PHYSICS SYLLABUS COVERAGE AREAS (PAPER 1 TOPICS ARRANGED)

<p><strong><u>PHYSICS KNEC SYLLABUS AND THE CONTENTS<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u>PAPER <&sol;u><&sol;strong><strong><u>1<&sol;u><&sol;strong><strong><u> TOPICS ARRANGED IN UNITS<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><em>Unit 1<&sol;em><&sol;strong><strong><em>&lpar;Measurement I and measurement II&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Measurement I<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define length&comma; area&comma;volume&comma;mass&comma;density&comma;time interval and state the corresponding symbols and SI units<&sol;li>&NewLine;<li>Convert other metric units to SI units<&sol;li>&NewLine;<li>Estimate length&comma; mass and time<&sol;li>&NewLine;<li>Use accurately various measuring instruments<&sol;li>&NewLine;<li>Determine experimentally the densities of substances<&sol;li>&NewLine;<li>Solve numerical problems on density<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Definition of length&comma;area&comma;volume&comma;density and time<&sol;li>&NewLine;<li>Sin units and symbols<&sol;li>&NewLine;<li>Estimation of quantities<&sol;li>&NewLine;<li>Conversion of units<&sol;li>&NewLine;<li>Measuring instruments&colon;metre rule&comma; tape measure&comma; beam balance&comma; stop clock&sol;watch&comma; measuring cylinder&comma; pipette and burette<&sol;li>&NewLine;<li>Experiments on density<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Measurement II<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic&comma; the learner should be able to <&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Measure length using vernier calipers and micrometer screw gauge<&sol;li>&NewLine;<li>Estimate the diameter of a molecule of oil<&sol;li>&NewLine;<li>Solve numerical problems in measurements<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Measurement of length using vernier calipers and micrometer screw gauge<&sol;li>&NewLine;<li>Decimal places &comma;significant figures and standard forms<&sol;li>&NewLine;<li>Estimation of the diameter of a molecule of oil&lpar;relate to the size of HIV virus &comma;mention the effects of oil spills on health and environment<&sol;li>&NewLine;<li>Problems in measurements<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 2<&sol;em><&sol;strong><strong><em>&lpar;Force&comma; forces and moments&comma; equilibrium and stability&comma; Hooke’s law&comma; particulate nature of matter&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Force<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic&comma; the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define force and state its SI unit<&sol;li>&NewLine;<li>Describe the types of forces<&sol;li>&NewLine;<li>Describe experiments to illustrate cohesion &comma;adhesion and cohesion<&sol;li>&NewLine;<li>State the effects of force<&sol;li>&NewLine;<li>State the difference between mass and weight&comma; W&equals;mg<&sol;li>&NewLine;<li>Define scalar and vector quantities<&sol;li>&NewLine;<li>Solve numerical problems involving W&equals;mg<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Definition of force<&sol;li>&NewLine;<li>Types of forces &lpar;include cohesion&comma; adhesion and surface tension<&sol;li>&NewLine;<li>Experiments to demonstrate cohesion&comma; adhesion and surface tension&lpar;actual measurement of surface tension not required&rpar;<&sol;li>&NewLine;<li>Effects of force<&sol;li>&NewLine;<li>Mass&comma; weight and their relationship<&sol;li>&NewLine;<li>Scalar and vector quantities<&sol;li>&NewLine;<li>Problems involving W&equals;mg<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Particulate nature of matter<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic&comma; the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Give evidence that matter is made up of tiny particles<&sol;li>&NewLine;<li>Describe experiments to show that particles of matter are at constant random motion<&sol;li>&NewLine;<li>Explain the states of matter in terms of particle movement<&sol;li>&NewLine;<li>Explain diffusion<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Experiments to show that matter is made up of tiny particles &lpar;e&period;g cutting papers into small pieces &comma;dilution experiments etc&rpar;<&sol;li>&NewLine;<li>Brownian motion<&sol;li>&NewLine;<li>States of matter<&sol;li>&NewLine;<li>Diffusion &lpar;grahams law not require&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Turning effect of a force<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&semi;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define moment of a force about a point and state its SI unit<&sol;li>&NewLine;<li>State and verify the principle of moments<&sol;li>&NewLine;<li>Solve problems involving the principle of moments<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Moment of force &comma;SI unit of moment of a force<&sol;li>&NewLine;<li>Principle of moments<&sol;li>&NewLine;<li>Problems on principle of moments&lpar;consider single pivot only&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Equilibrium and centre of gravity<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define center of gravity<&sol;li>&NewLine;<li>Determine experimentally the center of gravity of lamina objects<&sol;li>&NewLine;<li>Identify and explain the states of equilibrium<&sol;li>&NewLine;<li>State and explain factors affecting stability of an object<&sol;li>&NewLine;<li>Explain the applications of stability<&sol;li>&NewLine;<li>Solve numerical