ORGANIC CHEMISTRY II FORM 4 CHEMISTRY NOTES FREE

<h1><span style&equals;"text-decoration&colon; underline&semi;"><span style&equals;"color&colon; &num;ff0000&semi; text-decoration&colon; underline&semi;"><strong>ORGANIC CHEMISTRY II<&sol;strong><&sol;span><&sol;span><&sol;h1>&NewLine;<h1><span style&equals;"text-decoration&colon; underline&semi;"><span style&equals;"color&colon; &num;ff0000&semi; text-decoration&colon; underline&semi;">&lpar;ALKANOLS AND ALKANOIC ACIDS&rpar;<&sol;span><&sol;span><&sol;h1>&NewLine;<p>Objectives<&sol;p>&NewLine;<p>By the end of the topic&comma; the learner should be able to&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Name and draw the structures of simple alkanols and alkanoic acids&period;<&sol;li>&NewLine;<li>Describe the preparation and explain the physical and chemical properties of alkanols and alkanoic acids&period;<&sol;li>&NewLine;<li>State the main features of a homologous series&period;<&sol;li>&NewLine;<li>State and explain the uses of some alkanols and alkanoic acids&period;<&sol;li>&NewLine;<li>Describe the preparation&comma; properties and uses of detergents and explain their effect on hard water&period;<&sol;li>&NewLine;<li>List some natural and synthetic polymers and fibres and state their uses&period;<&sol;li>&NewLine;<li>Describe the preparation&comma; properties and uses of some synthetic polymers&period;<&sol;li>&NewLine;<li>Identify the structure of a polymer given the monomer&period;<&sol;li>&NewLine;<li>State the advantages and disadvantages of synthetic materials compared to those of natural polymers&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<h2><span style&equals;"text-decoration&colon; underline&semi;"><span style&equals;"color&colon; &num;ff0000&semi;"><strong>ORGANIC CHEMISTRY II NOTES<&sol;strong><&sol;span><&sol;span><&sol;h2>&NewLine;<h1><a name&equals;"&lowbar;Toc52200659"><&sol;a>Alkanols &lpar;Alcohols&rpar;<&sol;h1>&NewLine;<p>Alkanols belong to a class of organic compounds which contain <strong>carbon&comma; hydrogen and oxygen<&sol;strong>&period; Alkanols have a <strong>hydroxyl group &lpar;OH<&sol;strong><strong>–<&sol;strong><strong>&rpar; <&sol;strong>which is the <strong>functional group<&sol;strong> of the series&period;<&sol;p>&NewLine;<p>Alkanols have a <strong>general formula CnH2n&plus;1 OH<&sol;strong>where n &equals; 1&comma; 2&comma; 3&comma; 4…<&sol;p>&NewLine;<p>Alkanols may be considered as <strong>derivatives of water<&sol;strong> in which <strong>one of the hydrogen atoms in the water molecule is substituted by an alkyl group<&sol;strong>&period; For example&comma; methanol &lpar;CH3OH&rpar; is obtained by replacing one hydrogen atom by a methyl &lpar;-CH3&rpar; group&period; Ethanol is obtained by replacing one hydrogen atom in the water molecule by an ethyl &lpar;-CH2CH3&rpar; group&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200660"><&sol;a>Nomenclature<&sol;h3>&NewLine;<table width&equals;"451">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Name of Alkane<&sol;td>&NewLine;<td>Name of corresponding alkanol<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Methane<&sol;td>&NewLine;<td>Methanol<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Ethane<&sol;td>&NewLine;<td>Ethanol<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Propane<&sol;td>&NewLine;<td>Propanol<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Butane<&sol;td>&NewLine;<td>Butanol<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Pentane<&sol;td>&NewLine;<td>Pentanol<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>Alkanols are named by <strong>replacing the &OpenCurlyQuote;e’ <&sol;strong>of the <strong>corresponding alkane<&sol;strong> with the <strong>suffix -ol&comma; <&sol;strong>for example&colon;<&sol;p>&NewLine;<p>When naming alkanols&comma; the following <strong>rules<&sol;strong> are used&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>Identify the <strong>longest carbon chain containing the hydroxyl group &lpar;-OH&rpar; <&sol;strong>which gives the <strong>parent<&sol;strong> name&colon;<&sol;li>&NewLine;<li><strong>Number<&sol;strong> the longest carbon chain such that the <strong>carbon to which the hydroxyl group is attached has the lowest number possible&period;<&sol;strong><&sol;li>&NewLine;<li>Indicate the <strong>position<&sol;strong> of the hydroxyl group in the name&comma; e&period;g&period;&comma;<&sol;li>&NewLine;<li>Locate the position of the <strong>other substituent groups u<&sol;strong>sing numbers that correspond to their position along the carbon chain&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<table width&equals;"775">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td colspan&equals;"4" width&equals;"775"><strong>The first 5 alkanols<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Alkanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117"><strong>Molecular formula<&sol;strong><&sol;td>&NewLine;<td width&equals;"258"><strong>Structure <&sol;strong><&sol;td>&NewLine;<td width&equals;"284"><strong>Condensed structural formula <&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Methanol<&sol;strong><&sol;td>&NewLine;<td width&equals;"117">CH<sub>3<&sol;sub>OH<&sol;td>&NewLine;<td width&equals;"258"><&sol;td>&NewLine;<td width&equals;"284">CH<sub>3<&sol;sub>OH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Ethanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117">C<sub>2<&sol;sub>H<sub>5<&sol;sub>OH<&sol;td>&NewLine;<td width&equals;"258"><&sol;td>&NewLine;<td width&equals;"284">CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>OH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Propanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117">C<sub>3<&sol;sub>H<sub>7<&sol;sub>OH<&sol;td>&NewLine;<td width&equals;"258"><&sol;td>&NewLine;<td width&equals;"284">CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>OH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Butanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117">C<sub>4<&sol;sub>H<sub>9<&sol;sub>OH<&sol;td>&NewLine;<td width&equals;"258"><&sol;td>&NewLine;<td width&equals;"284">CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>OH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Pentanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117">C<sub>5<&sol;sub>H<sub>11<&sol;sub>OH<&sol;td>&NewLine;<td width&equals;"258"><&sol;td>&NewLine;<td width&equals;"284">CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>OH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"116"><strong>Hexanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117">C<sub>6<&sol;sub>H<sub>13<&sol;sub>OH<&sol;td>&NewLine;<td width&equals;"258"><&sol;td>&NewLine;<td width&equals;"284">CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>OH<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200661"><&sol;a>Isomerism<&sol;h3>&NewLine;<p>Alkanols exhibit two types of isomerism&comma; <strong>positional and branching isomerism<&sol;strong>&period;<&sol;p>&NewLine;<p>In <strong>positional isomerism<&sol;strong>the <strong>position of the functional group &lpar;-OH&rpar; varies<&sol;strong> within the carbon chain&period; For example&colon; When the -OH group is attached to the first carbon atoms&comma; the molecular structure can be represented as&colon;<&sol;p>&NewLine;<p>When the OH group is attached to the second carbon atom the molecular structure will be&colon;<&sol;p>&NewLine;<p>In <strong>branching isomerism<&sol;strong>&comma; the <strong>molecular formula of the compound remains the same<&sol;strong>&period; However&comma; there is <strong>rearrangement of carbon atom<&sol;strong>s such that one or more carbon atoms from the molecule form <strong>alkyl groups attached to the longest carbon chain&period;<&sol;strong> For example&colon;<&sol;p>&NewLine;<p>In condensed structural formula of isomers&comma; <strong>constituents<&sol;strong> may be <strong>shown in brackets after the carbon atom to which they are attached&period;<&sol;strong><&sol;p>&NewLine;<p>The condensed formula of 2-methylbutan-1-ol may be written asCH3CH&lpar;CH3&rpar; CH2CH2OH<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200662"><&sol;a>Preparation of Alkanols<&sol;h2>&NewLine;<p>Ethanol can be prepared by the <strong>decomposition of glucose molecules in the presence of enzymes&period;<&sol;strong><&sol;p>&NewLine;<p>The sugar &lpar;C6H12O6&rpar; molecules are broken down into ethanol and carbon&lpar;IV&rpar; oxide by the enzymes in the yeast&period; Calcium hydroxide is used to test the presence of carbon&lpar;II&rpar; oxide&period;<&sol;p>&NewLine;<p>This process is referred to as fermentation&period; Fermentation is the decomposition of an organic substance by micro-organisms to produce alcohol&comma; carbon&lpar;IV&rpar; oxide and heat&period;<&sol;p>&NewLine;<p>However&comma; a very small amount of alcohol is usually produced by fermentation &lpar;about 10&percnt; ethanol by volume&rpar;&period; The alcohol content can be <strong>increased by fractional distillation of the crude solution&period; <&sol;strong><&sol;p>&NewLine;<p>The ethanol obtained contains 5&percnt; water&period; The water can be removed by using a suitable drying agent such as calcium oxide&comma; to obtain absolute ethanol&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Alternatively&comma; ethene may be hydrolysed using concentrated sulphuric&lpar;VI&rpar; acid&period;<&sol;p>&NewLine;<p>CH2H4&lpar;g&rpar; &plus; H2SO4&lpar;aq&rpar;  C2H5OSO3H&lpar;l&rpar;<&sol;p>&NewLine;<p>When water is added to the mixture&comma; the ethylhydrogen sulphate is hydrolysed to ethanol&period;<&sol;p>&NewLine;<p>CH3CH2OSO3H&lpar;g&rpar; &plus; H2O&lpar;l&rpar;  CH3CH2OH&lpar;l&rpar; &plus; H2SO4&lpar;aq&rpar;<&sol;p>&NewLine;<p>The mixture of ethanol and the acid is separated by distillation because of the difference in boiling points&period;<&sol;p>&NewLine;<p>On a large scale&comma; ethanol is manufactured by <strong>reacting steam and ethene <&sol;strong>at a temperature of 300°C and a pressure of about 60–70 atmospheres over phosphoric&lpar;V&rpar; acid&period; The acid is used as a catalyst&period;<&sol;p>&NewLine;<p>The ethene for this reaction is obtained from <strong>cracking of large alkanes<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200663"><&sol;a>Properties of Alkanols<&sol;h2>&NewLine;<p><a name&equals;"&lowbar;Toc52200664"><&sol;a><a name&equals;"&lowbar;Toc51963202"><&sol;a><&sol;p>&NewLine;<h3>Physical Properties of Alkanols&period;<&sol;h3>&NewLine;<ul>&NewLine;<li>Ethanol is a colourless liquid with a characteristic odour&period; It has a <strong>melting point of –114°C<&sol;strong> and <strong>boiling point of 78°C&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p>These values are <strong>high when compared with those of alkane<&sol;strong>s having corresponding molecular masses&period; This is due to the <strong>presence of hydrogen bonds in addition to van der Waals forces&period;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Ethanol is <strong>highly soluble in water&period;<&sol;strong> The high solubility of ethanol in water is because the <strong>ethanol molecules are polar<&sol;strong> like those of water&period; The ethanol molecules are therefore able to f<strong>orm hydrogen bonds with the water molecules&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<table