291">0&period;7<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Lead<&sol;td>&NewLine;<td width&equals;"291">0&period;026<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"144">Mercury<&sol;td>&NewLine;<td width&equals;"291">0&period;013<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><em>Example 9 <&sol;em><&sol;p>&NewLine;<p>In an experiment to determine the specific latent heat of fusion of ice&comma; 0&period;025 kg of dry ice at 0&ring;C is melted up in 0&period;20 kg of water at 21°C in a copper calorimeter of mass 0&period;25 kg&period; If the final temperature of the mixture falls to 11 &ring;C&comma; what is the specific latent heat of fusion of ice&quest; &lpar;Take the specific heat capacity of water as 4200 Jkg-1K-1 and that of copper as 400 Jkg-1K-I&rpar;&period;<&sol;p>&NewLine;<p><em>Solution <&sol;em><&sol;p>&NewLine;<p>Heat loss by &plus;                                       heat lost by water   &equals;    heat gained                           &plus; heat gained<&sol;p>&NewLine;<p>calorimeter                           by melting ice      by melted ice<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>0&period;25 x 400 x 10 &plus; 0&period;2 x 4 200 x 10 &equals; 0&period;025L &plus; 0&period;025 x 4 200 x 11&comma;<&sol;p>&NewLine;<p>where L is the specific latent heat of fusion of ice&period;<&sol;p>&NewLine;<p>1 000 &plus; 8 400 &equals; 0&period;025L &plus; 1 155<&sol;p>&NewLine;<p>0&period;025L &equals;&equals; 9400 &&num;8211&semi; 1 155<&sol;p>&NewLine;<p>L &equals;&equals; <u>8245<&sol;u><&sol;p>&NewLine;<p>0&period;025<&sol;p>&NewLine;<p>&equals; 329 800 Jkg-1<&sol;p>&NewLine;<p>&equals; 3&period;298 x 105 Jkg-1<&sol;p>&NewLine;<p>Hence the specific latent heat of fusion of ice is 3&period;298 x 1 &lpar;&rpar;5 Jkg-l&period;<&sol;p>&NewLine;<p><strong>Latent Heat of Vaporization <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>The specific latent heat of vaporization &lpar;Lv&rpar; of a material is the quantity of heat required to change a unit mass of the material from liquid to vapour without change of temperature&period;<&sol;li>&NewLine;<li>The heat absorbed by a liquid as it change to vapour is the same heat energy given out by the vapour as it changes its state to liquid without change in temperature&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>Q&equals;mLv <&sol;strong><&sol;p>&NewLine;<p>The SI unit of specific latent heat of vaporization is Jkg-1<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><em>EXPERIMENT&colon; To determine the specific latent heat of vaporization of a liquid &lpar;water&rpar;<br &sol;>&NewLine;USING THE METHOD OF MIXTURES <&sol;em><&sol;strong><&sol;p>&NewLine;<p><em>Apparatus <&sol;em><&sol;p>&NewLine;<p>Calorimeter&comma; stirrer&comma; water&comma; thermometer&comma; flask&comma; delivery tube&comma; heat source&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>PROCEDURE<&sol;p>&NewLine;<ul>&NewLine;<li>Set up the apparatus as in figure above&period;<&sol;li>&NewLine;<li>Find the mass of the calorimeter when empty &equals; mc<&sol;li>&NewLine;<li>Find the mass of the calorimeter when filled with water to the level shown&period; &equals; m2<&sol;li>&NewLine;<li>Place the calorimeter with its contents in a felt jacket &lpar;lagging material&rpar;&period;<&sol;li>&NewLine;<li>Record the initial temperature of water in the calorimeter&period; &equals; T1<&sol;li>&NewLine;<li>Boil the water in the flask until steam starts issuing out freely through the delivery tube&period;<&sol;li>&NewLine;<li>Bring the free end of the delivery tube into the water in the calorimeter&period;<&sol;li>&NewLine;<li>Allow steam to bubble into the water while stirring until the temperature of the water rises by 20 &ring;<em>C <&sol;em>above room temperature&period;<&sol;li>&NewLine;<li>Remove the delivery tube from the calorimeter and record the temperature of the water&period;<&sol;li>&NewLine;<li>Determine the mass of the calorimeter with condensed steam&period; &equals; m3<&sol;li>&NewLine;<li>Determine the final temperature of condensed steam &equals; T2<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Results and Calculations <&sol;em><&sol;p>&NewLine;<p>Mass of water &equals; &lpar;m2 – mc&rpar; &equals; mw<&sol;p>&NewLine;<p>Mass of condensed steam &equals;m3 – m2&equals; ms<br &sol;>&NewLine;Temperature change &equals; T2 &&num;8211&semi; T1<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>NB&colon; When steam passes into the water&comma; it first changes to water at 100 °C and then cools from 100 °C to final temperature of the mixture T2&comma;<&sol;li>&NewLine;<li><strong>Heat lost by condensing steam &equals; msLv&semi;<&sol;strong> where Lvis the specific latent heat of vaporization of steam&period;<&sol;li>&NewLine;<li><strong>Heat lost by cooling water &equals; mscw&lpar;100 &&num;8211&semi; T2&rpar;<&sol;strong> where Cw is the specific heat capacity of water&period;<&sol;li>&NewLine;<li><strong>Heat gained by calorimeter and stirrer &equals; mccc&lpar;T2 &&num;8211&semi; T1&rpar;&comma;<&sol;strong> where c is the specific heat capacity of the calorimeter&period;<&sol;li>&NewLine;<li><strong>Heat gained by water &equals; mwcw&lpar;T2- T1&rpar; <&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Therefore<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Heat lost by steam &plus; heat lost by water &equals; heat gained by water   &plus; heat gained by calorimeter<&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;condensation&rpar;          &lpar;100&ring;C-T2&rpar;     <&sol;strong><&sol;p>&NewLine;<p><strong>msLv &plus; mscw&lpar;100-T2&rpar;  &equals;  mwcw&lpar;T2-T1&rpar; &plus;  mccc&lpar;T2-T1&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Lv  &equals;  <u>m<sub>w<&sol;sub>c<sub>w<&sol;sub>&lpar;T<sub>2<&sol;sub>-T<sub>1<&sol;sub>&rpar; &plus;  m<sub>c<&sol;sub>c<sub>c<&sol;sub>&lpar;T<sub>2<&sol;sub>-T<sub>1<&sol;sub>&rpar;- m<sub>s<&sol;sub>c<sub>w<&sol;sub>&lpar;100-T<sub>2<&sol;sub>&rpar;<&sol;u>  <&sol;strong><&sol;p>&NewLine;<p><strong>                    ms<&sol;strong><&sol;p>&NewLine;<p><em>Note&colon; <&sol;em><&sol;p>&NewLine;<p>Errors due to heat loss to the surroundings can be minimized by first cooling the water in the calorimeter by a given value below room temperature and then passing the steam until the temperature rises above room temperature by the same value&period;<&sol;p>&NewLine;<p><em>Example 10 <&sol;em><&sol;p>&NewLine;<p>Dry steam is passed into a well-lagged copper calorimeter of mass 0&period;25 kg containing 0&period;50 kg of water and 0&period;02 kg of ice at 0 ⁰C&period; The mixture is well stirred and the steam supply cut off when the temperature of the calorimeter and its contents reaches 25°C&period; Neglecting heat losses&comma; if 25g of steam is found to have condensed to water and Specific heat capacity of copper is 400 Jkg-1K-1and latent heat of fusion of water is 3&period;36 x105 Jkg-1&rpar; find&colon;<&sol;p>&NewLine;<ol>&NewLine;<li>Heat lost by the steam<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>H&equals;m Lv<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;0&period;025Lv<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Heat lost by hot water<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>H&equals;mc∆T<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;0&period;025 x 4 200 &lpar;100 <&sol;strong><strong>⁰C &&num;8211&semi; 25°C&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;7 875J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Heat gained by calorimeter<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>H&equals;mc∆T<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;0&period;25 x 400 x 25<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;2500J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Heat gained by ice<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>H&equals;m Lf<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;0&period;02 x 336000<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;6 720J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Heat gained by cold water<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>H&equals;mc∆T<&sol;strong><&sol;p>&NewLine;<p><strong>&equals;&lpar;0&period;5 &plus; 0&period;02&rpar; 4 200 x 25 <&sol;strong><&sol;p>&NewLine;<p><strong>&equals;54600J<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>the specific latent heat of vaporization of water<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong><em>Solution <&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong>heat lost by steam&plus; heat lost by water &equals;  heat gained    &plus;  heat gained by      &plus; heat gained by <&sol;strong><&sol;p>&NewLine;<p><strong>&lpar;condensation&rpar;        &lpar;100 <&sol;strong><strong>⁰C &&num;8211&semi; 25 <&sol;strong><strong>⁰C&rpar;      by ice &lpar;fusion&rpar;    water &lpar;0 <&sol;strong><strong>⁰C &&num;8211&semi; 25 <&sol;strong><strong>⁰C&rpar;     calorimeter<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Let L be the specific latent heat of vaporization of water &plus; heat gained by <&sol;strong><&sol;p>&NewLine;<p><strong>0&period;025L &plus; 7 875 &equals; 6 720 &plus; 54 600 &plus; 2 500 0&period;025L &equals; 55 945<br &sol;>&NewLine;L&equals; <u>55945<br &sol;>&NewLine;<&sol;u>     0&period;025 <&sol;strong><&sol;p>&NewLine;<p><strong>&equals; 2237800 Jkg-1&period;<&sol;strong><&sol;p>&NewLine;<p>Specific latent heat of vaporization of water is 2&period;238 x 106 Jkg-1&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><strong><em>Determining specific latent of vaporization of water using ELECTRICAL METHOD <&sol;em><&sol;strong><&sol;p>&NewLine;<p>Beaker&comma; flask&comma; heater coil&comma; condenser&comma; water&comma; stop watch&comma; voltmeter&comma; rheostat&comma; ammeter power source&period;<&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>                                        <&sol;em><&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Set up the apparatus as shown in figure 9&period;13&period;<&sol;li>&NewLine;<li>Switch on the heater and maintain a steady current using the variable resistor&period;<&sol;li>&NewLine;<li>Allow the heating to continue until the system reaches a steady state&comma; where condensed water issues down the tube T at a constant rate&period;<&sol;li>&NewLine;<li>Weigh the beaker and place it under the tube to collect the condensed water and simultaneously start timing&period;<&sol;li>&NewLine;<li>When a measurable quantity of water has collected in the beaker&comma; remove the beaker as you stop the watch&period;<&sol;li>&NewLine;<li>Record the time taken and weigh the beaker with condensed water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Results and Calculations <&sol;em><&sol;p>&NewLine;<p>Ammeter reading &equals; I<&sol;p>&NewLine;<p>Voltmeter reading &equals; V<&sol;p>&NewLine;<p>Mass of empty beaker &equals; mB<&sol;p>&NewLine;<p>Mass of beaker with condensed water &equals; m2<br &sol;>&NewLine;Time taken to collect the condensed water &equals; t<br &sol;>&NewLine;Mass of condensed water &equals; m2 &&num;8211&semi; mB&equals; ms<&sol;p>&NewLine;<p>Assuming that all the heat given by the heater coil is used in vaporizing the water and all the steam is condensed&comma; the specific latent heat of vaporization of water is calculated as follows&semi;<br &sol;>&NewLine;heat supplied by the heater coil &equals; heat used to vaporize the water&period;<&sol;p>&NewLine;<p><strong>VIt &equals; mcLv <&sol;strong><&sol;p>&NewLine;<p><strong>Lv &equals; <u>&lpar; VIt &rpar;<&sol;u> &comma; <&sol;strong><&sol;p>&NewLine;<p><strong>            mc   <&sol;strong>where Lv is the specific latent of vaporization&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Table 9&period;3 gives values of specific latent heat of vaporization for some common materials&period;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"127"><em>Material <&sol;em><&sol;td>&NewLine;<td width&equals;"304"><em>Specific latent of vaporization <&sol;em><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"304"><em>&lpar; x <&sol;em>10<sup>5<&sol;sup> <em>Jkg-1&rpar; <&sol;em><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"304"><em> <&sol;em><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Water<&sol;td>&NewLine;<td width&equals;"304">22&period;6<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Alcohol<&sol;td>&NewLine;<td width&equals;"304">8&period;6<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Ethanol<&sol;td>&NewLine;<td width&equals;"304">8&period;5<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Petrol<&sol;td>&NewLine;<td width&equals;"304">6&period;3<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Benzene<&sol;td>&NewLine;<td width&equals;"304">4&period;0<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Ether<&sol;td>&NewLine;<td width&equals;"304">3&period;5<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"127">Turpentine<&sol;td>&NewLine;<td width&equals;"304">2&period;7<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Example 11 <&sol;em><&sol;p>&NewLine;<p>Calculate the quantity of