problems involving center of gravity and moments of a force<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Center of gravity &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>States of equilibrium<&sol;li>&NewLine;<li>Factors affecting stability<&sol;li>&NewLine;<li>Problems on center of gravity and moments of a force&lpar;consider single pivot only&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong><u>Hooke’s law<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State and verify experimentally Hooke’s law<&sol;li>&NewLine;<li>Determine the spring constant<&sol;li>&NewLine;<li>Construct and calibrate a spring balance<&sol;li>&NewLine;<li>Solve numerical problems involving Hooke’s law<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Hooke’s law<&sol;li>&NewLine;<li>Spring constant<&sol;li>&NewLine;<li>Spring balance<&sol;li>&NewLine;<li>Problems involving Hooke’s law<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 3 <&sol;em><&sol;strong><strong><em>&lpar;Pressure&comma; fluid flow&comma; gas laws&comma; floating and sinking&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Pressure <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objective<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define pressure and state its SI units<&sol;li>&NewLine;<li>Determine pressure exerted by solids<&sol;li>&NewLine;<li>Describe experiments to investigate factors affecting pressure in fluids<&sol;li>&NewLine;<li>Derive the formula p&equals;ρgh<&sol;li>&NewLine;<li>State the principle of transmission of pressure in fluids &lpar;Pascal’s principle&rpar;<&sol;li>&NewLine;<li>Explain atmospheric pressure and its effects<&sol;li>&NewLine;<li>State and explain the applications of pressure<&sol;li>&NewLine;<li>Solve numerical problems involving pressure<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Definition of pressure<&sol;li>&NewLine;<li>Pressure in solids<&sol;li>&NewLine;<li>Factors affecting pressure in fluids&lpar;experimental treatment required0<&sol;li>&NewLine;<li>Derivation of p&equals;ρgh<&sol;li>&NewLine;<li>Atmospheric pressure<&sol;li>&NewLine;<li>Simple mercury barometer&comma; manometers<&sol;li>&NewLine;<li>Applications of pressure &colon;drinking staw&comma;syringe&comma;siphon&comma;hydraulic press&comma; hydraulic brakes&comma; bicycle pump&comma; force pump&comma; lift pump<&sol;li>&NewLine;<li>Problems on pressure<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Fluid flow<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe streamline flow and turbulent flow<&sol;li>&NewLine;<li>Derive the equation of continuity<&sol;li>&NewLine;<li>Describe experiments to illustrate Bernoulli’s effect<&sol;li>&NewLine;<li>Explain the Bernoulli’s effect<&sol;li>&NewLine;<li>Describe the applications of Bernoulli’s effect<&sol;li>&NewLine;<li>Solve numerical problems involving the equation of continuity<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Streamline flow and turbulent flow<&sol;li>&NewLine;<li>Equation of continuity<&sol;li>&NewLine;<li>Bernoulli’s effect&lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Applications of Bernoulli’s effect&colon; Bunsen burner&comma; spray gun&comma;carburetor&comma;aerofoil and spinning ball<&sol;li>&NewLine;<li>Problems involving the equation of continuity<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Gas laws<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State the gas laws for ideal gas<&sol;li>&NewLine;<li>Verify experimentally the gas laws<&sol;li>&NewLine;<li>Explain how absolute zero temperature may be obtained from the pressure –temperature and volume –temperature graphs<&sol;li>&NewLine;<li>Convert Celsius scale to Kelvin scale of temperature<&sol;li>&NewLine;<li>State the basic assumptions of the kinetic theory of gases<&sol;li>&NewLine;<li>Explain the gas laws using the kinetic theory of gases<&sol;li>&NewLine;<li>Solve numerical problems involving gas laws<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Boyle’s law&comma; Charles’ law&comma; pressure law&comma; absolute zero<&sol;li>&NewLine;<li>Kelvin scale of temperature<&sol;li>&NewLine;<li>Gas laws and kinetic theory of gases&lpar;p&equals;<sup>1<&sol;sup>&sol;<sub>3<&sol;sub>pc<sup>2<&sol;sup> not required&rpar;<&sol;li>&NewLine;<li>Problems involving gas laws &lpar;including <strong><sup>PV<&sol;sup><&sol;strong>&sol;<strong><sub>T<&sol;sub><&sol;strong>&equals;constant&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong><u>Floating and sinking<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State Archimedes’ principle<&sol;li>&NewLine;<li>Verify Archimedes’ principle<&sol;li>&NewLine;<li>State the law of floatation<&sol;li>&NewLine;<li>Define relative density<&sol;li>&NewLine;<li>Describe the applications of Archimedes’ principle and relative density<&sol;li>&NewLine;<li>Solve numerical problems involving Archimedes principles<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Archimedes’ principle &comma;law of floatation &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Relative density<&sol;li>&NewLine;<li>Applications of Archimedes’ principle and relative density<&sol;li>&NewLine;<li>Problems of Archimedes’ principle<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 4<&sol;em><&sol;strong><strong><em>&lpar;Thermal expansion&comma; heat transfer&comma; quantity of heat&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Thermal expansion<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define temperature<&sol;li>&NewLine;<li>Describe the functioning of