<p><strong><u>PHYSICS KNEC SYLLABUS AND THE CONTENTS</u></strong></p>
<p><strong><u>PAPER </u></strong><strong><u>1</u></strong><strong><u> TOPICS ARRANGED IN UNITS</u></strong></p>
<p><strong><em>Unit 1</em></strong><strong><em>(Measurement I and measurement II)</em></strong></p>
<p><strong><u>Measurement I</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define length, area,volume,mass,density,time interval and state the corresponding symbols and SI units</li>
<li>Convert other metric units to SI units</li>
<li>Estimate length, mass and time</li>
<li>Use accurately various measuring instruments</li>
<li>Determine experimentally the densities of substances</li>
<li>Solve numerical problems on density</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Definition of length,area,volume,density and time</li>
<li>Sin units and symbols</li>
<li>Estimation of quantities</li>
<li>Conversion of units</li>
<li>Measuring instruments:metre rule, tape measure, beam balance, stop clock/watch, measuring cylinder, pipette and burette</li>
<li>Experiments on density</li>
</ul>
<p><strong><u>Measurement II</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic, the learner should be able to </em></strong></p>
<ol>
<li>Measure length using vernier calipers and micrometer screw gauge</li>
<li>Estimate the diameter of a molecule of oil</li>
<li>Solve numerical problems in measurements</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Measurement of length using vernier calipers and micrometer screw gauge</li>
<li>Decimal places ,significant figures and standard forms</li>
<li>Estimation of the diameter of a molecule of oil(relate to the size of HIV virus ,mention the effects of oil spills on health and environment</li>
<li>Problems in measurements</li>
</ul>
<p><strong><em>Unit 2</em></strong><strong><em>(Force, forces and moments, equilibrium and stability, Hooke’s law, particulate nature of matter)</em></strong></p>
<p><strong><u>Force</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic, the learner should be able to:</em></strong></p>
<ol>
<li>Define force and state its SI unit</li>
<li>Describe the types of forces</li>
<li>Describe experiments to illustrate cohesion ,adhesion and cohesion</li>
<li>State the effects of force</li>
<li>State the difference between mass and weight, W=mg</li>
<li>Define scalar and vector quantities</li>
<li>Solve numerical problems involving W=mg</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Definition of force</li>
<li>Types of forces (include cohesion, adhesion and surface tension</li>
<li>Experiments to demonstrate cohesion, adhesion and surface tension(actual measurement of surface tension not required)</li>
<li>Effects of force</li>
<li>Mass, weight and their relationship</li>
<li>Scalar and vector quantities</li>
<li>Problems involving W=mg</li>
</ul>
<p><strong><u>Particulate nature of matter</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic, the learner should be able to:</em></strong></p>
<ol>
<li>Give evidence that matter is made up of tiny particles</li>
<li>Describe experiments to show that particles of matter are at constant random motion</li>
<li>Explain the states of matter in terms of particle movement</li>
<li>Explain diffusion</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Experiments to show that matter is made up of tiny particles (e.g cutting papers into small pieces ,dilution experiments etc)</li>
<li>Brownian motion</li>
<li>States of matter</li>
<li>Diffusion (grahams law not require)</li>
</ul>
<p><strong><u>Turning effect of a force</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to;</em></strong></p>
<ol>
<li>Define moment of a force about a point and state its SI unit</li>
<li>State and verify the principle of moments</li>
<li>Solve problems involving the principle of moments</li>
</ol>
<p> ;</p>
<p><strong>Content</strong></p>
<ul>
<li>Moment of force ,SI unit of moment of a force</li>
<li>Principle of moments</li>
<li>Problems on principle of moments(consider single pivot only)</li>
</ul>
<p><strong><u>Equilibrium and centre of gravity</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define center of gravity</li>
<li>Determine experimentally the center of gravity of lamina objects</li>
<li>Identify and explain the states of equilibrium</li>
<li>State and explain factors affecting stability of an object</li>
<li>Explain the applications of stability</li>