width&equals;"804">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Name <&sol;strong><&sol;td>&NewLine;<td width&equals;"117"><strong>Molecular mass<&sol;strong><&sol;td>&NewLine;<td><strong>Molecular formula<&sol;strong><&sol;td>&NewLine;<td><strong>Boiling point &lpar;°C&rpar;<&sol;strong><&sol;td>&NewLine;<td><strong>Melting point &lpar;°C&rpar;<&sol;strong><&sol;td>&NewLine;<td><strong>Solubility g&sol;100 g water<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Methanol<&sol;strong><&sol;td>&NewLine;<td width&equals;"117">32<&sol;td>&NewLine;<td>CH<sub>4<&sol;sub>O<&sol;td>&NewLine;<td>65<&sol;td>&NewLine;<td>-97&period;5<&sol;td>&NewLine;<td>Highly soluble<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Ethanol <&sol;strong><&sol;td>&NewLine;<td width&equals;"117">46<&sol;td>&NewLine;<td>C<sub>2<&sol;sub>H<sub>6<&sol;sub>O<&sol;td>&NewLine;<td>78<&sol;td>&NewLine;<td>-114<&sol;td>&NewLine;<td>Highly soluble<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Propan-1-ol<&sol;strong><&sol;td>&NewLine;<td width&equals;"117">60<&sol;td>&NewLine;<td>C<sub>3<&sol;sub>H<sub>8<&sol;sub>O<&sol;td>&NewLine;<td>97<&sol;td>&NewLine;<td>-126<&sol;td>&NewLine;<td>Highly soluble<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Butan-1-ol<&sol;strong><&sol;td>&NewLine;<td width&equals;"117">74<&sol;td>&NewLine;<td>C<sub>4<&sol;sub>H<sub>10<&sol;sub>O<&sol;td>&NewLine;<td>117<&sol;td>&NewLine;<td>-90<&sol;td>&NewLine;<td>8<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Pentan-1-ol<&sol;strong><&sol;td>&NewLine;<td width&equals;"117">88<&sol;td>&NewLine;<td>C<sub>5<&sol;sub>H<sub>12<&sol;sub>O<&sol;td>&NewLine;<td>138<&sol;td>&NewLine;<td>-79<&sol;td>&NewLine;<td>2&period;7<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"118"><strong>Hexan-1-ol<&sol;strong><&sol;td>&NewLine;<td width&equals;"117">102<&sol;td>&NewLine;<td>C<sub>6<&sol;sub>H<sub>14<&sol;sub>O<&sol;td>&NewLine;<td>157<&sol;td>&NewLine;<td>-52<&sol;td>&NewLine;<td>0&period;6<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Alkanols are soluble in water but their <strong>solubility decreases gradually as the molecular mass increases<&sol;strong>&period; For example&comma; methanol is more soluble than hexan-1-ol&period;<&sol;li>&NewLine;<li>The <strong>melting points and boiling points <&sol;strong>of alkanols <strong>increase down<&sol;strong> the series due to the <strong>increases in the strength of intermolecular forces of attraction&period; <&sol;strong>Alkanols have higher melting and boiling points than their corresponding alkanes with the same molecular mass&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>This is <strong>because of the hydrogen bonds between alkanol molecules&comma; caused by the functional group &lpar;-OH&rpar;&period; Hydrogen bonds are stronger than van der Waals’ forces&period;<&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>The melting and boiling points <strong>increase with increase in molar mass&period;<&sol;strong> This is attributed to the <strong>increase in the strength of inter-molecular forces&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200665"><&sol;a><a name&equals;"&lowbar;Toc51963203"><&sol;a>Chemical Properties of Alkanols<&sol;h3>&NewLine;<p>In solution&comma; ethanol has a<strong> pH slightly below 7<&sol;strong>&period; This is because in solution it behaves as a <strong>weak acid&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200666"><&sol;a><a name&equals;"&lowbar;Toc51963204"><&sol;a>Combustion<&sol;h4>&NewLine;<p>Ethanol burns readily in air with a <strong>pale blue flame<&sol;strong> to produce carbon&lpar;IV&rpar; oxide and water&period; This is because <strong>ethanol is saturated and undergoes complete combustion<&sol;strong>&period;<&sol;p>&NewLine;<p>C2H5OH&lpar;l&rpar; &plus; 2O2&lpar;g&rpar;  2CO2&lpar;g&rpar; &plus; 3H2O&lpar;l&rpar;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200667"><&sol;a><a name&equals;"&lowbar;Toc51963205"><&sol;a>Reactions with Sodium metal<&sol;h4>&NewLine;<p>Ethanol <strong>reacts with sodium liberating hydrogen gas and a salt&comma; sodium ethoxide&period;<&sol;strong> The sodium ethoxide <strong>hydrolyses<&sol;strong> in water to generate -OH which makes the solution <strong>alkaline<&sol;strong>&period;<&sol;p>&NewLine;<p>2CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>OH &lpar;l&rpar;&plus; 2Na &lpar;s&rpar;   2CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>ONa &lpar;aq&rpar;&plus; H<sub>2 <&sol;sub>&lpar;g&rpar;<&sol;p>&NewLine;<p>Sodium metal reacts with any other alkanol to liberate a salt and hydrogen gas&comma; e&period;g&period;&comma;<&sol;p>&NewLine;<p>2ROH&lpar;l&rpar; &plus; 2Na&lpar;s&rpar;  2RONa&lpar;s&rpar; &plus; H2&lpar;g&rpar;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200668"><&sol;a><a name&equals;"&lowbar;Toc51963206"><&sol;a>Esterification<&sol;h4>&NewLine;<p>Ethanol <strong>reacts<&sol;strong> with <strong>ethanoic acid <&sol;strong>in the presence of a <strong>few drops of concentrated sulphuric&lpar;VI&rpar; acid<&sol;strong> to form a substance with a <strong>pleasant smell&period;<&sol;strong> The product formed is known as <strong>ethylethanoate<&sol;strong> which belongs to a group of compounds known as <strong>esters<&sol;strong>&period; The process of ester formation is known as esterification&period;<&sol;p>&NewLine;<p>Below is the equation showing the structural formulae of the reactants and products&period;<&sol;p>&NewLine;<p>The <strong>alkyl<&sol;strong> part of the <strong>ester<&sol;strong> is derived from the <strong>alkanol<&sol;strong>&comma; while the <strong>alkanoate<&sol;strong> part is derived from the <strong>acid<&sol;strong>&period; The <strong>alkyl<&sol;strong> group from the alkanol <strong>attaches itself to the carboxylic acid<&sol;strong> thereby <strong>displacing a hydrogen atom&period;<&sol;strong><&sol;p>&NewLine;<p>Ethanol also reacts with <strong>propanoic<&sol;strong> acid to form an ester known as <strong>ethylpropanaote<&sol;strong>&period;<&sol;p>&NewLine;<p>Below is the equation showing the structural formulae of the reactants and products&period;<&sol;p>&NewLine;<p><strong>Under ordinary conditions the reaction takes place slowly<&sol;strong>&period; Therefore&comma; concentrated sulphuric&lpar;VI&rpar; acid is added to <strong>catalyse<&sol;strong> the reaction&period;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200669"><&sol;a><a name&equals;"&lowbar;Toc51963207"><&sol;a>Oxidation by oxidisingagents &lpar;KMnO<sub>4<&sol;sub> and K<sub>2<&sol;sub>Cr<sub>2<&sol;sub>O<sub>7<&sol;sub>&rpar;<&sol;h4>&NewLine;<p>Ethanol is<strong> oxidised by oxidising agents such as potassium manganate&lpar;VII&rpar; <&sol;strong>and <strong>potassium dichromate&lpar;VI&rpar; to form ethanoic acid<&sol;strong>&period; When reacted with ethanol&comma; <strong>acidified purple potassium manganate&lpar;VII&rpar; turns colourless&period; <&sol;strong>This is due to the <strong>reduction of manganate ions &lpar;MnO4-&rpar; which are purple to manganese ions &lpar;Mn2&plus;&rpar; which are colourless&period;<&sol;strong><&sol;p>&NewLine;<p>Acidified orange potassium dichromate&lpar;VI&rpar; <strong>turns green<&sol;strong> due to the reduction of chromate ions &lpar;Cr2O72–&rpar; to chromium ions &lpar;Cr3&plus;&rpar;&period;<&sol;p>&NewLine;<p>The structure of the reactant and product in the equation can be represented as&colon;<&sol;p>&NewLine;<p>The oxidising property of the chromate&lpar;VI&rpar; is used in some <strong>breathalysers<&sol;strong> to indicate the level of <strong>alcohol &lpar;alkanol&rpar; content<&sol;strong> in the breath of motorists&period;<&sol;p>&NewLine;<p>Generally&comma; alkanols are <strong>oxidised by oxidising agents to alkanoic &lpar;carboxylic&rpar; acids&period;<&sol;strong><&sol;p>&NewLine;<p><strong>R- represents an alkyl group<&sol;strong><&sol;p>&NewLine;<p><a name&equals;"&lowbar;Toc51963208"><&sol;a><&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200670"><&sol;a>Dehydration by concentrated sulphuric &lpar;VI&rpar; acid&period;<&sol;h4>&NewLine;<p><strong>Concentrated sulphuric&lpar;VI&rpar; acid<&sol;strong> reacts with ethanol at <strong>180<&sol;strong>°C to form <strong>ethene and water<&sol;strong>&period; The concentrated sulphuric&lpar;VI&rpar; acid acts as a <strong>dehydrating<&sol;strong> agent&period;<&sol;p>&NewLine;<p>At a temperature o<strong>f 140°C&comma; incomplete dehydration occurs in which an ether<&sol;strong> is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200671"><&sol;a>Uses of Alkanols<&sol;h2>&NewLine;<ol>&NewLine;<li>As solvents&comma; i&period;e&period;&comma; in the preparation of drugs&period;<&sol;li>&NewLine;<li>As fuels when blended with gasoline to form gasohol&period;<&sol;li>&NewLine;<li>In the manufacture of synthetic fibres&comma; e&period;g&period;&comma; polyvinylchloride and polythene&period;<&sol;li>&NewLine;<li>As an antiseptic when used under specified concentrations&period;<&sol;li>&NewLine;<li>Ethanol is used as an alcoholic drink only in low concentrations&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<h4><a name&equals;"&lowbar;Toc52200672"><&sol;a><a name&equals;"&lowbar;Toc51963210"><&sol;a>Alcohol and Health<&sol;h4>&NewLine;<p>Over-consumption of ethanol causes damage to some body organs such as the liver&comma; the brain and the heart&period; It also leads to addiction&period;<&sol;p>&NewLine;<p>When small amounts of methanol are added to ethanol&comma; it causes blindness and may even lead to death&period; In many parts of the world it is illegal to sell ethanol to persons under the age of eighteen&period;<&sol;p>&NewLine;<p>Methylated spirit is an alcohol containing about 95&percnt; absolute alcohol and 5&percnt; methanol&period; Methanol and a purple dye called methylviolet are added to ethanol to make the methylated spirit unsuitable for human consumption&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1><a name&equals;"&lowbar;Toc52200673"><&sol;a>Alkanoic Acids &lpar;Carboxylic Acids&rpar;<&sol;h1>&NewLine;<p>Alkanoic acids belong to a homologous series of organic compounds that contains a <strong>carboxyl<&sol;strong>group <strong>&lpar;-COOH&rpar; <&sol;strong>as a functional group&period;<&sol;p>&NewLine;<p>A carboxyl group has the structural formula<&sol;p>&NewLine;<p>Alkanoic acids have a general formula <strong>CnH2n&plus;1COOH<&sol;strong> where n &equals; 1&comma; 2&comma; 3…<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td colspan&equals;"3">The first five alkanoic acids<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Alkanoic acid<&sol;td>&NewLine;<td>Molecular formula<&sol;td>&NewLine;<td>Structural formula<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Methanoic<&sol;td>&NewLine;<td>HCOOH<&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Ethanoic<&sol;td>&NewLine;<td>CH<sub>3<&sol;sub>COOH<&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Propanoic<&sol;td>&NewLine;<td>C<sub>2<&sol;sub>H<sub>5<&sol;sub>COOH<&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Butanoic<&sol;td>&NewLine;<td>C<sub>3<&sol;sub>H<sub>7<&sol;sub>COOH<&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Pentanoic<&sol;td>&NewLine;<td>C<sub>4<&sol;sub>H<sub>9<&sol;sub>COOH<&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Alkanoic acids are naturally