the various thermometers<&sol;li>&NewLine;<li>Describe thermal expansion of solids&comma; liquids and gases<&sol;li>&NewLine;<li>Explain expansion in terms of particle behavior<&sol;li>&NewLine;<li>Describe the unusual expansion of water and its effects<&sol;li>&NewLine;<li>Explain the effects and applications of thermal expansion<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Temperature<&sol;li>&NewLine;<li>Thermometer&colon; liquid –in-glass&comma; including clinical and six’s maximum and minimum thermometers<&sol;li>&NewLine;<li>Expansion of solids&comma; liquids and gases<&sol;li>&NewLine;<li>Effects of expansion and contraction<&sol;li>&NewLine;<li>Unusual expansion of water&lpar;anomalous expansion0<&sol;li>&NewLine;<li>Applications of thermal expansion&comma; include bimetallic strip<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Heat transfer<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State the difference between temperature and heat<&sol;li>&NewLine;<li>State and explain the modes of heat transfer<&sol;li>&NewLine;<li>Describe experiments to illustrate factors affecting heat transfer<&sol;li>&NewLine;<li>Explain applications of heat transfer<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Heat and temperature<&sol;li>&NewLine;<li>Modes of heat transfer<&sol;li>&NewLine;<li>Factors affecting heat transfer &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Applications of heat transfer on vacuum flask&comma; domestic hot water system&comma; solar concentrators<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Quantity of heat<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define heat capacity and specific heat capacity<&sol;li>&NewLine;<li>Determine experimentally specific heat capacity of solids and liquids<&sol;li>&NewLine;<li>Define specific latent heat of fusion and specific latent heat of vaporization of steam<&sol;li>&NewLine;<li>Determine experimentally the specific latent heat of fusion of ice and the specific latent heat of vaporization of steam<&sol;li>&NewLine;<li>State factors affecting melting point and boiling point<&sol;li>&NewLine;<li>Explain the functioning of a pressure cooker and a refrigerator<&sol;li>&NewLine;<li>Solve problems involving quantity of heat<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Heat capacity &comma; specific heat capacity&comma; units &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Latent heat of fusion&comma; latent heat of vaporization&comma; units &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Boiling and melting points<&sol;li>&NewLine;<li>Pressure cooker&comma; refrigerator<&sol;li>&NewLine;<li>Problems involving quantity of heat &lpar;<strong>Q&equals;mc<&sol;strong><strong>Δ<&sol;strong><strong>T&rpar;&comma;Q&equals;mL<&sol;strong>&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 5<&sol;em><&sol;strong><strong><em>&lpar;Linear motion&comma; Newton’s laws of motion&comma; work&comma; energy&comma; uniform circular motion&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Linear motion<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define distance&comma;displacement&comma;speed&comma;velocity&comma;and acceleration<&sol;li>&NewLine;<li>Describe experiments to determine velocity and acceleration<&sol;li>&NewLine;<li>Determine acceleration due to gravity<&sol;li>&NewLine;<li>Plot and explain motion time graphs<&sol;li>&NewLine;<li>Apply the equations of uniformly accelerated motion<&sol;li>&NewLine;<li>Solve numerical problems on uniformly accelerated motion<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Distance&comma;displacement&comma;speed&comma;velocity&comma;and acceleration&lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Acceleration due to gravity free-fall&comma; simple pendulum<&sol;li>&NewLine;<li>Motion -time graphs-displacement time graphs&comma; velocity time graphs<&sol;li>&NewLine;<li>Equations of uniformly accelerated motion<&sol;li>&NewLine;<li>Problems on uniformly accelerated motion<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Newton’s laws of motion<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State the Newton’s laws of motion<&sol;li>&NewLine;<li>Describe simple experiments to illustrate inertia<&sol;li>&NewLine;<li>State the law of conservation of linear momentum<&sol;li>&NewLine;<li>Define elastic collision&comma; inelastic collision and impulse<&sol;li>&NewLine;<li>Derive the equation F&equals;ma<&sol;li>&NewLine;<li>Describe the application of frictional force<&sol;li>&NewLine;<li>Define viscosity<&sol;li>&NewLine;<li>Explain terminal velocity<&sol;li>&NewLine;<li>Solve numerical problems involving Newton’s laws and the law of conservation of linear momentum<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Content<&sol;p>&NewLine;<ul>&NewLine;<li>Newton’s laws of motion &lpar;experimental treatment of inertia required&rpar;<&sol;li>&NewLine;<li>Conservation of linear momentum &comma;elastic collisions&comma; inelastic collisions&comma; recoil velocity &comma;impulse &lpar;oblique collisions not required&rpar;<&sol;li>&NewLine;<li>The relation F&equals;ma<&sol;li>&NewLine;<li>Frictional force<&sol;li>&NewLine;<li>Advantages and disadvantages<&sol;li>&NewLine;<li>Viscosity and terminal velocity &lpar;qualitative treatment only&rpar;<&sol;li>&NewLine;<li>Problems involving Newton’s laws and the law of conservation of linear momentum&lpar;exclude problems on elastic collisions&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Work energy power and