<li>Solve numerical problems involving center of gravity and moments of a force</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Center of gravity (experimental treatment required)</li>
<li>States of equilibrium</li>
<li>Factors affecting stability</li>
<li>Problems on center of gravity and moments of a force(consider single pivot only)</li>
</ul>
<p><strong> </strong></p>
<p><strong><u>Hooke’s law</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State and verify experimentally Hooke’s law</li>
<li>Determine the spring constant</li>
<li>Construct and calibrate a spring balance</li>
<li>Solve numerical problems involving Hooke’s law</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Hooke’s law</li>
<li>Spring constant</li>
<li>Spring balance</li>
<li>Problems involving Hooke’s law</li>
</ul>
<p><strong><em>Unit 3 </em></strong><strong><em>(Pressure, fluid flow, gas laws, floating and sinking)</em></strong></p>
<p><strong><u>Pressure </u></strong></p>
<p><strong>Specific objective</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define pressure and state its SI units</li>
<li>Determine pressure exerted by solids</li>
<li>Describe experiments to investigate factors affecting pressure in fluids</li>
<li>Derive the formula p=ρgh</li>
<li>State the principle of transmission of pressure in fluids (Pascal’s principle)</li>
<li>Explain atmospheric pressure and its effects</li>
<li>State and explain the applications of pressure</li>
<li>Solve numerical problems involving pressure</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Definition of pressure</li>
<li>Pressure in solids</li>
<li>Factors affecting pressure in fluids(experimental treatment required0</li>
<li>Derivation of p=ρgh</li>
<li>Atmospheric pressure</li>
<li>Simple mercury barometer, manometers</li>
<li>Applications of pressure :drinking staw,syringe,siphon,hydraulic press, hydraulic brakes, bicycle pump, force pump, lift pump</li>
<li>Problems on pressure</li>
</ul>
<p><strong><u>Fluid flow</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe streamline flow and turbulent flow</li>
<li>Derive the equation of continuity</li>
<li>Describe experiments to illustrate Bernoulli’s effect</li>
<li>Explain the Bernoulli’s effect</li>
<li>Describe the applications of Bernoulli’s effect</li>
<li>Solve numerical problems involving the equation of continuity</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Streamline flow and turbulent flow</li>
<li>Equation of continuity</li>
<li>Bernoulli’s effect(experimental treatment required)</li>
<li>Applications of Bernoulli’s effect: Bunsen burner, spray gun,carburetor,aerofoil and spinning ball</li>
<li>Problems involving the equation of continuity</li>
</ul>
<p><strong><u>Gas laws</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State the gas laws for ideal gas</li>
<li>Verify experimentally the gas laws</li>
<li>Explain how absolute zero temperature may be obtained from the pressure –temperature and volume –temperature graphs</li>
<li>Convert Celsius scale to Kelvin scale of temperature</li>
<li>State the basic assumptions of the kinetic theory of gases</li>
<li>Explain the gas laws using the kinetic theory of gases</li>
<li>Solve numerical problems involving gas laws</li>
</ol>
<p> ;</p>
<p> ;</p>
<p> ;</p>
<p><strong>Content</strong></p>
<ul>
<li>Boyle’s law, Charles’ law, pressure law, absolute zero</li>
<li>Kelvin scale of temperature</li>
<li>Gas laws and kinetic theory of gases(p=<sup>1</sup>/<sub>3</sub>pc<sup>2</sup> not required)</li>
<li>Problems involving gas laws (including <strong><sup>PV</sup></strong>/<strong><sub>T</sub></strong>=constant)</li>
</ul>
<p><strong> </strong></p>
<p><strong><u>Floating and sinking</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State Archimedes’ principle</li>
<li>Verify Archimedes’ principle</li>
<li>State the law of floatation</li>
<li>Define relative density</li>
<li>Describe the applications of Archimedes’ principle and relative density</li>
<li>Solve numerical problems involving Archimedes principles</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Archimedes’ principle ,law of floatation (experimental treatment required)</li>
<li>Relative density</li>
<li>Applications of Archimedes’ principle and relative density</li>
<li>Problems of Archimedes’ principle</li>
</ul>
<p><strong><em>Unit 4</em></strong><strong><em>(Thermal expansion, heat transfer, quantity of heat)</em></strong></p>
<p><strong><u>Thermal expansion</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define temperature</li>