found in <strong>fruits<&sol;strong> such as oranges&comma; lemon and pepper&period; Methanoic acid is present in <strong>nettle leaves<&sol;strong> and <strong>insect stings<&sol;strong> such as bees and wasps&period; Ethanoic acid is commonly known as vinegar&period; <strong>Butanoic<&sol;strong> acid is found in beef fat &lpar;<strong>Butter<&sol;strong>&rpar;&period; <strong>Hexandioic<&sol;strong> acid is found in palm oil and olive oil&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200674"><&sol;a>Nomenclature<&sol;h3>&NewLine;<p>Alkanoic acids are named by <strong>replacing the &OpenCurlyDoubleQuote;e”<&sol;strong> ending of the <strong>corresponding alkane<&sol;strong> by the <strong>suffix – oic&period;<&sol;strong> The carbon atom to which the functional group is attached is given position one&period;<&sol;p>&NewLine;<p>The simplest member of the alkanoic acid series when n &equals; 0 is <strong>HCOOH &lpar;Methanoic acid&rpar; <&sol;strong>and when n &equals; 1 is <strong>CH2COOH &lpar;ethanoic acid&rpar;&period;<&sol;strong><&sol;p>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td colspan&equals;"3">Names and formulae of the first ten alkanoic acids<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Name of acid<&sol;td>&NewLine;<td>Molecular formula<&sol;td>&NewLine;<td>Condensed structural formula<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Methanoic<&sol;td>&NewLine;<td>CH2O2<&sol;td>&NewLine;<td>HCOOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Ethanoic<&sol;td>&NewLine;<td>C2H4O2<&sol;td>&NewLine;<td>CH3COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Propanoic<&sol;td>&NewLine;<td>C3H6O2<&sol;td>&NewLine;<td>CH3CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Butanoic<&sol;td>&NewLine;<td>C4H8O2<&sol;td>&NewLine;<td>CH3CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Pentanoic<&sol;td>&NewLine;<td>C5H10O2<&sol;td>&NewLine;<td>CH3CH2CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Hexanoic<&sol;td>&NewLine;<td>C6H12O2<&sol;td>&NewLine;<td>CH3CH2CH2CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Heptanoic<&sol;td>&NewLine;<td>C7H14O2<&sol;td>&NewLine;<td>CH3CH2CH2CH2CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Octanoic<&sol;td>&NewLine;<td>C8H16O2<&sol;td>&NewLine;<td>CH3CH2CH2CH2 CH2CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Nonanoic<&sol;td>&NewLine;<td>C9H18O2<&sol;td>&NewLine;<td>CH3CH2CH2CH2CH2CH2CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Decanoic<&sol;td>&NewLine;<td>C10H20O2<&sol;td>&NewLine;<td>CH3CH2CH2CH2CH2CH2CH2CH2CH2COOH<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><a name&equals;"&lowbar;Toc52200675"><&sol;a><&sol;p>&NewLine;<h2>Laboratory Preparation of Ethanoic Acids<&sol;h2>&NewLine;<p>In the laboratory&comma; ethanoic acid can be prepared by oxidising ethanol using suitableoxidising agents such acidified potassium manganate &lpar;VII&rpar; or potassium dichromate &lpar;VII&rpar;&period;<&sol;p>&NewLine;<p>On heating&comma; acidified potassium manganate&lpar;VII&rpar; oxidises ethanol to ethanoic acid&period;<&sol;p>&NewLine;<p>During the reaction the <strong>purple solution turns colourless&period;<&sol;strong> The colour of the solution is colourless because the purple manganate&lpar;VII&rpar; &lpar;MnO<sup>-4<&sol;sup>&rpar; ions are reduced to colourless manganese&lpar;II&rpar; &lpar;Mn<sup>2&plus;<&sol;sup>&rpar; ions&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>When acidified <strong>potassium chromate&lpar;VI&rpar; is used&comma;<&sol;strong> the solution in the flask is <strong>orange before<&sol;strong> heating but <strong>after heating it turns green&period;<&sol;strong> The orange colour is due to chromate&lpar;VI&rpar; ions which are reduced to green chromium&lpar;II&rpar; ions&period;<&sol;p>&NewLine;<p>To <strong>ensure complete oxidation&comma; excess oxidising agent is used&period;<&sol;strong> The <strong>condenser<&sol;strong> ensures any <strong>vapour escaping is condensed back into the flask f<&sol;strong>or further reaction&period;<&sol;p>&NewLine;<p>The solution in the flask contains the oxidising agent&comma; water and ethanoic acid&period; In order to obtain <strong>pure<&sol;strong>ethanoic acid the <strong>mixture is distilled<&sol;strong>&period; The distillate collected at about 118 °C is ethanoic acid which is a <strong>colourles liquid with a sharp smell<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200676"><&sol;a>Properties of Alkanoic acids<&sol;h2>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200677"><&sol;a><a name&equals;"&lowbar;Toc51963215"><&sol;a>Physical properties of alkanoic acids<&sol;h3>&NewLine;<table width&equals;"719">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Name of acid <&sol;strong><&sol;td>&NewLine;<td width&equals;"103"><strong>Molecular mass<&sol;strong><&sol;td>&NewLine;<td width&equals;"130"><strong>State at room temperature<&sol;strong><&sol;td>&NewLine;<td width&equals;"145"><strong>Solubility<&sol;strong><&sol;td>&NewLine;<td><strong>Melting point &lpar;°C&rpar;&rpar;<&sol;strong><&sol;td>&NewLine;<td><strong>Boiling point &lpar;°C<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Methanoic<&sol;strong><&sol;td>&NewLine;<td width&equals;"103">46<&sol;td>&NewLine;<td width&equals;"130">Liquid<&sol;td>&NewLine;<td width&equals;"145">Very high<&sol;td>&NewLine;<td>8&period;4<&sol;td>&NewLine;<td>101<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Ethanoic<&sol;strong><&sol;td>&NewLine;<td width&equals;"103">70<&sol;td>&NewLine;<td width&equals;"130">Liquid<&sol;td>&NewLine;<td width&equals;"145">Very high<&sol;td>&NewLine;<td>16&period;6<&sol;td>&NewLine;<td>118<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Propanoic<&sol;strong><&sol;td>&NewLine;<td width&equals;"103">84<&sol;td>&NewLine;<td width&equals;"130">Liquid<&sol;td>&NewLine;<td width&equals;"145">Highly soluble<&sol;td>&NewLine;<td>-20&period;8<&sol;td>&NewLine;<td>141<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Butanoic<&sol;strong><&sol;td>&NewLine;<td width&equals;"103">98<&sol;td>&NewLine;<td width&equals;"130">Liquid<&sol;td>&NewLine;<td width&equals;"145">Highly soluble<&sol;td>&NewLine;<td>-6&period;5<&sol;td>&NewLine;<td>164<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Pentanoic<&sol;strong><&sol;td>&NewLine;<td width&equals;"103">112<&sol;td>&NewLine;<td width&equals;"130">Liquid<&sol;td>&NewLine;<td width&equals;"145">Moderate<&sol;td>&NewLine;<td>-34&period;5<&sol;td>&NewLine;<td>186<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"123"><strong>Hexanoic<&sol;strong><&sol;td>&NewLine;<td width&equals;"103">116<&sol;td>&NewLine;<td width&equals;"130">Liquid<&sol;td>&NewLine;<td width&equals;"145">Low<&sol;td>&NewLine;<td>-1&period;5<&sol;td>&NewLine;<td>205<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<ul>&NewLine;<li>Alkanoic acids are <strong>soluble<&sol;strong> in water because their <strong>molecules are able to form hydrogen bonds with water molecules&period;<&sol;strong> Their<strong>solubility decreases with increase in molecular mass <&sol;strong>because of the <strong>decreases<&sol;strong> in <strong>polarity<&sol;strong> of the acid molecules&period;<&sol;li>&NewLine;<li>Melting and boiling points <strong>increase<&sol;strong> with <strong>increase in molecular mass&period;<&sol;strong> This is due the <strong>increase<&sol;strong> in the <strong>strength of van der Waals’ forces&period;<&sol;strong><&sol;li>&NewLine;<li>The alkanoic acids have <strong>higher melting and boiling points than their corresponding alkanols <&sol;strong>with the same molecular mass<strong> because the alkanoic acids form more hydrogen bonds per molecule than the corresponding alkanol&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200678"><&sol;a><a name&equals;"&lowbar;Toc51963216"><&sol;a>Chemical Properties of alkanoic acids<&sol;h3>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200679"><&sol;a><a name&equals;"&lowbar;Toc51963217"><&sol;a>Acidic properties in solution&period;<&sol;h4>&NewLine;<p>Ethanoic acid has a pH of <strong>about 5 <&sol;strong>and is a <strong>weak acid because it partially dissociates in solution<&sol;strong><&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"135"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td><&sol;td>&NewLine;<td><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>to form ethanoate ions and hydrogen ions&period; The dissociation can be represented as&colon;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200680"><&sol;a><a name&equals;"&lowbar;Toc51963218"><&sol;a>Reaction with metals&period;<&sol;h4>&NewLine;<p>Ethanoic acid reacts with <strong>metals<&sol;strong> to form <strong>hydrogen gas and a salt <&sol;strong>&lpar;<strong>organic<&sol;strong> salt&rpar;&period;<&sol;p>&NewLine;<p>Alkanoic acids react with metals to form <strong>alkanoate<&sol;strong> and hydrogen gas&period;<&sol;p>&NewLine;<p><strong>Alkanoic acid &plus; Metal <&sol;strong><strong>MetalAlkanoate &plus; Hydrogen gas<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200681"><&sol;a><a name&equals;"&lowbar;Toc51963219"><&sol;a>Reaction with bases and alkalis &lpar;neutralization&rpar;<&sol;h4>&NewLine;<p>Ethanoic acid neutralises sodium hydroxide forming a salt and water&period;<&sol;p>&NewLine;<p>Generally&comma; alkanoic acids react with alkalis to form a salt and water&period;<&sol;p>&NewLine;<p><strong>Alkanoic acid &plus; Alkali <&sol;strong><strong>Alkanoate &plus; water<&sol;strong><&sol;p>&NewLine;<p>Ethanoic acid also reacts with sodium carbonate to produce a salt&comma; carbon&lpar;IV&rpar; oxide and water&period;<&sol;p>&NewLine;<p>2CH3COOH&lpar;aq&rpar; &plus; Na2CO3&lpar;aq&rpar;  2CH3COONa&lpar;aq&rpar; &plus; CO2&lpar;g&rpar; &plus; H2O&lpar;g&rpar;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200682"><&sol;a><a name&equals;"&lowbar;Toc51963220"><&sol;a>Reaction with alkanols &lpar;esterification&rpar;<&sol;h4>&NewLine;<p>When ethanoic acid reacts with ethanol&comma; in the presence of a few drops of concentrated sulphuric&lpar;VI&rpar; acid&comma; a pleasant smelling compound called an ester is formed&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200683"><&sol;a>Uses of Alkanoic Acids<&sol;h2>&NewLine;<ol>&NewLine;<li>Used as solvents&period;<&sol;li>&NewLine;<li>In the manufacture of drugs and chemicals&period;<&sol;li>&NewLine;<li>In flavouring of foods&comma; e&period;g&period;&comma; ethanoic acid &lpar;vinegar&rpar;&period;<&sol;li>&NewLine;<li>In the manufacture of synthetic fibres such as terylene&comma; dacron and nylon&period;<&sol;li>&NewLine;<li>In preservation of food&comma; e&period;g&period;&comma; benzoic acid&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<h1><a name&equals;"&lowbar;Toc52200684"><&sol;a>Detergents<&sol;h1>&NewLine;<p><strong>Detergents<&sol;strong> are <strong>substances which improve the cleaning properties of water<&sol;strong>&period; There are two types&semi; <strong>soapy and soapless<&sol;strong>detergents&period;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200685"><&sol;a>Soapy Detergents<&sol;h2>&NewLine;<p>Soapy detergents are referred to as <strong>soap<&sol;strong>&period; They are <strong>prepared from either fats or oils<&sol;strong>&period;<&sol;p>&NewLine;<p>Soap is a <strong>sodium or potassium salt<&sol;strong> with