machines<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&semi;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe energy transformation<&sol;li>&NewLine;<li>State the law of conservation of energy<&sol;li>&NewLine;<li>Define work&comma;energy&comma;power&comma;and state their SI units<&sol;li>&NewLine;<li>Define mechanical advantage &comma;velocity ratio and efficiency of machines<&sol;li>&NewLine;<li>Solve numerical problems involving work&comma;energy&comma;power and machines<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Forms of energy and energy transformations<&sol;li>&NewLine;<li>Sources of energy-renewable &comma;non-renewable<&sol;li>&NewLine;<li>Law of conservation of energy<&sol;li>&NewLine;<li>Work&comma; energy and power &lpar;work done by resolved force not required&rpar;<&sol;li>&NewLine;<li>Kinetic energy and potential energy<&sol;li>&NewLine;<li>Simple machines<&sol;li>&NewLine;<li>Problems of work&comma;energy&comma;power and machines<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Uniform circular motion<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define angular displacement and angular velocity<&sol;li>&NewLine;<li>Describe simple experiments to illustrate centripetal force<&sol;li>&NewLine;<li>Explain the applications of uniform circular motion<&sol;li>&NewLine;<li>Solve numerical problems involving uniform circular motion<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>The radian&comma; angular displacement and angular velocity<&sol;li>&NewLine;<li>Centripetal force&semi; the relations F&equals;mv<sup>2<&sol;sup>&sol;<sub>r<&sol;sub>&comma;F&equals;mrω<sup>2<&sol;sup>&lpar;derivation of the formula not necessary experimental treatment required&rpar;<&sol;li>&NewLine;<li>Applications of uniform circular motion<&sol;li>&NewLine;<li>Centrifuge&comma; vertical &comma;horizontal circles&comma; banked tracks&lpar;calculation on banked tracks and conical pendulum not required&rpar;<&sol;li>&NewLine;<li>Problems solving &lpar;applications of relations F&equals;mv<sup>2<&sol;sup>&sol;r &comma;F&equals;mrw<sup>2<&sol;sup> in numerical calculations&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u> <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><u>PAPER<&sol;u><&sol;strong><strong><u> 2<&sol;u><&sol;strong><strong><u> TOPICS ARRANGED IN UNITS<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong><em>Unit 1<&sol;em><&sol;strong><strong><em>&lpar;Rectilinear propagation&comma; reflection at curved surfaces&comma; refraction of light and thin lenses&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Rectilinear propagation of light <&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Perform and describe experiments to show that light travels in a straight line<&sol;li>&NewLine;<li>Describe the formation of shadows and eclipses<&sol;li>&NewLine;<li>Explain the functioning of a pin-hole camera<&sol;li>&NewLine;<li>State the laws of reflection<&sol;li>&NewLine;<li>Verify experimentally laws of reflection<&sol;li>&NewLine;<li>State the characteristics of images formed by plane mirrors<&sol;li>&NewLine;<li>Explain the applications of reflection at plane surfaces<&sol;li>&NewLine;<li>Solve numerical problems involving pinhole camera and mirrors inclined at an angle<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Rectilinear propagation of light&lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Formation of shadows and eclipses&lpar;umbra and penumbra&rpar;<&sol;li>&NewLine;<li>Pin-hole camera &colon;image formation and magnification<&sol;li>&NewLine;<li>Laws of reflection<&sol;li>&NewLine;<li>Images formed by plane mirrors&comma; ray diagrams&comma; parallel and inclined mirrors<&sol;li>&NewLine;<li>Devices based on reflection&colon;periscope&comma;kaleidoscope<&sol;li>&NewLine;<li>Problems on pin-hole camera and mirrors inclined at an angle<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Reflection at curved surfaces<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe concave&comma;convex&comma;and parabolic reflectors<&sol;li>&NewLine;<li>Describe using ray diagram the principal axis&comma; principal focus&comma; center of curvature and related terms<&sol;li>&NewLine;<li>Locate images formed by curved mirrors by construction of ray diagrams<&sol;li>&NewLine;<li>Determine experimentally the characteristics of images formed by a concave mirror<&sol;li>&NewLine;<li>Define magnification<&sol;li>&NewLine;<li>Explain the applications of curved reflecting surfaces<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Concave&comma; convex and parabolic reflectors<&sol;li>&NewLine;<li>Principal axis&comma; principal focus&comma; center of curvature and related terms<&sol;li>&NewLine;<li>Location of images formed by curved mirrors by ray diagram method&lpar;experiments on concave mirrors required&rpar;<&sol;li>&NewLine;<li>Magnification formula<&sol;li>&NewLine;<li>Application of curved reflectors<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><u> <&sol;u><&sol;p>&NewLine;<p><u>Refraction of light<&sol;u><&sol;p>&NewLine;<p>Specific objectives<&sol;p>&NewLine;<p><strong><em>By the end topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe simple experiments to illustrate refraction of light<&sol;li>&NewLine;<li>State the laws refraction of light<&sol;li>&NewLine;<li>Verify Snell’s law<&sol;li>&NewLine;<li>Define refractive index<&sol;li>&NewLine;<li>Determine experimentally the refractive index<&sol;li>&NewLine;<li>Describe experiments to illustrate dispersion of white light<&sol;li>&NewLine;<li>Explain total internal