<li>Describe the functioning of the various thermometers</li>
<li>Describe thermal expansion of solids, liquids and gases</li>
<li>Explain expansion in terms of particle behavior</li>
<li>Describe the unusual expansion of water and its effects</li>
<li>Explain the effects and applications of thermal expansion</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Temperature</li>
<li>Thermometer: liquid –in-glass, including clinical and six’s maximum and minimum thermometers</li>
<li>Expansion of solids, liquids and gases</li>
<li>Effects of expansion and contraction</li>
<li>Unusual expansion of water(anomalous expansion0</li>
<li>Applications of thermal expansion, include bimetallic strip</li>
</ul>
<p><strong><u>Heat transfer</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State the difference between temperature and heat</li>
<li>State and explain the modes of heat transfer</li>
<li>Describe experiments to illustrate factors affecting heat transfer</li>
<li>Explain applications of heat transfer</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Heat and temperature</li>
<li>Modes of heat transfer</li>
<li>Factors affecting heat transfer (experimental treatment required)</li>
<li>Applications of heat transfer on vacuum flask, domestic hot water system, solar concentrators</li>
</ul>
<p><strong><u>Quantity of heat</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define heat capacity and specific heat capacity</li>
<li>Determine experimentally specific heat capacity of solids and liquids</li>
<li>Define specific latent heat of fusion and specific latent heat of vaporization of steam</li>
<li>Determine experimentally the specific latent heat of fusion of ice and the specific latent heat of vaporization of steam</li>
<li>State factors affecting melting point and boiling point</li>
<li>Explain the functioning of a pressure cooker and a refrigerator</li>
<li>Solve problems involving quantity of heat</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Heat capacity , specific heat capacity, units (experimental treatment required)</li>
<li>Latent heat of fusion, latent heat of vaporization, units (experimental treatment required)</li>
<li>Boiling and melting points</li>
<li>Pressure cooker, refrigerator</li>
<li>Problems involving quantity of heat (<strong>Q=mc</strong><strong>Δ</strong><strong>T),Q=mL</strong>)</li>
</ul>
<p><strong><em>Unit 5</em></strong><strong><em>(Linear motion, Newton’s laws of motion, work, energy, uniform circular motion)</em></strong></p>
<p><strong><u>Linear motion</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define distance,displacement,speed,velocity,and acceleration</li>
<li>Describe experiments to determine velocity and acceleration</li>
<li>Determine acceleration due to gravity</li>
<li>Plot and explain motion time graphs</li>
<li>Apply the equations of uniformly accelerated motion</li>
<li>Solve numerical problems on uniformly accelerated motion</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Distance,displacement,speed,velocity,and acceleration(experimental treatment required)</li>
<li>Acceleration due to gravity free-fall, simple pendulum</li>
<li>Motion -time graphs-displacement time graphs, velocity time graphs</li>
<li>Equations of uniformly accelerated motion</li>
<li>Problems on uniformly accelerated motion</li>
</ul>
<p><strong><u>Newton’s laws of motion</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State the Newton’s laws of motion</li>
<li>Describe simple experiments to illustrate inertia</li>
<li>State the law of conservation of linear momentum</li>
<li>Define elastic collision, inelastic collision and impulse</li>
<li>Derive the equation F=ma</li>
<li>Describe the application of frictional force</li>
<li>Define viscosity</li>
<li>Explain terminal velocity</li>
<li>Solve numerical problems involving Newton’s laws and the law of conservation of linear momentum</li>
</ol>
<p>Content</p>
<ul>
<li>Newton’s laws of motion (experimental treatment of inertia required)</li>
<li>Conservation of linear momentum ,elastic collisions, inelastic collisions, recoil velocity ,impulse (oblique collisions not required)</li>
<li>The relation F=ma</li>
<li>Frictional force</li>
<li>Advantages and disadvantages</li>
<li>Viscosity and terminal velocity (qualitative treatment only)</li>
<li>Problems involving Newton’s laws and the law of conservation of linear momentum(exclude problems on elastic collisions)</li>