heat required to change 0&period;50 kg of ice at -10°C completely into steam at 100 °C Take&colon;<&sol;p>&NewLine;<p>specific heat capacity of ice &equals; 2 100 Jkg-1K-1<&sol;p>&NewLine;<p>specific heat capacity of water &equals; 4 200 Jkg-1K<&sol;p>&NewLine;<p>specific latent heat of fusion of ice &equals; 3&period;36 x 1&lpar;&rpar;5 Jkg-1<br &sol;>&NewLine;specific latent heat of vaporisation of steam 2&period;26 x 106 Jkg-1<&sol;p>&NewLine;<p><em>Solution <&sol;em><&sol;p>&NewLine;<p><strong>Quantity of heat gained by ice to raise its temperature to 0&ring;C<br &sol;>&NewLine;mcΔT &equals; 0&period;50 x 2100 x 10 <&sol;strong><&sol;p>&NewLine;<p><strong>&equals; 10500J <&sol;strong><&sol;p>&NewLine;<p><strong>Quantity of heat required to change the ice into water&semi;<br &sol;>&NewLine;mL&equals; 0&period;50 x 336 000 <&sol;strong><&sol;p>&NewLine;<p><strong>&equals; 168000 J <&sol;strong><&sol;p>&NewLine;<p><strong>&period; Quantity of heat required to raise temperature of water to 100 DC&semi;<br &sol;>&NewLine;mcΔT &equals; 0&period;50 x 4 200 x 100 <&sol;strong><&sol;p>&NewLine;<p><strong>&equals; 210 OOOJ <&sol;strong><&sol;p>&NewLine;<p><strong>Quantity of heat required to vaporize water&semi;<br &sol;>&NewLine;mLv &equals; 0&period;5 x 2 260 000 <&sol;strong><&sol;p>&NewLine;<p><strong>&equals; 1130000J <&sol;strong><&sol;p>&NewLine;<p><strong>Total heat energy &equals; 10 500 &plus; 168000&plus; 210 000 &plus; 1 130000<br &sol;>&NewLine;&equals; 1518500 J <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Factors Affecting Melting and Boiling Points <&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong>pressure <em>on melting point <&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em>Apparatus <&sol;em><&sol;p>&NewLine;<p>Block of ice&comma; thin copper wire&comma; two heavy weights&comma; and wooden support&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Attach two heavy weights to the ends of a thin copper wire&period;<&sol;li>&NewLine;<li>Pass the string over a large block of ice&comma; as shown above<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Observation <&sol;em><&sol;p>&NewLine;<p>The wire gradually cuts its way through the ice block&comma; but leaves it as one piece&period;<&sol;p>&NewLine;<p><em>Explanation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Because of the hanging weights&comma; the wire exerts pressure on the ice beneath it and therefore<br &sol;>&NewLine;makes it melt at a temperature lower than its melting point&period;<&sol;li>&NewLine;<li>Once the ice has melted&comma; the water formed flows over the wire and immediately solidifies since it is no longer under pressure&period;<&sol;li>&NewLine;<li>As it solidifies&comma; the latent heat of fusion is released and is conducted by the copper wire to melt the ice below the copper wire&period;<&sol;li>&NewLine;<li>The process continues until the wire cuts through leaving the block intact&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Conclusion <&sol;em><&sol;p>&NewLine;<p>Application of pressure on ice lowers the melting point&period;<br &sol;>&NewLine;<em>Note&colon; <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The thermal conductivity of the wire used in this experiment plays a crucial role&period;<&sol;li>&NewLine;<li>If an iron wire with lower conductivity is used&comma; it will cut through&comma; but much more slowly&period;<&sol;li>&NewLine;<li>Cotton string&comma; which is a poor conductor&comma; will not cut through the ice block at all&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>The process of refreezing is known as regelation&period;<&sol;p>&NewLine;<p><strong>Applications of the Effects of Pressure on Melting Point of Ice<br &sol;>&NewLine;<&sol;strong><em>Ice Skating <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The weight of an ice-skater acts on the thin blades of the skates&period;<&sol;li>&NewLine;<li>The high pressure exerted by the thin blades melts the ice underneath&comma; forming a thin film of water over which the skater slides&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Joining Ice Cubes under Pressure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Two ice cubes can be joined together by pressing them hard against each other&period;<&sol;li>&NewLine;<li>The increased pressure lowers the melting point of the ice at the points of contact&period; With