reflection and its effect<&sol;li>&NewLine;<li>State the application of total internal reflection<&sol;li>&NewLine;<li>Solve numerical problems involving refractive index and critical angle<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Content<&sol;p>&NewLine;<ul>&NewLine;<li>Refraction of light-laws of refraction &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Determination of refractive index-Snell’s law&comma; real&sol;apparent depth &comma;critical angle<&sol;li>&NewLine;<li>Dispersion of white light &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Total internal reflection and its effect&colon; critical angle<&sol;li>&NewLine;<li>Application of total internal reflection-prism periscope&comma; optical fibres<&sol;li>&NewLine;<li>Problems involving refractive index and critical angle<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Thin lenses<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe converging lenses and diverging lenses<&sol;li>&NewLine;<li>Describe using ray diagrams the principal focus&comma; the optical centre and the focal length of a thin lens<&sol;li>&NewLine;<li>Determine experimentally the focal length of a converging lens<&sol;li>&NewLine;<li>Locate images formed by thin lenses using ray diagram construction method<&sol;li>&NewLine;<li>Describe the characteristics of images formed by thin lenses<&sol;li>&NewLine;<li>Explain image formation in the human eye<&sol;li>&NewLine;<li>describe the defects of vision  in the human eye and how they can be corrected<&sol;li>&NewLine;<li>Describe the use of lenses in various optical devices<&sol;li>&NewLine;<li>Solve numerical problems involving the lens formula and the magnification formula<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Types of lenses<&sol;li>&NewLine;<li>Ray diagrams and terms used<&sol;li>&NewLine;<li>Images formed –ray diagrams&comma;characteristics&comma;magnification<&sol;li>&NewLine;<li>Determination of focal length&colon;&lpar;experimental treatment required-estimation method&comma; lens formula&comma; lens-mirror method<&sol;li>&NewLine;<li>Human eye&comma; defects &lpar;short sightedness and long sightedness&rpar;<&sol;li>&NewLine;<li>Optical devices –simple microscope &comma;compound microscope&comma; the camera<&sol;li>&NewLine;<li>Problem involving the lens formula and the magnification<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 2<&sol;em><&sol;strong><strong><em>&lpar;Cells and simple circuits&comma; current electricity&comma; heating effect of electric current&comma; mains electricity&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Cells and simple circuits<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives <&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Draw and set-up simple electric circuits<&sol;li>&NewLine;<li>Identify circuit symbols<&sol;li>&NewLine;<li>Define electric current<&sol;li>&NewLine;<li>Explain the working of primary and secondary cells<&sol;li>&NewLine;<li>Explain the care and maintenance of secondary cells<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Simple electric circuits&colon;cell&comma;ammeter&comma;voltmeter&comma;variable resistor&comma; connecting wires bulbs and switches<&sol;li>&NewLine;<li>Circuit symbols<&sol;li>&NewLine;<li>Electric current and its SI unit<&sol;li>&NewLine;<li>Primary and secondary cells&period; &lpar;simple cell&comma; dry Leclanche cell&comma; lead acid cell&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Current electricity<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define potential difference and state its SI unit<&sol;li>&NewLine;<li>Measure potential difference and electric current in a circuit<&sol;li>&NewLine;<li>Verify ohm’s law<&sol;li>&NewLine;<li>Define resistance and state its si unit<&sol;li>&NewLine;<li>Determine experimentally the voltage –current relationship&lbrack;s for various conductors<&sol;li>&NewLine;<li>Define m&period;f and explain  internal resistance of a cell<&sol;li>&NewLine;<li>Derive the formula for effective resistance of resistors in series and in parallel<&sol;li>&NewLine;<li>Solve numerical problems involving ohm’s law&comma;resisitors in series and in parallel<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Scale reading &colon;ammeter&comma; voltmeter<&sol;li>&NewLine;<li>Electric circuits&colon;current&comma;potential difference<&sol;li>&NewLine;<li>Ohm’s law &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Resistance&colon; types of resistors&comma; measurement of resistance&comma; unit of resistance<&sol;li>&NewLine;<li>Electromotive force &lpar;e&period;m&period;f&rpar; and internal resistance of a cell&period; The relation &lpar;E&equals;V&plus;Ir&rpar;<&sol;li>&NewLine;<li>Resistors in series and parallel<&sol;li>&NewLine;<li>Problems involving ohm’s law resistors in series and parallel<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Heating effect of electric current<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Perform and describe experiments to illustrate heating effect  of an  electric current<&sol;li>&NewLine;<li>State the factors affecting the heating e by an electric current<&sol;li>&NewLine;<li>Derive the equation for electrical energy and electrical power<&sol;li>&NewLine;<li>Identify devices in which heating effect of an electric current is applied<&sol;li>&NewLine;<li>Solve numerical&semi; problems involving electrical energy and electrical power<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Simple experiments on heating effect<&sol;li>&NewLine;<li>Factors