a g<strong>eneral formulaCnH2n&plus;1COO<&sol;strong><strong>–<&sol;strong><strong>Na<&sol;strong><strong>&plus;<&sol;strong>or <strong>C<sub>n<&sol;sub>H2n&plus;1COO<&sol;strong><strong>–<&sol;strong><strong>K<&sol;strong><strong>&plus;<&sol;strong><&sol;p>&NewLine;<p>Fats and oils are <strong>esters<&sol;strong>&period; <strong>Fats<&sol;strong> occur naturally in <strong>animals<&sol;strong> while <strong>oils<&sol;strong> occur both in plants and <strong>animals<&sol;strong>&period; Some examples of oils include <strong>whale oil&comma; groundnut oil&comma; corn oil and coconut oil&period; <&sol;strong>Naturally occurring fats are <strong>butter<&sol;strong> from milk&comma; <strong>lard<&sol;strong> from <strong>pigs<&sol;strong> and <strong>tallow<&sol;strong> from <strong>animals<&sol;strong>&period;<&sol;p>&NewLine;<p><strong>Fats<&sol;strong> are <strong>saturated organic compounds<&sol;strong> while <strong>oils are unsaturated&period;<&sol;strong><&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200686"><&sol;a><a name&equals;"&lowbar;Toc51963224"><&sol;a>Preparation of soap&period;<&sol;h3>&NewLine;<p>In the laboratory&comma; soap can be prepared by mixing 5 cm<sup>3 <&sol;sup>of castor oil and 20 cm<sup>3<&sol;sup> of 4 M sodium hydroxide in an evaporating dish&period; The mixture is then heated in a water bath for about 20 minutes&comma; stirring continuously while adding small amounts of distilled water&period; Finally&comma; three spatulafuls of sodium chloride are added&comma; the mixture is stirred and allowed tocool&period; The mixture is then filteredand the residue washed with cold distilled water&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>When an alkali is boiled with fat or oil&comma; a <strong>hydrolysis reaction <&sol;strong>takes place&period;<&sol;p>&NewLine;<p>Fat &plus; NaOH  Soap &plus; glycerol<&sol;p>&NewLine;<p>When a fatty acid is <strong>hydrolysed in the presence of an alkali<&sol;strong> the process is referred to as saponification&period;<&sol;p>&NewLine;<p>In the hydrolysis of a fatty acid&comma; <strong>sodium hydroxide neutralises the acid to form the sodium salt of the acid&period;<&sol;strong><&sol;p>&NewLine;<p>For example&semi;<&sol;p>&NewLine;<p>The soap formed &lpar;sodium octadecanoate&rpar; is commonly known as <strong>sodium stearate<&sol;strong>&period;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>Sodium chloride crystals are added to the mixture to reduce the solubility of the soap in glycerol&period;<&sol;strong> This is known as salting out&period;<&sol;li>&NewLine;<li>The soap obtained is <strong>rinsed in distilled water to remove impurities<&sol;strong> such as <strong>glycerol<&sol;strong>&comma; other <strong>salts<&sol;strong> and <strong>unused alkali solution&period;<&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<h3><a name&equals;"&lowbar;Toc52200687"><&sol;a><a name&equals;"&lowbar;Toc51963225"><&sol;a>The Mode of Action of Soap in Cleaning<&sol;h3>&NewLine;<p>The cleaning property of soap depends on its structure&period; For example&comma; sodium stearate consists of an oil soluble long hydrocarbon end and a polar end which is water soluble &lpar;C11H35COO–Na&plus;&rpar;<&sol;p>&NewLine;<p>A soap molecule has&colon;<&sol;p>&NewLine;<ul>&NewLine;<li>A hydrocarbon chain end which is non-polar and has no attraction for water &lpar;water – hating&rpar; and is called<&sol;li>&NewLine;<li>A carboxylate end which is polar and is attracted to water or is &OpenCurlyQuote;water-loving’ and is called hydrophilic&period; This end is in fact negatively charged in water&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>The above can also be represented by a skeletal structure as shown&period;<&sol;p>&NewLine;<p>The hydrocarbon chain may also be represented by &OpenCurlyQuote;R’&period; Thus <strong>R – COO<&sol;strong><strong>–<&sol;strong><strong>Na<&sol;strong><strong>&plus;<&sol;strong><&sol;p>&NewLine;<p>In water&comma; soap <strong>dissociates<&sol;strong> into <strong>carboxylate<&sol;strong> and <strong>sodium ions&comma; <&sol;strong>CH3&lpar;CH2&rpar;16COO– and Na&plus;&period; The <strong>non-polar end of the carboxylate ion<&sol;strong> i<strong>s oil soluble<&sol;strong> while the<strong> polar end<&sol;strong> is <strong>water soluble&period;<&sol;strong><&sol;p>&NewLine;<p>Water alone is not sufficient to clean grease stained linen or surfaces because <strong>water cannot dissolve grease as the two are immiscible&period;<&sol;strong><&sol;p>&NewLine;<p>When soap is <strong>added<&sol;strong> to water during washing&comma; the<strong> non-polar hydrophobic end of the carboxylate ions lodge themselves onto the grease<&sol;strong> while the <strong>hydrophilic ends stick out in the water<&sol;strong>&comma; since they are attracted by water molecules&period;<&sol;p>&NewLine;<p><strong>Agitation<&sol;strong> of the material being washed <strong>causes enough of the carboxylate ions t<&sol;strong>o stick into grease <strong>particles and dislodge them<&sol;strong>&comma; this forms <strong>small droplets <&sol;strong>with the <strong>water loving ends <&sol;strong>poking out &lpar;<strong>micelles<&sol;strong>&rpar;&period; The micelles <strong>cannot coalesce together as they repel one another due to the charge on their surface&period; <&sol;strong>This way they are <strong>washed away by water <&sol;strong>when the garment is <strong>rinsed<&sol;strong>&period;<&sol;p>&NewLine;<p>The detergents &OpenCurlyQuote;<strong>heads’<&sol;strong> are attracted by water molecules&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h3>Effect of Hard Water on Soap<&sol;h3>&NewLine;<p>When soap is added to water containing calcium andmagnesium ions&comma; a precipitation reaction takes place&period; For example&colon;<&sol;p>&NewLine;<p><strong>2C17H35COO–Na&plus;&lpar;aq&rpar; &plus; Ca2&plus;&lpar;aq&rpar; <&sol;strong><strong> &lpar;C17H35COO–&rpar;2Ca2&plus;&lpar;s&rpar; &plus; 2Na&plus;&lpar;aq&rpar;<&sol;strong><&sol;p>&NewLine;<p>Lather <strong>does not form until all the calcium or magnesium ions responsible for the hardness have been precipitated&period;<&sol;strong> The precipitate floats on the water as <strong>scum<&sol;strong>&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200688"><&sol;a>Soapless Detergents<&sol;h2>&NewLine;<p>These are detergents in which a <strong>carboxylic group <&sol;strong>of the soap is <strong>replaced by an alkyl sulphonate group<&sol;strong>&period; For example&colon;<&sol;p>&NewLine;<p>Where <strong>R represents<&sol;strong> the <strong>long hydrocarbon chain<&sol;strong>&period;<&sol;p>&NewLine;<p>Soaplessdetergents act like soap in the cleaning proces<strong>s<&sol;strong><strong> but they are not affected by hard water unlike ordinary soap&period;<&sol;strong>Therefore&comma; unlike soap&comma; soapless detergents <strong>lather readily with water<&sol;strong> since the <strong>corresponding calcium and magnesium salts are soluble&period;<&sol;strong><&sol;p>&NewLine;<p>Soapless detergents are manufactured <strong>from petroleum products&period;<&sol;strong> They can also be made from <strong>vegetable oil or fat<&sol;strong>s which <strong>do not contain the benzene ring&period;<&sol;strong><&sol;p>&NewLine;<p>The initial step in the preparation involves the <strong>heating of the long chain hydrocarbons<&sol;strong> with <strong>benzene<&sol;strong> molecules at <strong>very high temperature<&sol;strong> to produce <strong>alkylbenzene<&sol;strong> as the organic part of the detergent&period;<&sol;p>&NewLine;<p>The alkylbenzene is <strong>further reacted with concentrated sulphuric&lpar;VI&rpar; acid<&sol;strong> to form <strong>alkylbenzene sulphonate&period;<&sol;strong><&sol;p>&NewLine;<p>The <strong>alkylbenzene sulphonate<&sol;strong>is <strong>reacted<&sol;strong> with sodium hydroxide solution to form <strong>sodium alkylbenzene sulphonate<&sol;strong>which is the detergent&period;<&sol;p>&NewLine;<p>The long hydrocarbon chain can be <strong>presented by R&period;<&sol;strong>Thus&comma; the <strong>sodium alkylbenzene sulphonate may be written as&colon;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The flow diagram below is a summary of the process involved during preparation of soapless detergents&period;<&sol;p>&NewLine;<p>Soapless detergents are manufactured in <strong>liquid or solid form<&sol;strong>&period;<&sol;p>&NewLine;<p>In order<strong> to improve the cleaning properties of soapy and soapless detergents&comma; tetraoxophosphate materials are added<&sol;strong>&period; The compounds <strong>prevent formation<&sol;strong> of compounds with <strong>Ca2&plus;&comma; Mg2&plus;<&sol;strong>ions hence <strong>no scum is formed<&sol;strong>&period;<&sol;p>&NewLine;<p>Examples of soapless detergents sold locally are&colon; Omo&comma; Dynamo&comma; Perfix&comma; Persil&comma; Sunlight and Toss&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200689"><&sol;a>Comparison between soapless detergents and soap<&sol;h4>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Soapless detergents<&sol;td>&NewLine;<td>Soapy detergents<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Very soluble in water and therefore can be used well in hard water&period;<&sol;td>&NewLine;<td>Form scum in hard water<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Cause water pollution because some are non-biodegradable&period;<&sol;td>&NewLine;<td>Do not cause pollution because they are biodegradable&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Are expensive&period;<&sol;td>&NewLine;<td>Are cheap&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200690"><&sol;a>Pollution Effect of Detergents<&sol;h4>&NewLine;<p>Detergents contain <strong>long chains of alkylbenzene<&sol;strong> groups which are <strong>difficult to break down through bacterial action<&sol;strong>&period; When large quantities of detergents are released into lakes&comma; rivers and dams&comma; froth forms&period; Eventually&comma; the forth forms a <strong>protective blanket layer on top of the water preventing air from dissolving in the water<&sol;strong>&period; Lack of oxygen in water causes death of animals due to high biological and chemical oxygen demand&period;<&sol;p>&NewLine;<p>The <strong>tetraoxophosphate<&sol;strong> and other compounds added to remove Ca2&plus; and Mg2&plus; during cleaning <strong>provides nutrients for aquatic plants<&sol;strong>&comma; e&period;g&period;&comma; algae and water hyacinth&period; The population of the aquatic plants grows quickly depleting the dissolved oxygen in water&period; This is referred to as eutrophication&period;<&sol;p>&NewLine;<p>In order to control pollution by detergents&comma; efforts are being made by manufacturers to use biodegradable materials in detergents&comma; i&period;e&period;&comma; more unbranched long chain hydrocarbons&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h1><a name&equals;"&lowbar;Toc52200691"><&sol;a>Polymers<&sol;h1>&NewLine;<p>A <strong>polymer<&sol;strong>is a long chain organic molecule formedwhen a small chain molecule undergoes self addition reaction&period;<&sol;p>&NewLine;<p>The unit molecule is referred to as a monomer&period; Monomers may be of the same molecule or different compounds&period;<&sol;p>&NewLine;<p>The process through which the monomers combine to form a