the pressure lowered&comma; the water recondenses and the two cubes join together&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li><strong>Impurities <&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>The presence of impurities lowers the melting point of a substance&period;<&sol;li>&NewLine;<li>An application of this is where salt is spread to prevent freezing on roads and paths during winter&period; Similarly&comma; a freezing mixture can be made by mixing ice with salt&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u>BOILING <&sol;u><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li><strong>a&rpar;Increasing the pressure<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"74"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>When the water begins boiling and steam issues from the rubber tube steadily&comma; squeeze<br &sol;>&NewLine;the rubber tube momentarily and observe the thermometer shows a rise in temperature and the boiling reduces&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Explanation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Closing the rubber tube causes an increase in vapour pressure within the flask&period;<&sol;li>&NewLine;<li>This makes it more difficult for molecules from the surface of the liquid to escape&comma; raising the boiling point of the liquid&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Conclusion <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Increase in pressure increases boiling point of a liquid&period;<&sol;li>&NewLine;<li>An application of this concept is the pressure cooker&period; It has tight-fitting lid which prevents free escape of steam&comma; thus making pressure inside it build up&period;<&sol;li>&NewLine;<li>The boiling point is increased to a higher temperature&comma; enabling food to cook more quickly&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>b&rpar;Reducing the pressure<&sol;strong><&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Heat water in a round-bottomed flask fitted with a thermometer and a tube&period;<&sol;li>&NewLine;<li>Stop heating&comma; close the clip and turn the flask upside down&period;<&sol;li>&NewLine;<li>Run cold water over the flask&comma;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em> Observation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The water stops boiling when the heating is stopped&period; When cold water is then run over the flask&comma; the water inside begins boiling again&comma; even though its temperature is below boiling point&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Explanation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The cold water condenses the steam and therefore reduces vapour pressure inside the flask&period;<br &sol;>&NewLine;This lowers the boiling point of the liquid&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Conclusion <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Decrease in pressure lowers the boiling point of a liquid&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol start&equals;"2">&NewLine;<li><strong>the effect of impurities on boiling point<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em> <&sol;em><&sol;p>&NewLine;<p><em>Procedure <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>Heat some distilled water in a beaker and note the boiling point&period;<&sol;li>&NewLine;<li>Make a strong salt solution and repeat the experiment &period;<&sol;li>&NewLine;<li>Record the new boiling point&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Observation <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The boiling point of the salt solution is higher than that of the distilled water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><em>Conclusion <&sol;em><&sol;p>&NewLine;<ul>&NewLine;<li>The presence of impurities in a liquid raises its boiling point&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Evaporation <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Molecules in a liquid are in a continuous random motion with varying kinetic energy&period;<&sol;li>&NewLine;<li><strong>evaporation<&sol;strong> This process in which molecules at the surface of the liquid acquire sufficient kinetic energy to overcome the attractive force from the neighboring molecules in the liquid&comma; and thus escape<&sol;li>&NewLine;<li>it occurs at all temperatures&comma; even