affecting electrical energy&comma; the relation P&equals;VIt and P&equals;VI<&sol;li>&NewLine;<li>Heating devices &colon;electric kettle&comma; electric iron&comma; bulb filament&comma; electric heater<&sol;li>&NewLine;<li>Problems involving electrical energy and electrical power<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Mains electricity<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State the source of mains electricity<&sol;li>&NewLine;<li>Describe the transmission of electric power from the generating station to the consumer<&sol;li>&NewLine;<li>Explain the domestic wiring system<&sol;li>&NewLine;<li>Define the kilowatt hour<&sol;li>&NewLine;<li>Determine the electrical energy consumption and cost<&sol;li>&NewLine;<li>Solve numerical problems involving mains electricity<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Sources of mains electricity eg&period; Geothermal &comma;hydro&comma; nuclear e&period;t&period;c<&sol;li>&NewLine;<li>Power transmission &lpar;include dangers of high voltage transmission&rpar;<&sol;li>&NewLine;<li>Domestic wiring system<&sol;li>&NewLine;<li>Kwh&comma;consumption and cost of electricity<&sol;li>&NewLine;<li>Problems involving mains electricity<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 3<&sol;em><&sol;strong><strong><em>&lpar;Electrostatic I and II&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Electrostatics I<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe electrostatic charging of objects by rubbing&lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Explain the sources of electrostatic charges<&sol;li>&NewLine;<li>State the two types of charges<&sol;li>&NewLine;<li>State the basic law of charges &lpar;electrostatics&rpar;<&sol;li>&NewLine;<li>State the unit of charge<&sol;li>&NewLine;<li>Construct a simple leaf electroscope<&sol;li>&NewLine;<li>Use a charged leaf electroscope to identify conductors &comma; insulators and types of charge<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Electrostatic charging of objects by rubbing 9experimetal treatment required&rpar;<&sol;li>&NewLine;<li>Types of charges and law of charges<&sol;li>&NewLine;<li>The coulomb<&sol;li>&NewLine;<li>Leaf electroscope &colon;features &comma;charging and discharging<&sol;li>&NewLine;<li>Charging by contact and induction<&sol;li>&NewLine;<li>Identification of charge<&sol;li>&NewLine;<li>Conductors and insulators<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Electrostatic II<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Sketch electric field patterns around charged bodies<&sol;li>&NewLine;<li>Describe charge distribution on conductors of various shapes<&sol;li>&NewLine;<li>Define capacitance and state its SI unit<&sol;li>&NewLine;<li>Describe charging and discharging of a capacitor &lpar;calculation involving curves not required&rpar;<&sol;li>&NewLine;<li>State the factors affecting the capacitance of a parallel plate capacitors<&sol;li>&NewLine;<li>Sate the applications of capacitors<&sol;li>&NewLine;<li>Solve numerical problems involving capacitors&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Electric field patterns<&sol;li>&NewLine;<li>Charge distribution on conductors &colon;spherical and pear shaped conductors<&sol;li>&NewLine;<li>Action at points&colon; lightning arrestors<&sol;li>&NewLine;<li>Capacitance&colon; unit of capacitance&lpar;farad &comma;microfarad&rpar;factors affecting capacitance<&sol;li>&NewLine;<li>Applications of capacitors<&sol;li>&NewLine;<li>Problems involving capacitors &lpar;using <strong>Q&equals;CV&comma;C<sub>t<&sol;sub>&equals;C<sub>1<&sol;sub>&plus;C<sub>2<&sol;sub> <sup>1<&sol;sup>&sol;<sub>ct<&sol;sub>&equals;<sup>1<&sol;sup>&sol;<sub>c1<&sol;sub>&plus;<sup>1<&sol;sup>&sol;<sub>c2<&sol;sub>&rpar;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 4<&sol;em><&sol;strong><strong><em>&lpar;Waves I and II&comma;sound&comma;electromagnetic spectrum&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Waves I<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe the formation of pulse and waves<&sol;li>&NewLine;<li>Describe transverse and longitudinal waves<&sol;li>&NewLine;<li>Define amplitude &lpar;a&rpar;&comma; wavelength&lpar;λ&rpar;&comma;frequency &lpar;f&rpar; and periodic time&lpar;T&rpar; of a wave<&sol;li>&NewLine;<li>Derive the relation v&equals;fλ<&sol;li>&NewLine;<li>Solve numerical problems involving v&equals;fλ<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Pulse and waves<&sol;li>&NewLine;<li>Transverse and longitudinal waves<&sol;li>&NewLine;<li>Amplitude &lpar;a&rpar; &comma;wavelength&lpar;λ&rpar;&comma;frequency &lpar;f&rpar; and periodic time&lpar;t&rpar;<&sol;li>&NewLine;<li>Relation v&equals;fλ<&sol;li>&NewLine;<li>Problems involving v&equals;fλ<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Waves II<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe experiment to illustrate the properties of waves<&sol;li>&NewLine;<li>Sketch wave-fronts to illustrate the properties of waves<&sol;li>&NewLine;<li>Explain constructive interference and destructive interference<&sol;li>&NewLine;<li>Describe experiments to illustrate stationary waves<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Properties of waves including sound waves&comma;reflection&comma;refraction&comma;diffraction and interfence &lpar;experimental treatment required&rpar;<&sol;li>&NewLine;<li>Constructive interference and destructive interference&lpar;qualitative treatment only&rpar;<&sol;li>&NewLine;<li>Stationary waves&lpar;qualitative