long chain molecule is known as Polymerisation&period;<&sol;p>&NewLine;<p>The polymers may be man-made &lpar;synthetic&rpar; or naturally occurring&period;<strong> Naturally occurring polymers include rubber&comma; cellulose&comma; wool&comma; silk and starch<&sol;strong> while <strong>synthetic polymers include nylon&comma; terylene and polyethene&period; <&sol;strong><&sol;p>&NewLine;<p>Synthetic polymers are made using two methods&semi; <strong>addition polymerisation<&sol;strong> and <strong>condensation polymerisation&period;<&sol;strong><&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200692"><&sol;a>Addition Polymerisation<&sol;h2>&NewLine;<p>Addition polymerisation occurs when <strong>unsaturated molecules &lpar;monomers&rpar; <&sol;strong>join to form long chain molecules &lpar;polymers&rpar; <strong>without the formation of any other product&period;<&sol;strong>Monomers open and bond with each other&period;<&sol;p>&NewLine;<p>Polymers formed through addition polymerisation are&colon; polythene&comma; polypropene&comma; polyvinylchloride &lpar;PVC&rpar;&comma; polystyrene&comma; polytetrafluoroethene and perspex&period;<&sol;p>&NewLine;<p>The following equations show the formation of these polymers&colon;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"472"><strong>Polymerization process<&sol;strong><&sol;td>&NewLine;<td width&equals;"327"><strong>General structure <&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"472"><strong>&lpar;a&rpar;  Polypropene<&sol;strong><&sol;td>&NewLine;<td width&equals;"327"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"472"><strong>&lpar;b&rpar;  Polychloroethene &lpar;Polyvinylchoride&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"327"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"472"><strong>&lpar;c&rpar;  Polyphenylethene &lpar;polystyrene&rpar;<&sol;strong><&sol;td>&NewLine;<td width&equals;"327"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"472"><strong>&lpar;d&rpar;  Polytetrafluoroethene<&sol;strong><&sol;td>&NewLine;<td width&equals;"327"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"472"><strong>&lpar;e&rpar; Polymethylmetacrylate &lpar;PMMA&rpar;<&sol;strong><&sol;p>&NewLine;<p><strong><em>2-methyl propanoate                 polymethylmetacrylate &lpar;PMMA<&sol;em><&sol;strong><strong><em>&rpar;<&sol;em><&sol;strong><&sol;p>&NewLine;<p><strong><em>&lpar;methyl metacrylate&rpar;<&sol;em><&sol;strong><&sol;td>&NewLine;<td width&equals;"327">&nbsp&semi;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>A <strong>polymer formed by addition of identical molecules <&sol;strong>will have a <strong>relative molecular mass that is an integral multiple of the relative molecular mass of that monomer&period;<&sol;strong> If the relative molecular mass of a polymer and part of its structure is given&comma; the number of monomers forming the polymer can be determined&period;<&sol;p>&NewLine;<p>For example&colon;<&sol;p>&NewLine;<p>A polymer has the following structure  andhas a molecular mass of 4200&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;   Identify the monomer and draw its structure&period;<&sol;p>&NewLine;<p>&lpar;ii&rpar;  Determine the relative molecular mass of the monomer&period;<&sol;p>&NewLine;<p>&lpar;iii&rpar; Determine the number of monomers in the polymer&period;<&sol;p>&NewLine;<p>Solution<&sol;p>&NewLine;<p>&lpar;a&rpar;  The monomer is determined by determining the repeating units in the polymer given&colon;<&sol;p>&NewLine;<p>Thus in the polymer&colon;&comma; the repeating unit is&colon;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>Since the monomer must be an unsaturated hydrocarbon&comma; then the monomer forms the repeating unit&period;<&sol;p>&NewLine;<p>Thus&colon; is<&sol;p>&NewLine;<p>&lpar;ii&rpar;  The relative molecular mass of the monomer is&colon;&Implies; &lpar;12 × 3&rpar; &plus; &lpar;1 × 6&rpar; &equals;42<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;iii&rpar; Number of monomers &equals;  &equals;100<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h2><a name&equals;"&lowbar;Toc52200693"><&sol;a>Condensation Polymerisation<&sol;h2>&NewLine;<p>In <strong>condensation polymerisation&comma; identical or different monomers <&sol;strong>combine to form <strong>long chain molecules with the loss of small molecules like water&period; <&sol;strong>The monomer <strong>should have two functional groups at each end<&sol;strong> so that molecules can join at both ends to form long chain molecules&period; The functional groups may be <strong>identical or different<&sol;strong>&period; For example&colon;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<table>&NewLine;<tbody>&NewLine;<tr>&NewLine;<td width&equals;"231">Name<&sol;td>&NewLine;<td width&equals;"568">Polymerization process<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"231">&lpar;a&rpar; Starch<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"568"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"231">&lpar;b&rpar; Protein<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;td>&NewLine;<td width&equals;"568"><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"231">&lpar;c&rpar; Nylon 6&period;6<&sol;p>&NewLine;<p><strong><em> <&sol;em><&sol;strong><&sol;td>&NewLine;<td width&equals;"568"><strong>The polymer is formed from the reaction between hexane -1&comma; 6&period; diamine and hexane -1&comma; 6 -dioic acid&period;<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td width&equals;"231">Rubber<&sol;p>&NewLine;<p>Naturally occurring rubber is obtained from the rubber tree&period;<&sol;p>&NewLine;<p><em>isoprene<&sol;em><&sol;td>&NewLine;<td width&equals;"568"><strong>Rubber trees produce a liquid called latex which is collected from cuts made on the trunks of the rubber trees&period; The latex is then allowed to coagulate resulting in a hydrocarbon polymer which is made up of isoprene &lpar;2- methyl but -1&comma; 3-diene&rpar;&period;<&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>The monomer polymerises as shown below&period;<&sol;p>&NewLine;<p>Synthetic rubber can also be obtained by <strong>polymerisation of isoprene<&sol;strong>&period;<&sol;p>&NewLine;<p>The product is usually soft hence must be hardened by a process called vulcanisation&period; This involves <strong>heating the rubber with sulphur&period; <&sol;strong>The sulphur atoms form links between chains of rubber molecules reducing the number of double bonds in the polymers&period; This makes the material <strong>tougher&comma; less flexible and less soft&period; This improves the quality of rubber&period;<&sol;strong><&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<p><a name&equals;"&lowbar;Toc52200694"><&sol;a><&sol;p>&NewLine;<h4>Advantages of Synthetic Polymers and Fibres<&sol;h4>&NewLine;<p>Synthetic polymers have many advantages over natural materials&colon;<&sol;p>&NewLine;<ol>&NewLine;<li>They are less affected by acids&comma; alkalis&comma; water and air&period;<&sol;li>&NewLine;<li>They are lighter&period;<&sol;li>&NewLine;<li>They are stronger&period;<&sol;li>&NewLine;<li>They can be moulded into desired shapes easily&period;<&sol;li>&NewLine;<li>They are less expensive&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<h4><a name&equals;"&lowbar;Toc52200695"><&sol;a>Disadvantages of Synthetic Fibres<&sol;h4>&NewLine;<ol>&NewLine;<li>Some synthetic fibres burn more readily than natural ores&period;<&sol;li>&NewLine;<li>They do not decompose easily&comma; i&period;e&period;&comma; are non-biodegradable&period; This results in environmental pollution&period;<&sol;li>&NewLine;<li>Some synthetic polymers give off poisonous gases when they burn&comma; e&period;g&period;&comma; polythene gives off hydrogen cyanide and carbon&lpar;IV&rpar; oxide&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<h4><a name&equals;"&lowbar;Toc52200696"><&sol;a>Some polymers and their uses<&sol;h4>&NewLine;<table width&equals;"100&percnt;">&NewLine;<tbody>&NewLine;<tr>&NewLine;<td>Polymer<&sol;td>&NewLine;<td>Uses<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Polyethene<&sol;td>&NewLine;<td>Film wrappers&comma; flexible bottles&comma; electrical wire insulators&comma; water pipes&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Polypropene<&sol;td>&NewLine;<td>Crates&comma; carpets&comma; plastic bottles&comma; chairs&comma; ropes&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Polychloroethene<&sol;td>&NewLine;<td>Floor tiles&comma; car dash boards&comma; cool water pipes&comma; hose pipes&comma; gutters&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Polyphenyethene<&sol;td>&NewLine;<td>Ceiling lines&comma; insulation materials&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Polytetrafluoroethane<&sol;td>&NewLine;<td>Non-stick coating on pressing boxes and cooking utensils&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Perspex<&sol;td>&NewLine;<td>Substitute for glass&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Nylon<&sol;td>&NewLine;<td>Substitute for cotton in the textile industry&comma; ropes carpets&comma; brushes&comma; fishing nets&comma; parachutes&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<tr>&NewLine;<td>Rubber<&sol;td>&NewLine;<td>Vehicle tyres&period;<&sol;td>&NewLine;<&sol;tr>&NewLine;<&sol;tbody>&NewLine;<&sol;table>&NewLine;<h1><a name&equals;"&lowbar;Toc52200697"><&sol;a>Review Exercises<&sol;h1>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol>&NewLine;<li>2006 Q7 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>A group of compounds called chlorofluorocarbons have a wide range of uses but they also have harmful effects on the environment&period; State one&colon;<&sol;p>&NewLine;<p>&lpar;a&rpar;         Use of chlorofluorocarbons&period;                                                                          &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;         Harmful effect of chlorofluorocarbons on the environments&period;                &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"2">&NewLine;<li>2006 Q5 &lpar;P2&rpar;&NewLine;<ul>&NewLine;<li>What name is given to a compound that contains carbon and hydrogen only&quest;                                                                                                                           &lpar;&half; mark&rpar;<&sol;li>&NewLine;<li>Hexane is a compound containing carbon and hydrogen&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>What method is used to obtain hexane from crude oil&quest;       &lpar;1mark&rpar;<&sol;li>&NewLine;<li>State one use of hexane        &lpar;1mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Study the flow chart below and answer the questions that follow&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Identify reagent <strong>L<&sol;strong>&period;      &lpar;1mark&rpar;<&sol;li>&NewLine;<li>Name the catalyst used in step &lpar;1mark&rpar;<&sol;li>&NewLine;<li>Draw the structural formula of gas <strong>J<&sol;strong>&period;      &lpar;1mark&rpar;<&sol;li>&NewLine;<li>What name is given to the process that takes place in step <strong>5<&sol;strong>&quest;      &lpar;&half; mark&rpar;<&sol;li>&NewLine;<li>What name is given to the process that takes place in step 5&quest;      &lpar;&half; mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>&lpar;i&rpar;write the equation for