before boiling point&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li><strong>Effects of Evaporation <&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Pour some methylated spirit on the back of your hand&period; The hands feel cold as the spirit evaporates from the skin&period; The evaporating methylated spirit extracts latent heat from the skin&comma; making it feel cold&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;ii&rpar;           In a fume chamber&comma; pour some ether into a test tube&period; Bubble air through the ether using a long rubber tubing&period;<&sol;p>&NewLine;<p>Frost forms on the outside surface of the tube&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>The evaporating ether draws latent heat of vaporization from the liquid ether&comma; the test tube and the surrounding space&period;<&sol;li>&NewLine;<li>The tube therefore cools so that frost forms around it&period; Bubbling increases the surface area of ether exposed to air&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;iii&rpar; Place a beaker on film of water on a wooden block&period; Pour some ether into the beaker and blow air through the ether using a foot pump&period;<&sol;p>&NewLine;<p>The ether quickly evaporates and after sometime&comma; it is found that the beaker is stuck to the wooden block&comma; a thin layer of ice having formed between them&period; This shows that evaporation causes cooling&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Factors affecting Rate of Evaporation <&sol;strong><&sol;p>&NewLine;<p><em>Temperature <&sol;em><&sol;p>&NewLine;<p>Increasing the temperature of a liquid makes its molecules on its surface move faster&period; This<br &sol;>&NewLine;makes it easier for more of them to escape&comma; enhancing evaporation&period; It takes shorter time for<br &sol;>&NewLine;cloths to dry on a hot day&period;<&sol;p>&NewLine;<p><em>Surface Area <&sol;em><&sol;p>&NewLine;<p>Increasing the area of the liquid surface gives the faster molecules greater chance of escaping&period;<br &sol;>&NewLine;A wet bed-sheet dries faster when spread out than when folded&period;<&sol;p>&NewLine;<p><em>Draught <&sol;em><&sol;p>&NewLine;<p>Passing air over the liquid surface sweeps away the escaping vapour molecules&period; This clears the way for more escaping molecules to enter the space&period; This is why wet clothes dry faster on a windy day&period;<&sol;p>&NewLine;<p><em>Humidity <&sol;em><&sol;p>&NewLine;<p>Humidity is the concentration of water vapour in the atmosphere&period; When humidity is high&comma; there are more vapour molecules in the space above the liquid surface&period; This makes it more difficult for the water molecules to leave the surface&period; Wet clothes take longer time to dry up on a humid day&period;<&sol;p>&NewLine;<p><strong>Comparison between boiling and evaporation <&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"239"><em>Evaporation <&sol;em><&sol;td>&NewLine;<td width&equals;"236"><em>Boiling <&sol;em><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"239">Takes place at all temperatures<&sol;td>&NewLine;<td width&equals;"236">Takes place at a fixed temperature&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"239">Takes place on the surface of the liquid&period;<&sol;td>&NewLine;<td width&equals;"236">Takes place throughout the liquid&comma; with<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"239">No bubbles are formed&period;<&sol;td>&NewLine;<td width&equals;"236">bubbles of steam forming all over&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"239">Decreasing the atmospheric pressure<&sol;td>&NewLine;<td width&equals;"236">Decreasing atmospheric pressure<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"239">increases the rate of evaporation&period;<&sol;td>&NewLine;<td width&equals;"236">lowers the boiling point&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong>Application of Cooling by Evaporation<&sol;strong><br &sol;>&NewLine;<em>Sweating <&sol;em><&sol;p>&NewLine;<p>When sweat evaporates&comma; it draws latent heat from the skin&comma; producing a cooling effect&period; Animals have different mechanisms of cooling their bodies&period; A dog exposes its tongue when it is hot&comma; while the muzzle of a cow gets more wet when it is hot&period;<&sol;p>&NewLine;<p><em>Cooling of Water in a Porous Pot <&sol;em><&sol;p>&NewLine;<p>A