</ul>
<p><strong><u>Work energy power and machines</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to;</em></strong></p>
<ol>
<li>Describe energy transformation</li>
<li>State the law of conservation of energy</li>
<li>Define work,energy,power,and state their SI units</li>
<li>Define mechanical advantage ,velocity ratio and efficiency of machines</li>
<li>Solve numerical problems involving work,energy,power and machines</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Forms of energy and energy transformations</li>
<li>Sources of energy-renewable ,non-renewable</li>
<li>Law of conservation of energy</li>
<li>Work, energy and power (work done by resolved force not required)</li>
<li>Kinetic energy and potential energy</li>
<li>Simple machines</li>
<li>Problems of work,energy,power and machines</li>
</ul>
<p><strong><u>Uniform circular motion</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define angular displacement and angular velocity</li>
<li>Describe simple experiments to illustrate centripetal force</li>
<li>Explain the applications of uniform circular motion</li>
<li>Solve numerical problems involving uniform circular motion</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>The radian, angular displacement and angular velocity</li>
<li>Centripetal force; the relations F=mv<sup>2</sup>/<sub>r</sub>,F=mrω<sup>2</sup>(derivation of the formula not necessary experimental treatment required)</li>
<li>Applications of uniform circular motion</li>
<li>Centrifuge, vertical ,horizontal circles, banked tracks(calculation on banked tracks and conical pendulum not required)</li>
<li>Problems solving (applications of relations F=mv<sup>2</sup>/r ,F=mrw<sup>2</sup> in numerical calculations)</li>
</ul>
<p><strong><u> </u></strong></p>
<p><strong><u> </u></strong></p>
<p><strong><u> </u></strong></p>
<p><strong><u> </u></strong></p>
<p><strong><u> </u></strong></p>
<p><strong><u> </u></strong></p>
<p><strong><u> </u></strong></p>
<p><strong><u>PAPER</u></strong><strong><u> 2</u></strong><strong><u> TOPICS ARRANGED IN UNITS</u></strong></p>
<p><strong><em>Unit 1</em></strong><strong><em>(Rectilinear propagation, reflection at curved surfaces, refraction of light and thin lenses)</em></strong></p>
<p><strong><u>Rectilinear propagation of light </u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Perform and describe experiments to show that light travels in a straight line</li>
<li>Describe the formation of shadows and eclipses</li>
<li>Explain the functioning of a pin-hole camera</li>
<li>State the laws of reflection</li>
<li>Verify experimentally laws of reflection</li>
<li>State the characteristics of images formed by plane mirrors</li>
<li>Explain the applications of reflection at plane surfaces</li>
<li>Solve numerical problems involving pinhole camera and mirrors inclined at an angle</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Rectilinear propagation of light(experimental treatment required)</li>
<li>Formation of shadows and eclipses(umbra and penumbra)</li>
<li>Pin-hole camera :image formation and magnification</li>
<li>Laws of reflection</li>
<li>Images formed by plane mirrors, ray diagrams, parallel and inclined mirrors</li>
<li>Devices based on reflection:periscope,kaleidoscope</li>
<li>Problems on pin-hole camera and mirrors inclined at an angle</li>
</ul>
<p><strong><u>Reflection at curved surfaces</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe concave,convex,and parabolic reflectors</li>
<li>Describe using ray diagram the principal axis, principal focus, center of curvature and related terms</li>
<li>Locate images formed by curved mirrors by construction of ray diagrams</li>
<li>Determine experimentally the characteristics of images formed by a concave mirror</li>
<li>Define magnification</li>
<li>Explain the applications of curved reflecting surfaces</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Concave, convex and parabolic reflectors</li>
<li>Principal axis, principal focus, center of curvature and related terms</li>
<li>Location of images formed by curved mirrors by ray diagram method(experiments on concave mirrors required)</li>
<li>Magnification formula</li>
<li>Application of curved reflectors</li>
</ul>
<p><u> </u></p>
<p><u>Refraction of light</u></p>
<p>Specific objectives</p>
<p><strong><em>By the end topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe simple experiments to illustrate refraction of light</li>