and exp<u>erimental treatment only&rpar;<&sol;u><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Sound<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Perform and describe simple experiments to show that sound is produced by vibrating bodies<&sol;li>&NewLine;<li>Perform and describe an experiment to show that sound requires a material medium for propagation<&sol;li>&NewLine;<li>Explain the nature of sound waves<&sol;li>&NewLine;<li>Determine the speed of sound in air by echo method<&sol;li>&NewLine;<li>State the factors affecting the speed of sound<&sol;li>&NewLine;<li>Solve numerical problems involving speed of sound<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Sound &colon;nature and source &lpar;experimental treatment<&sol;li>&NewLine;<li>Propagation of sound&colon; compressions and rarefactions<&sol;li>&NewLine;<li>Speed of sound by echo method<&sol;li>&NewLine;<li>Factors affecting speed of sound<&sol;li>&NewLine;<li>Problems involving speed of sound<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Electromagnetic spectrum<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe the complete electromagnetic spectrum<&sol;li>&NewLine;<li>State the properties of electromagnetic waves<&sol;li>&NewLine;<li>Describe the methods of detecting electromagnetic radiations<&sol;li>&NewLine;<li>Describe the applications of electromagnetic radiations<&sol;li>&NewLine;<li>Solve numerical problems involving c&equals;fλ<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Content<&sol;p>&NewLine;<ul>&NewLine;<li>Electromagnetic spectrum<&sol;li>&NewLine;<li>Properties of electromagnetic waves<&sol;li>&NewLine;<li>Detection of electromagnetic radiations<&sol;li>&NewLine;<li>Applications of electromagnetic radiations &lpar;include green house effect&rpar;<&sol;li>&NewLine;<li>Problems involving c&equals;fλ<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 5<&sol;em><&sol;strong><strong><em>&lpar;Magnetism&comma;magnetic effect of electric current&comma;electromagnetic induction&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Magnetism<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe the properties and use of magnets<&sol;li>&NewLine;<li>Identify magnetic and non-magnetic materials<&sol;li>&NewLine;<li>State the basic law of magnetism<&sol;li>&NewLine;<li>Describe patterns of magnetic field<&sol;li>&NewLine;<li>Describe methods of magnetization and demagnetization<&sol;li>&NewLine;<li>Explain magnetization and demagnetization using the domain theory<&sol;li>&NewLine;<li>Construct a simple compass<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Magnets&colon; properties and uses<&sol;li>&NewLine;<li>Magnetic and non-magnetic materials<&sol;li>&NewLine;<li>Basic law of magnetism<&sol;li>&NewLine;<li>Magnetic field patterns<&sol;li>&NewLine;<li>Magnetization and demagnetization<&sol;li>&NewLine;<li>Domain theory of magnetism<&sol;li>&NewLine;<li>Care of magnets<&sol;li>&NewLine;<li>Construction of simple magnetic compass<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Magnetic effect of electric current<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Perform and describe experiments to determine the direction of the magnetic field round a current carrying conductor<&sol;li>&NewLine;<li>Construct a simple electromagnet<&sol;li>&NewLine;<li>State the factors affecting the strength of an electromagnet<&sol;li>&NewLine;<li>Determine experimentally the direction of a force on a conductor carrying current in a magnetic field&lpar;motor effect&rpar;<&sol;li>&NewLine;<li>State the factors affecting force on a current carrying conductor in a magnetic field<&sol;li>&NewLine;<li>Explain the working of simple electric motor and electric bell<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Magnetic field due to a current<&sol;li>&NewLine;<li>Oersted’s experiment<&sol;li>&NewLine;<li>Magnetic field patterns on straight conductor and solenoid&lpar;right hand grip rule&rpar;<&sol;li>&NewLine;<li>Simple electromagnets<&sol;li>&NewLine;<li>Factors affecting the strength of an electromagnet<&sol;li>&NewLine;<li>Motor effect &lpar;Fleming’s left hand rule&rpar;<&sol;li>&NewLine;<li>Factors affecting force on a current carrying conductor in a magnetic field &lpar;qualitative treatment only&rpar;<&sol;li>&NewLine;<li>Applications-electric bell&comma; simple electric motor<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Electromagnetic induction<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong>By the end of the topic the learner should be able to&colon;<&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Perform and describe simple experiments to illustrate electromagnetic induction<&sol;li>&NewLine;<li>State the factors affecting the magnitude and the direction of the induced e&period;m&period;f<&sol;li>&NewLine;<li>State the laws of electromagnetic induction<&sol;li>&NewLine;<li>Describe simple experiments to illustrate mutual induction<&sol;li>&NewLine;<li>Explain the working of an alternating current&lpar;a&period;c&rpar; generator and direct current &lpar;d&period;c&rpar; generator<&sol;li>&NewLine;<li>Explain the applications of electromagnetic induction<&sol;li>&NewLine;<li>Solve numerical problems involving transformers<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Simple experiments to illustrate electromagnetic induction<&sol;li>&NewLine;<li>Induced e&period;m&period;f –faradays law &comma;Lenz’s law<&sol;li>&NewLine;<li>Mutual induction<&sol;li>&NewLine;<li>Alternating current&lpar;a&period;c&rpar; generator and