the reaction between aqueous sodium hydroxide and aqueous ethanoic acid&period;                                                                                                                  &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;ii&rpar;             Explain why the reaction between 1g of sodium carbonate and 2M hydrochloric acid is faster than the reaction between 1g of sodium carbonate and 2M ethanoic acid&period;                                                                                                            &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"3">&NewLine;<li>2007 Q20 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>An alkanol has the following composition by mass&colon; hydrogen 13&period;5&percnt;&comma; oxygen<&sol;p>&NewLine;<p>21&period;6&percnt; and carbon 64&period;9&percnt;<&sol;p>&NewLine;<ul>&NewLine;<li>Determine the empirical formula of the alcohol&period; &lpar;C&equals;12&period;0&semi; H&equals;1&period;0&comma; O&equals;16&period;0&rpar;&period; &lpar;2marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Given that the empirical formula and molecular formula of the alkanol are the same&comma; draw the structure of the alkanol&period;                      &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"4">&NewLine;<li>2007 Q2 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Give the systematic names of the following compounds<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;         CH<sub>2<&sol;sub> &equals; C &&num;8211&semi; CH3<&sol;p>&NewLine;<p>I<&sol;p>&NewLine;<p>CH3                                                                                         &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>C &Congruent; CH                                                                           &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>State the observations made when Propan-1-ol reacts with&colon;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;         Acidified potassium dichromate &lpar;VI&rpar; Solution&comma;                             &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Sodium metal&period;                                                                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Ethanol obtained from glucose can be converted to ethane as shown below<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>C<sub>6<&sol;sub>H<sub>12<&sol;sub>O<sub>6<&sol;sub> C<sub>2<&sol;sub>H<sub>5<&sol;sub>OH CH<sub>2<&sol;sub> &equals; CH<sub>2<&sol;sub><&sol;p>&NewLine;<p>Name and describe the process that takes place in steps <strong>I<&sol;strong> and <strong>II<&sol;strong>&period;                               &lpar;3 marks&rpar;<&sol;p>&NewLine;<ul>&NewLine;<li>Compounds<strong> A<&sol;strong> and <strong>B<&sol;strong> have the same molecular formula C<sub>3<&sol;sub>H<sub>6<&sol;sub>O<sub>2<&sol;sub>&period; Compound <strong>A<&sol;strong> liberates carbon &lpar;IV&rpar; oxide on addition of aqueous sodium carbonate while compound <strong>B<&sol;strong> does not&period; Compound <strong>B<&sol;strong> has a sweet smell&period; Draw the possible structures of&colon;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;         Compound A                                                                                                &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Compound B                                                                                                 &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Give two reasons why the disposal of polymers such as polychloroethane by burning pollutes the environment&period;                                  &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"5">&NewLine;<li>2008 Q4 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The structure of a detergent is&colon;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Write the molecular formula of the detergent&period; &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>What type of detergent is represented by the formula&quest;          &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>When this type of detergent is used to wash linen in hard water&comma; spots &lpar;marks&rpar; are left on the linen&period; Write the formula of the substance responsible for the spots &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"6">&NewLine;<li>2008 Q1 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Biogas is a mixture of mainly carbon &lpar;IV&rpar; oxide and methane&period;<&sol;li>&NewLine;<li>Give a reason why biogas can be used as a fuel&period;          &lpar;1mark&rpar;<&sol;li>&NewLine;<li>Other than fractional distillation&comma; describe a method that can be used to determine the percentage of methane in biogas&period;                                  &lpar;3marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>A sample of biogas contains 35&period;2&percnt; by mass of methane&period; A biogas cylinder contains 5&period;0 kg of the gas&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Calculate the&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Number of moles of methane in the cylinder&period; &lpar;Molar mass of methane&equals;16&rpar;                                              &lpar;2marks&rpar;<&sol;li>&NewLine;<li>Total volume of carbon &lpar;IV&rpar; oxide produced by the combustion of methane in the cylinder &lpar;Molar gas Volume&equals;24&period;0 dm<sup>3<&sol;sup> at room temperature and pressure&rpar;&period;&lpar;2marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Carbon &lpar;IV&rpar; oxide&comma; methane&comma; nitrogen &lpar;I&rpar; oxide and trichlorofluoromethane are green-house gases&period;<&sol;li>&NewLine;<li>State one effect of an increased level of these gases to the environment&period;                                              &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Give one source from which each of the following gases is released to the environment&semi;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>Nitrogen &lpar;I&rpar; oxide &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Trichlorofluoromethane&period; &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"7">&NewLine;<li>2009 Q25&NewLine;<ul>&NewLine;<li>Draw the structure of compound N formed in the following reaction &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Give one use of the following compound N &lpar;1 mark&rpar;&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"8">&NewLine;<li>2009 Q2 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Draw the structure of the following compounds          &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;         2 -methlybut-2-ene<&sol;p>&NewLine;<p>&lpar;ii&rpar;        heptanoic acid<&sol;p>&NewLine;<ul>&NewLine;<li>Describe a physical test that can be used to distinguish between hexane and hexanol                                              &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Use the flow chart to answer the questions that follow&period;<&sol;li>&NewLine;<li>Name<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>The type of reaction that occurs in the step II   &lpar;1mark&rpar;<&sol;li>&NewLine;<li>Substance B &lpar;1mark&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Give the formula of substance C &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Give the reagent and the condition necessary for the reaction in step &lpar;IV&rpar;                   &lpar;3marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"9">&NewLine;<li>2010 Q13 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Some animal and vegetable oils are used to make margarine and soap&period; Give the reagents and conditions necessary for converting the oils into&colon;<&sol;p>&NewLine;<p>&lpar;a&rpar;         Margarine                                                                                                      &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;         Soap                                                                                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"10">&NewLine;<li>2010 Q21 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The use of CFCs has been linked to depletion of the ozone layer&period;<&sol;p>&NewLine;<ul>&NewLine;<li>What does CFC stand for&quest; &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Explain the problem associated with the depletion of the ozone layer<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;1 mark&rpar;<&sol;p>&NewLine;<ul>&NewLine;<li>State another environment problem caused by CFCs&period; &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"11">&NewLine;<li>2010 Q2 &lpar;P2&rpar;&NewLine;<ul>&NewLine;<li>Give the name of the following compounds&colon;<&sol;li>&NewLine;<&sol;ul>&NewLine;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li><strong>CH<sub>3<&sol;sub><&sol;strong><&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>I<&sol;strong><&sol;p>&NewLine;<p><strong>CH<sub>3 <&sol;sub><&sol;strong><strong>− C − CH<sub>3                                                                                                                                                           <&sol;sub><&sol;strong>&lpar;1 mark&rpar;<&sol;p>&NewLine;<p><strong>I<&sol;strong><&sol;p>&NewLine;<p><strong>CH<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li><strong>CH<sub>3 <&sol;sub>C <&sol;strong><strong>&Congruent;<&sol;strong><strong> C CH<sub>2<&sol;sub>CH<sub>3 <&sol;sub><&sol;strong>&lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Describe a chemical test that can be carried out in order to distinguish between<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>CH<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p><strong>I<&sol;strong><&sol;p>&NewLine;<p><strong>CH<sub>3 <&sol;sub><&sol;strong><strong>− C − CH<sub>3 <&sol;sub><&sol;strong>and <strong>CH<sub>3 <&sol;sub>C <&sol;strong><strong>&Congruent;<&sol;strong><strong> C CH<sub>2<&sol;sub>CH<sub>3<&sol;sub><&sol;strong><&sol;p>&NewLine;<p><strong>I<&sol;strong><&sol;p>&NewLine;<p><strong>CH<sub>3<&sol;sub><&sol;strong><strong>                                                                                         <&sol;strong>&lpar;2 marks&rpar;<&sol;p>&NewLine;<p><strong> <&sol;strong><&sol;p>&NewLine;<ul>&NewLine;<li>Study the flow chart below and answer the questions that follows<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Name the compounds&colon;                                                                                &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li><strong>L <&sol;strong><&sol;li>&NewLine;<li><strong>N <&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Draw the structural formula of compound <strong>M<&sol;strong> showing two repeating units                                                                                                                                         &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Give the reagent and the conditions used in step I   &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>State the type of reaction that take place in&colon; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>Step <strong>2<&sol;strong><&sol;li>&NewLine;<li>Step<strong> 3<&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>The