<li>State the laws refraction of light</li>
<li>Verify Snell’s law</li>
<li>Define refractive index</li>
<li>Determine experimentally the refractive index</li>
<li>Describe experiments to illustrate dispersion of white light</li>
<li>Explain total internal reflection and its effect</li>
<li>State the application of total internal reflection</li>
<li>Solve numerical problems involving refractive index and critical angle</li>
</ol>
<p>Content</p>
<ul>
<li>Refraction of light-laws of refraction (experimental treatment required)</li>
<li>Determination of refractive index-Snell’s law, real/apparent depth ,critical angle</li>
<li>Dispersion of white light (experimental treatment required)</li>
<li>Total internal reflection and its effect: critical angle</li>
<li>Application of total internal reflection-prism periscope, optical fibres</li>
<li>Problems involving refractive index and critical angle</li>
</ul>
<p><strong><u>Thin lenses</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe converging lenses and diverging lenses</li>
<li>Describe using ray diagrams the principal focus, the optical centre and the focal length of a thin lens</li>
<li>Determine experimentally the focal length of a converging lens</li>
<li>Locate images formed by thin lenses using ray diagram construction method</li>
<li>Describe the characteristics of images formed by thin lenses</li>
<li>Explain image formation in the human eye</li>
<li>describe the defects of vision in the human eye and how they can be corrected</li>
<li>Describe the use of lenses in various optical devices</li>
<li>Solve numerical problems involving the lens formula and the magnification formula</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Types of lenses</li>
<li>Ray diagrams and terms used</li>
<li>Images formed –ray diagrams,characteristics,magnification</li>
<li>Determination of focal length:(experimental treatment required-estimation method, lens formula, lens-mirror method</li>
<li>Human eye, defects (short sightedness and long sightedness)</li>
<li>Optical devices –simple microscope ,compound microscope, the camera</li>
<li>Problem involving the lens formula and the magnification</li>
</ul>
<p><strong><em>Unit 2</em></strong><strong><em>(Cells and simple circuits, current electricity, heating effect of electric current, mains electricity)</em></strong></p>
<p><strong><u>Cells and simple circuits</u></strong></p>
<p><strong>Specific objectives </strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Draw and set-up simple electric circuits</li>
<li>Identify circuit symbols</li>
<li>Define electric current</li>
<li>Explain the working of primary and secondary cells</li>
<li>Explain the care and maintenance of secondary cells</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Simple electric circuits:cell,ammeter,voltmeter,variable resistor, connecting wires bulbs and switches</li>
<li>Circuit symbols</li>
<li>Electric current and its SI unit</li>
<li>Primary and secondary cells. (simple cell, dry Leclanche cell, lead acid cell)</li>
</ul>
<p><strong><u>Current electricity</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define potential difference and state its SI unit</li>
<li>Measure potential difference and electric current in a circuit</li>
<li>Verify ohm’s law</li>
<li>Define resistance and state its si unit</li>
<li>Determine experimentally the voltage –current relationship[s for various conductors</li>
<li>Define m.f and explain internal resistance of a cell</li>
<li>Derive the formula for effective resistance of resistors in series and in parallel</li>
<li>Solve numerical problems involving ohm’s law,resisitors in series and in parallel</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Scale reading :ammeter, voltmeter</li>
<li>Electric circuits:current,potential difference</li>
<li>Ohm’s law (experimental treatment required)</li>
<li>Resistance: types of resistors, measurement of resistance, unit of resistance</li>
<li>Electromotive force (e.m.f) and internal resistance of a cell. The relation (E=V+Ir)</li>
<li>Resistors in series and parallel</li>
<li>Problems involving ohm’s law resistors in series and parallel</li>
</ul>
<p><strong><u>Heating effect of electric current</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Perform and describe experiments to illustrate heating effect of an electric current</li>
<li>State the factors affecting the heating e by an electric current</li>
<li>Derive the equation for electrical energy and electrical power</li>