direct current &lpar;d&period;c&rpar; generator<&sol;li>&NewLine;<li>Fleming’s right hand –rule<&sol;li>&NewLine;<li>Transformers<&sol;li>&NewLine;<li>Applications of electromagnetic induction<&sol;li>&NewLine;<li>Problems involving transformers<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><em>Unit 6<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>&lpar;Photoelectric effect&comma; X-rays&comma; cathode rays&comma; radioactivity and electronics&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><u>Cathode rays and cathode ray tube<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Describe the production of cathode rays<&sol;li>&NewLine;<li>State the properties of cathode rays<&sol;li>&NewLine;<li>Explain the functioning of a cathode rays oscilloscope <strong>&lpar;C&period;R&period;O<&sol;strong>&rpar; and a television tube &lpar;TV tube &rpar;<&sol;li>&NewLine;<li>Explain the use of a cathode ray oscilloscope<&sol;li>&NewLine;<li>Solve numerical problems involving cathode rays oscilloscope<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Production of cathode rays<&sol;li>&NewLine;<li>Properties of cathode rays<&sol;li>&NewLine;<li>R&period;O and TV tube<&sol;li>&NewLine;<li>Uses of CRO<&sol;li>&NewLine;<li>Problems involving CRO<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p><strong><u>X-rays<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Explain the production of x-rays<&sol;li>&NewLine;<li>State the properties of x-rays<&sol;li>&NewLine;<li>State the dangers of x-rays<&sol;li>&NewLine;<li>Explain the uses of x-rays<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Production of X-ray&comma; X-ray tube<&sol;li>&NewLine;<li>Energy changes in an x-ray tube<&sol;li>&NewLine;<li>Properties of X-rays<&sol;li>&NewLine;<li>Soft and hard X-rays<&sol;li>&NewLine;<li>Dangers of X-rays and precautions<&sol;li>&NewLine;<li>Uses of X-rays &lpar;Bragg’s law not required&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Photoelectric effect<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Perform and describe simple experiments to illustrate the photoelectric effect<&sol;li>&NewLine;<li>Explain the factors that affect photoelectric emission<&sol;li>&NewLine;<li>Apply the equation E &equals;hf to calculate the energy of photons<&sol;li>&NewLine;<li>Define threshold frequency&comma; work function and electron volt<&sol;li>&NewLine;<li>Explain photoelectric emission using Einstein equation&lpar;hf<sub>o<&sol;sub>&plus;<sup>1<&sol;sup>&sol;<sub>2<&sol;sub>mv<sup>2<&sol;sup>&equals;hf&rpar;<&sol;li>&NewLine;<li>Explain the applications of photoelectric effect<&sol;li>&NewLine;<li>Solve numerical problems involving photoelectric emissions<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Photoelectric effect&comma;photon&comma;threshold frequency&comma; work function&comma; Planck’s constant and electron volt<&sol;li>&NewLine;<li>Factors affecting photoelectric emission<&sol;li>&NewLine;<li>Energy of photons<&sol;li>&NewLine;<li>Einstein equation&lpar;hf<sub>o<&sol;sub>&plus;<sup>1<&sol;sup>&sol;<sub>2<&sol;sub>mv<sup>2<&sol;sup>&equals;hf&rpar;<&sol;li>&NewLine;<li>Applications of photoelectric effect-photo emissive cells&comma; photo conductive cells&comma; photovoltaic cells<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Radioactivity<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>Define radioactive decay and half life<&sol;li>&NewLine;<li>Describe the three types of radiation emitted in natural radioactivity<&sol;li>&NewLine;<li>Explain the detection of radioactive emissions<&sol;li>&NewLine;<li>Define nuclear fission and fusion<&sol;li>&NewLine;<li>Write balanced nuclear equations<&sol;li>&NewLine;<li>Explain the dangers of radioactive emissions<&sol;li>&NewLine;<li>State the applications of radioactivity<&sol;li>&NewLine;<li>Solve numerical problems involving half-life<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Radioactive decay<&sol;li>&NewLine;<li>half life<&sol;li>&NewLine;<li>Types of radiation&comma; properties of radiations<&sol;li>&NewLine;<li>Detectors of radiations<&sol;li>&NewLine;<li>Nuclear fission and fusion<&sol;li>&NewLine;<li>Nuclear equations<&sol;li>&NewLine;<li>Hazards of radioactivity &comma;precautions<&sol;li>&NewLine;<li>Applications<&sol;li>&NewLine;<li>Problems of half-life&lpar;integration not required&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong><u>Electronics<&sol;u><&sol;strong><&sol;p>&NewLine;<p><strong>Specific objectives<&sol;strong><&sol;p>&NewLine;<p><strong><em>By the end of the topic the learner should be able to&colon;<&sol;em><&sol;strong><&sol;p>&NewLine;<ol>&NewLine;<li>State the difference between conductors and insulators<&sol;li>&NewLine;<li>Define intrinsic and extrinsic semi-conductors<&sol;li>&NewLine;<li>Explain doping in semi-conductors<&sol;li>&NewLine;<li>Explain the working of a p-n junction diode<&sol;li>&NewLine;<li>Sketch current –voltage characteristic for a diode<&sol;li>&NewLine;<li>Explain the application of diodes in rectification<&sol;li>&NewLine;<&sol;ol>&NewLine;<p><strong>Content<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Conductors&comma;semi-conductors&comma;insulators<&sol;li>&NewLine;<li>Intrinsic and extrinsic semi-conductors<&sol;li>&NewLine;<li>Doping<&sol;li>&NewLine;<li>P-n junction diode<&sol;li>&NewLine;<li>Application of diodes&colon; half wave rectification and full wave rectification<&sol;li>&NewLine;<&sol;ul>&NewLine;

Leave a Reply

Your email address will not be published. Required fields are marked *