porous pot has tiny pores&comma; through which water slowly seeps out&period; When this water evaporates&comma; it cools the pot and its contents&period;<&sol;p>&NewLine;<p><em>The Refrigerator <&sol;em><&sol;p>&NewLine;<p>The effect of cooling caused by evaporation is made use of in the refrigerator&period;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"123"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>In the upper coil&comma; the volatile liquid &lpar;Freon&rpar; takes latent heat from the air around and evaporates&comma; causing cooling in cabinet&period;<&sol;li>&NewLine;<li>The vapour is removed by the pump into the lower coil outside the cabinet&comma; where it is compressed and changes back to liquid form&period;<&sol;li>&NewLine;<li>During this process&comma; heat is given out and conducted by the copper fins to the surrounding air&period;<&sol;li>&NewLine;<li>The liquid goes back to the copper coil and the cycle is repeated&period;<&sol;li>&NewLine;<li>There is also a thermostat which controls the rate of evaporation and hence the temperature inside the refrigerator&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Figure 11 shows the features of a domestic refrigerator&period; A volatile liquid circulates through the capillary tubes under the action of the compression pump&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>&lpar;i&rpar; State the reason for using a volatile liquid                                                            &lpar;1 mark&rpar;<&sol;strong><&sol;p>&NewLine;<p><em>So that it vaporizes readily&sol; easily                                               <&sol;em><&sol;p>&NewLine;<p><strong>&lpar;ii&rpar; Explain how the volatile liquid is made to vaporize in the cooling compartment and to condense in the cooling fins                                 &lpar;2 marks&rpar;<&sol;strong><&sol;p>&NewLine;<p><em>In the freezing compartment the pressure in the volatile liquid is lowered suddenly by increasing the diameter of the tube causing vaporization in the cooling fins&comma; the  pressure  is increased by the compression pump and heat lost to the outside causing condensation&period;<&sol;em><&sol;p>&NewLine;<p><em>Acquires heat of the surrounding causing the liquid to vaporize<&sol;em><&sol;p>&NewLine;<p><strong>     &lpar;iii&rpar; Explain how cooling takes place in the refrigerator                                             &lpar;3 marks&rpar;<&sol;strong><&sol;p>&NewLine;<p><em>When the volatile liquid evaporates&comma; it takes away heat of vaporization to form the freezing compartment&comma; reducing the temperature of the latter&period; This heat is carried away and disputed at the cooling fins where the vapour is compressed to condensation giving up heat of vaporization<&sol;em><&sol;p>&NewLine;<p><strong>     &lpar;iv&rpar;    What is the purpose of the double wall&quest;                                              &lpar;1 mark&rpar;<&sol;strong><&sol;p>&NewLine;<p><em>Reduces rate of heat transfer to or from outside &lpar; insulates&rpar;<&sol;em><&sol;p>&NewLine;<p><em>                           Reduces &sol; minimizes&comma; rate of conduction&sol; conversion of heat transfer                         <&sol;em><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><em>Revision Exercise 9 <&sol;em><&sol;p>&NewLine;<p>&lpar;Take specific heat capacity of water as 4 200 Jkg&plus;K&colon;&&num;8217&semi;&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>Calculate the specific heat capacity of paraffin if 22 000 J of heat is required to raise the<br &sol;>&NewLine;temperature of 1&period;5 kg of paraffin from 23°C to 30 °C&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>A block of metal of mass 5 kg is heated to 110°C and then dropped into 1&period;5 kg of water&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The final temperature is found to be 50°C&period; What was the initial temperature of the water&quest;<br &sol;>&NewLine;&lpar;The specific heat capacity of the metal is 460 Jkg-1K-I&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>Water drops from a waterfall 84 m high&period; The temperature of the water at the bottom is<br &sol;>&NewLine;found to be 26&period;2 0c&period; Calculate its temperature at the top&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;

Leave a Reply

Your email address will not be published. Required fields are marked *