<li>Identify devices in which heating effect of an electric current is applied</li>
<li>Solve numerical; problems involving electrical energy and electrical power</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Simple experiments on heating effect</li>
<li>Factors affecting electrical energy, the relation P=VIt and P=VI</li>
<li>Heating devices :electric kettle, electric iron, bulb filament, electric heater</li>
<li>Problems involving electrical energy and electrical power</li>
</ul>
<p><strong><u>Mains electricity</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State the source of mains electricity</li>
<li>Describe the transmission of electric power from the generating station to the consumer</li>
<li>Explain the domestic wiring system</li>
<li>Define the kilowatt hour</li>
<li>Determine the electrical energy consumption and cost</li>
<li>Solve numerical problems involving mains electricity</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Sources of mains electricity eg. Geothermal ,hydro, nuclear e.t.c</li>
<li>Power transmission (include dangers of high voltage transmission)</li>
<li>Domestic wiring system</li>
<li>Kwh,consumption and cost of electricity</li>
<li>Problems involving mains electricity</li>
</ul>
<p><strong><em>Unit 3</em></strong><strong><em>(Electrostatic I and II)</em></strong></p>
<p><strong><u>Electrostatics I</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe electrostatic charging of objects by rubbing(experimental treatment required)</li>
<li>Explain the sources of electrostatic charges</li>
<li>State the two types of charges</li>
<li>State the basic law of charges (electrostatics)</li>
<li>State the unit of charge</li>
<li>Construct a simple leaf electroscope</li>
<li>Use a charged leaf electroscope to identify conductors , insulators and types of charge</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Electrostatic charging of objects by rubbing 9experimetal treatment required)</li>
<li>Types of charges and law of charges</li>
<li>The coulomb</li>
<li>Leaf electroscope :features ,charging and discharging</li>
<li>Charging by contact and induction</li>
<li>Identification of charge</li>
<li>Conductors and insulators</li>
</ul>
<p><strong><u>Electrostatic II</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Sketch electric field patterns around charged bodies</li>
<li>Describe charge distribution on conductors of various shapes</li>
<li>Define capacitance and state its SI unit</li>
<li>Describe charging and discharging of a capacitor (calculation involving curves not required)</li>
<li>State the factors affecting the capacitance of a parallel plate capacitors</li>
<li>Sate the applications of capacitors</li>
<li>Solve numerical problems involving capacitors.</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Electric field patterns</li>
<li>Charge distribution on conductors :spherical and pear shaped conductors</li>
<li>Action at points: lightning arrestors</li>
<li>Capacitance: unit of capacitance(farad ,microfarad)factors affecting capacitance</li>
<li>Applications of capacitors</li>
<li>Problems involving capacitors (using <strong>Q=CV,C<sub>t</sub>=C<sub>1</sub>+C<sub>2</sub> <sup>1</sup>/<sub>ct</sub>=<sup>1</sup>/<sub>c1</sub>+<sup>1</sup>/<sub>c2</sub>)</strong></li>
</ul>
<p><strong><em>Unit 4</em></strong><strong><em>(Waves I and II,sound,electromagnetic spectrum)</em></strong></p>
<p><strong><u>Waves I</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe the formation of pulse and waves</li>
<li>Describe transverse and longitudinal waves</li>
<li>Define amplitude (a), wavelength(λ),frequency (f) and periodic time(T) of a wave</li>
<li>Derive the relation v=fλ</li>
<li>Solve numerical problems involving v=fλ</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Pulse and waves</li>
<li>Transverse and longitudinal waves</li>
<li>Amplitude (a) ,wavelength(λ),frequency (f) and periodic time(t)</li>
<li>Relation v=fλ</li>
<li>Problems involving v=fλ</li>
</ul>
<p><strong><u>Waves II</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe experiment to illustrate the properties of waves</li>
<li>Sketch wave-fronts to illustrate the properties of waves</li>
<li>Explain constructive interference and destructive interference</li>
<li>Describe experiments to illustrate stationary waves</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Properties of waves including sound waves,reflection,refraction,diffraction and interfence (experimental treatment required)</li>