molecular formula of compound <strong>P<&sol;strong> is C<sub>2<&sol;sub>H<sub>2<&sol;sub>Cl<sub>4<&sol;sub>&period; Draw the two structural formulae of compound <strong>P <&sol;strong>                                                                    &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"12">&NewLine;<li>2011 Q14 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Two organic compounds <strong>P <&sol;strong>and <strong>Q<&sol;strong> decolourise acidified potassium manganate &lpar;VII&rpar; solution&semi; but only <strong>P <&sol;strong>reacts with sodium metal to give a colourless gas&period; Which homologous series does compound <strong>P<&sol;strong> belong&quest; Give a reason&period;                                                                &lpar;3 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"13">&NewLine;<li>2011 Q15 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Soap dissolves in water according to the equation below&semi;<&sol;p>&NewLine;<p>NaSt &lpar;aq&rpar;  Na<sup>&plus; <&sol;sup>&lpar;aq&rpar; &plus; St<sup>&&num;8211&semi;<&sol;sup>  where St<sup>&&num;8211&semi;<&sol;sup> is the stearate ion<&sol;p>&NewLine;<ul>&NewLine;<li>Write the formula of the scum formed when soap is used in hard water                           &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Write the ionic equation for the reaction that occurs when sodium carbonate is used to remove in hardness in water&period;                                       &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"14">&NewLine;<li>2011 Q6 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Study the flow chart below and answer the questions that follow&period;<&sol;li>&NewLine;<li>What observation will be made in Step <strong>I<&sol;strong>&quest;                                             &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>Describe a chemical test that can be carried out to show the identity of Compound <strong>C<&sol;strong> &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Give the names of the following&colon;                                                               &lpar;2 marks&rpar;&NewLine;<ol>&NewLine;<li><strong>E <&sol;strong>………………<&sol;li>&NewLine;<li>Substance<strong> D <&sol;strong>………………<&sol;li>&NewLine;<&sol;ol>&NewLine;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Give the formula of substance <strong>B <&sol;strong> &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Name the type of reaction that occurs in&colon;          &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>Step &lpar;II&rpar; ………………………&period;<&sol;li>&NewLine;<li>Step &lpar;IV&rpar; ………………………<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Give the reagent and conditions necessary for Step &lpar;IV&rpar;&period;               &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Reagent …………………………&period;<&sol;p>&NewLine;<p>Conditions ………………………&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>&lpar;i&rpar;    Name the following structure<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;ii&rpar;  Draw the structure of an isomer of pentene&period;                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"15">&NewLine;<li>2012 Q21 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Give two uses of the polymer polystyrene&period;                                                             &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"16">&NewLine;<li>2012 Q1 P2&comma; 2016 Q6 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Draw the structural formula for all the isomers of C<sub>2<&sol;sub>H<sub>3<&sol;sub>Cl<sub>3<&sol;sub> &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Describe two chemical tests that can be used to distinguish between ethene and ethane&period;                                           &lpar;4 marks&rpar;<&sol;li>&NewLine;<li>The following scheme represents various reactions starting with propanol-1-ol&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Use it to answer the questions that follow&period;<&sol;p>&NewLine;<ul>&NewLine;<li>Name one substance that can be used in step 1            &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Give the general formula of X &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Write the equation for the reaction in step IV                         &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Calculate the mass of propanol-1-ol which when burnt completely in air at room temperature and pressure would produce 18 dm<sup>3<&sol;sup> of gas&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;C &equals; 12&period;0&semi; O &equals; 16&period;0&semi; H &equals; 1&period;0&semi; Molar gas volume &equals; 24 dm<sup>3<&sol;sup>&rpar;                                  &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"17">&NewLine;<li>2013 Q7 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Give the systematic names for the following compounds<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;         CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>COOH&semi;                                                                                  &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CHCH<sub>2<&sol;sub>&semi;                                                                          &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;iii&rpar;       CHC CH<sub>2<&sol;sub>CH<sub>3<&sol;sub>&semi;                                                                                                &lpar;1 mark&rpar;<&sol;p>&NewLine;<ul>&NewLine;<li>Study the flow chart below and use it to answer the questions that follow<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Identify the organic compound K&period; &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Write the formula of M   &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Give one reagent that can be used in<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;a&rpar;         Step I&semi;                                                                                                 &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;         Step II  &period;                                                                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Write the equation of the reaction in step III &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>The structure below represents a type of a cleaning agent&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>Describe how the cleansing agent removes grease from a piece of cloth&period;      &lpar;3marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"18">&NewLine;<li>2014 Q9 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The table below shows the relative molecular masses and boiling points of pentane and ethanoic acid&period;<&sol;p>&NewLine;<p>Explain the large difference in boiling point between ethanoic acid and pentane&period;                                                                                                                                                                        &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"19">&NewLine;<li>2014 Q23 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Study the flow chart below and answer the question the follow&period;<&sol;p>&NewLine;<p>&lpar;a&rpar;       Name the process in step I&period;                                                                                     &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;       Identify the reagent in step II&period;                                                                     &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;c&rpar;       Give one use of ethane&period;                                                                             &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"20">&NewLine;<li>2014 Q26 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Cotton is a natural polymer&period; State one advantage and one disadvantage of this polymer&period;                                                                                                                                                      &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"21">&NewLine;<li>2014 Q3 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Draw the structures of the following&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar;         Butan -1- ol                                                                                         &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Hexanoic acid&period;                                                                                 &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Study the flow chart below and answer the questions that follow<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>State the conditions necessary for fermentation of glucose to take place&period;                                  &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>State one reagent that can be used to carry out process S&period; &lpar;1 mark&rpar;<&sol;li>&NewLine;<li>Identify gases&colon;             &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<ol>&NewLine;<li>P&colon; ………………………<&sol;li>&NewLine;<li>T&colon; ……………………&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>How is sodium hydroxide kept dry during the reaction &lpar;v&rpar; Give one commercial use of process R&period;                                  &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>When one mole of ethanol is completely burnt in air&comma; 1370kJ of heat energy is released&period; Given that 1 lire of ethanol is 780 g &comma; calculate the amount of heat energy released when 1 litre of ethanol is completely burnt &lpar;C &equals; 12&period;0&semi; H&equals;1&period;0&semi; 0&equals;16&period;0&rpar; &lpar;3 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>State two uses of ethanol other than as an alcoholic drink&period; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"22">&NewLine;<li>2015 Q1b P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Describe a chemical test that can be used to distinguish butanol from butanoic acid&period;                                                                                                                                                       &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"23">&NewLine;<li>2015 Q22 P1<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Study the flow chart below and use it to answer the questions that follows&period;<&sol;p>&NewLine;<p>&lpar;a&rpar;       Name process T                                                                                            &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;       Give the formula of W&period;                                                                                &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;c&rpar;       State two uses of X                                                                                       &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"24">&NewLine;<li>2015 Q2 P2<&sol;li>&NewLine;<&sol;ol>&NewLine;<ul>&NewLine;<li>Draw the structure of the folio wing compounds&period; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&lpar;i&rpar; Butanoic