<li>Constructive interference and destructive interference(qualitative treatment only)</li>
<li>Stationary waves(qualitative and exp<u>erimental treatment only)</u></li>
</ul>
<p><strong><u>Sound</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Perform and describe simple experiments to show that sound is produced by vibrating bodies</li>
<li>Perform and describe an experiment to show that sound requires a material medium for propagation</li>
<li>Explain the nature of sound waves</li>
<li>Determine the speed of sound in air by echo method</li>
<li>State the factors affecting the speed of sound</li>
<li>Solve numerical problems involving speed of sound</li>
</ol>
<p><strong> </strong></p>
<p><strong>Content</strong></p>
<ul>
<li>Sound :nature and source (experimental treatment</li>
<li>Propagation of sound: compressions and rarefactions</li>
<li>Speed of sound by echo method</li>
<li>Factors affecting speed of sound</li>
<li>Problems involving speed of sound</li>
</ul>
<p><strong><u>Electromagnetic spectrum</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe the complete electromagnetic spectrum</li>
<li>State the properties of electromagnetic waves</li>
<li>Describe the methods of detecting electromagnetic radiations</li>
<li>Describe the applications of electromagnetic radiations</li>
<li>Solve numerical problems involving c=fλ</li>
</ol>
<p>Content</p>
<ul>
<li>Electromagnetic spectrum</li>
<li>Properties of electromagnetic waves</li>
<li>Detection of electromagnetic radiations</li>
<li>Applications of electromagnetic radiations (include green house effect)</li>
<li>Problems involving c=fλ</li>
</ul>
<p><strong><em>Unit 5</em></strong><strong><em>(Magnetism,magnetic effect of electric current,electromagnetic induction)</em></strong></p>
<p><strong><u>Magnetism</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe the properties and use of magnets</li>
<li>Identify magnetic and non-magnetic materials</li>
<li>State the basic law of magnetism</li>
<li>Describe patterns of magnetic field</li>
<li>Describe methods of magnetization and demagnetization</li>
<li>Explain magnetization and demagnetization using the domain theory</li>
<li>Construct a simple compass</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Magnets: properties and uses</li>
<li>Magnetic and non-magnetic materials</li>
<li>Basic law of magnetism</li>
<li>Magnetic field patterns</li>
<li>Magnetization and demagnetization</li>
<li>Domain theory of magnetism</li>
<li>Care of magnets</li>
<li>Construction of simple magnetic compass</li>
</ul>
<p><strong><u>Magnetic effect of electric current</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Perform and describe experiments to determine the direction of the magnetic field round a current carrying conductor</li>
<li>Construct a simple electromagnet</li>
<li>State the factors affecting the strength of an electromagnet</li>
<li>Determine experimentally the direction of a force on a conductor carrying current in a magnetic field(motor effect)</li>
<li>State the factors affecting force on a current carrying conductor in a magnetic field</li>
<li>Explain the working of simple electric motor and electric bell</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Magnetic field due to a current</li>
<li>Oersted’s experiment</li>
<li>Magnetic field patterns on straight conductor and solenoid(right hand grip rule)</li>
<li>Simple electromagnets</li>
<li>Factors affecting the strength of an electromagnet</li>
<li>Motor effect (Fleming’s left hand rule)</li>
<li>Factors affecting force on a current carrying conductor in a magnetic field (qualitative treatment only)</li>
<li>Applications-electric bell, simple electric motor</li>
</ul>
<p><strong><u>Electromagnetic induction</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong>By the end of the topic the learner should be able to:</strong></p>
<ol>
<li>Perform and describe simple experiments to illustrate electromagnetic induction</li>
<li>State the factors affecting the magnitude and the direction of the induced e.m.f</li>
<li>State the laws of electromagnetic induction</li>
<li>Describe simple experiments to illustrate mutual induction</li>
<li>Explain the working of an alternating current(a.c) generator and direct current (d.c) generator</li>
<li>Explain the applications of electromagnetic induction</li>
<li>Solve numerical problems involving transformers</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Simple experiments to illustrate electromagnetic induction</li>
<li>Induced e.m.f –faradays law ,Lenz’s law</li>
<li>Mutual induction</li>
<li>Alternating current(a.c) generator and direct current (d.c) generator</li>
<li>Fleming’s right hand –rule</li>
<li>Transformers</li>
<li>Applications of electromagnetic induction</li>
<li>Problems involving transformers</li>
</ul>
<p><strong><em>Unit 6</em></strong></p>
<p><strong><em>(Photoelectric effect, X-rays, cathode rays, radioactivity and electronics)</em></strong></p>
<p><strong><u>Cathode rays and cathode ray tube</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Describe the production of cathode rays</li>
<li>State the properties of cathode rays</li>
<li>Explain the functioning of a cathode rays oscilloscope <strong>(C.R.O</strong>) and a television tube (TV tube )</li>
<li>Explain the use of a cathode ray oscilloscope</li>
<li>Solve numerical problems involving cathode rays oscilloscope</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Production of cathode rays</li>
<li>Properties of cathode rays</li>
<li>R.O and TV tube</li>
<li>Uses of CRO</li>
<li>Problems involving CRO</li>
</ul>
<p> ;</p>
<p> ;</p>
<p><strong><u>X-rays</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Explain the production of x-rays</li>
<li>State the properties of x-rays</li>
<li>State the dangers of x-rays</li>
<li>Explain the uses of x-rays</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Production of X-ray, X-ray tube</li>
<li>Energy changes in an x-ray tube</li>
<li>Properties of X-rays</li>
<li>Soft and hard X-rays</li>
<li>Dangers of X-rays and precautions</li>
<li>Uses of X-rays (Bragg’s law not required)</li>
</ul>
<p><strong><u>Photoelectric effect</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Perform and describe simple experiments to illustrate the photoelectric effect</li>
<li>Explain the factors that affect photoelectric emission</li>
<li>Apply the equation E =hf to calculate the energy of photons</li>
<li>Define threshold frequency, work function and electron volt</li>
<li>Explain photoelectric emission using Einstein equation(hf<sub>o</sub>+<sup>1</sup>/<sub>2</sub>mv<sup>2</sup>=hf)</li>
<li>Explain the applications of photoelectric effect</li>
<li>Solve numerical problems involving photoelectric emissions</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Photoelectric effect,photon,threshold frequency, work function, Planck’s constant and electron volt</li>
<li>Factors affecting photoelectric emission</li>
<li>Energy of photons</li>
<li>Einstein equation(hf<sub>o</sub>+<sup>1</sup>/<sub>2</sub>mv<sup>2</sup>=hf)</li>
<li>Applications of photoelectric effect-photo emissive cells, photo conductive cells, photovoltaic cells</li>
</ul>
<p><strong><u>Radioactivity</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>Define radioactive decay and half life</li>
<li>Describe the three types of radiation emitted in natural radioactivity</li>
<li>Explain the detection of radioactive emissions</li>
<li>Define nuclear fission and fusion</li>
<li>Write balanced nuclear equations</li>
<li>Explain the dangers of radioactive emissions</li>
<li>State the applications of radioactivity</li>
<li>Solve numerical problems involving half-life</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Radioactive decay</li>
<li>half life</li>
<li>Types of radiation, properties of radiations</li>
<li>Detectors of radiations</li>
<li>Nuclear fission and fusion</li>
<li>Nuclear equations</li>
<li>Hazards of radioactivity ,precautions</li>
<li>Applications</li>
<li>Problems of half-life(integration not required)</li>
</ul>
<p><strong><u>Electronics</u></strong></p>
<p><strong>Specific objectives</strong></p>
<p><strong><em>By the end of the topic the learner should be able to:</em></strong></p>
<ol>
<li>State the difference between conductors and insulators</li>
<li>Define intrinsic and extrinsic semi-conductors</li>
<li>Explain doping in semi-conductors</li>
<li>Explain the working of a p-n junction diode</li>
<li>Sketch current –voltage characteristic for a diode</li>
<li>Explain the application of diodes in rectification</li>
</ol>
<p><strong>Content</strong></p>
<ul>
<li>Conductors,semi-conductors,insulators</li>
<li>Intrinsic and extrinsic semi-conductors</li>
<li>Doping</li>
<li>P-n junction diode</li>
<li>Application of diodes: half wave rectification and full wave rectification</li>
</ul>