acid&semi;<&sol;p>&NewLine;<p>&lpar;ii&rpar; Pent-2-ene&period;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Explain why propan-1-ol is soluble in water while prop-1-ene is not&period; &lpar;Relative molecular mass of propan-1-ol is 60 while that of prop-1-ene is 42&rpar;&period; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>What would be observed if a few drops of acidified potassium manganate &lpar;VII&rpar; were added to oil obtained from nut seeds&quest; Explain&period; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>State one method that can be used to convert liquid oil from nut seeds into solid&period;                                       &lpar;1mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Describe how soap is manufactured from liquid oil from nut seeds&period;   &lpar;3 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>44 g of an ester <strong>A<&sol;strong> reacts with 62&period;5 cm3 of 0&period;08 M potassium hydroxide giving an alcohol <strong>B<&sol;strong> and substance <strong>C<&sol;strong>&period; Given that one mole of the ester reacts with one mole of the alkali&comma; calculate the relative molecular mass of the ester&period; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"25">&NewLine;<li>2016 Q2 P1<strong><em>R<&sol;em><&sol;strong><&sol;li>&NewLine;<&sol;ol>&NewLine;<p>An alkanol has the following composition by mass&semi; hydrogen 13&period;5&percnt;&comma; oxygen 21&period;6&percnt; and carbonate 64&period;9&percnt;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Determine the empirical formula of the alkanol&period; &lpar;C&equals;12&period;0&comma; H&equals;1&period;0&comma; O&equals;16&rpar; &lpar;2 marks&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ul>&NewLine;<li>Given that the empirical formula and the molecular formula of the alkanol are the same&comma; draw the structure of the alkanol                                     &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"26">&NewLine;<li>2017 P1 Q20&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>Study the flow chart in <strong>Figure 5<&sol;strong> and answer the questions that follow&period;<&sol;p>&NewLine;<ul>&NewLine;<li>Identify substances <strong>K<&sol;strong> and <strong>L<&sol;strong>&period;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p><strong>K<&sol;strong>&colon;                                                                                                   &lpar;1 mark&rpar;<&sol;p>&NewLine;<p><strong>L<&sol;strong>&colon;                                                                                                   &lpar;1 mark&rpar;<&sol;p>&NewLine;<ul>&NewLine;<li>Name one reagent that can be used to carry out process J&period; &lpar;1 mark&rpar;<&sol;li>&NewLine;<&sol;ul>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"27">&NewLine;<li>2017 P1 Q28&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>When an aqueous solution of compound X was mixed with a few drops of bromine water&comma; the colour of the mixture remained yellow&period;<&sol;p>&NewLine;<p>When another portion of solution X was reacted with acidified potassium dichromate &lpar;VI&rpar;&comma; the colour of the mixture changed from orange to green&period;<&sol;p>&NewLine;<p>&lpar;a&rpar;         What conclusion can be made from the use of&colon;<&sol;p>&NewLine;<p>&lpar;i&rpar;         bromine water&quest;                                                                                &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        acidified potassium dichromate &lpar;VI&rpar;&quest;                                           &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;b&rpar;         Solution X was reacted with a piece of a metal and a colourless gas was produced&period;                      Describe a simple experiment to identify the gas&period;                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"28">&NewLine;<li>2017 P2 Q1&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&lpar;a&rpar;         Name the homologous series represented by each of the following general                                   formulae&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         C<sub>n<&sol;sub>H<sub>2n-2                                                                                                                                                                    <&sol;sub>&lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        C<sub>n<&sol;sub>H<sub>2n<&sol;sub>                                                                                                  &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;b&rpar;         Compound G is a tri-ester&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         Give the physical state of compound G at room temperature&period; &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        G is completely hydrolysed by heating with aqueous sodium hydroxide&period;<&sol;p>&NewLine;<p>&lpar;I&rpar;         Give the structural formula of the alcohol formed&period;                      &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;II&rpar;        Write a formula for the sodium salt formed&period;                            &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;III&rpar;       State the use of the sodium salt&period;                                         &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;c&rpar;       Ethyne is the first member of the alkyne family&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         Name two reagents that can be used in the laboratory to prepare the gas&period;                                                                                                                     &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Write an equation for the reaction&period;                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;d&rpar;       Perspex is an addition synthetic polymer formed from the monomer&comma;<&sol;p>&NewLine;<p>&lpar;i&rpar;         What is meant by addition polymerisation&quest;                                 &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Draw three repeat units of Perspex&period;                                               &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;iii&rpar;       Give one use of Perspex                                                                 &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;iv&rpar;      State two environmental hazards associated with synthetic polymers&period;                                                                                                                                  &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"29">&NewLine;<li>2018 P1 Q3&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The following are formulae of organic compounds&period; Use the formulae to answer the questions that follow&colon;<&sol;p>&NewLine;<p>CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>OH<&sol;p>&NewLine;<p>CH<sub>3<&sol;sub>COOH<&sol;p>&NewLine;<p>CH<sub>3<&sol;sub>CH<sub>2<&sol;sub>CH<sub>2<&sol;sub>CH<sub>3<&sol;sub><&sol;p>&NewLine;<p>CH<sub>3<&sol;sub>CCCH<sub>3<&sol;sub><&sol;p>&NewLine;<p><sub> <&sol;sub><&sol;p>&NewLine;<p>&lpar;a&rpar;         Select&colon;<&sol;p>&NewLine;<p>&lpar;i&rpar;         two compounds which when reacted together produce a sweet-smelling                                   compound&period;                                                                                       &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        an unsaturated hydrocarbon&period;                                                           &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;b&rpar;         Name the compound selected in &lpar;a&rpar; &lpar;ii&rpar;&period;                                                 &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"30">&NewLine;<li>2018 P2 Q1&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>The diagram in <strong>figure 1<&sol;strong> shows some natural and industrial processes&period; Study it and answer the questions that follows<&sol;p>&NewLine;<p>&lpar;a&rpar;       Identify the processes labelled&colon;                                                                  &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>A&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&period;<&sol;p>&NewLine;<p>B&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&period;<&sol;p>&NewLine;<p>C&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&period;<&sol;p>&NewLine;<p>D&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&period;<&sol;p>&NewLine;<p>&lpar;b&rpar;       State the reagents and conditions required for processes B and D&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         Process B&colon;<&sol;p>&NewLine;<p>Reagent&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&period;                                                                             &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>Conditions &&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;                                                                            &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Process D&colon;<&sol;p>&NewLine;<p>Reagent&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&period;                                                                             &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>Conditions &&num;8230&semi;&&num;8230&semi;&&num;8230&semi;&&num;8230&semi;                                                                            &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;          Describe how process D is carried out&period;                                                      &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;c&rpar;          State two additives used to improve the quality of soap&period;                                  &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;d&rpar;          State the reagents required in steps <strong>F<&sol;strong> and <strong>G<&sol;strong>&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         F…………………………………                                                           &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        G…………………………………                                                          &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;e&rpar;          Draw the structure of terylene&period;                                                                   &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;d&rpar;          &lpar;i&rpar;         Name the polymer formed in step <strong>C<&sol;strong>&period;                                            &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        State one disadvantage of the polymer formed in &lpar;d&rpar; &lpar;i&rpar;&period;                      &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"31">&NewLine;<li>2019 P1 Q4&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>A monomer has the following structure&period;<&sol;p>&NewLine;<p>CH&equals; CH<sub>2<&sol;sub><&sol;p>&NewLine;<p>&mid;<&sol;p>&NewLine;<p>C<sub>6<&sol;sub>H<sub>5<&sol;sub><&sol;p>&NewLine;<p>&lpar;a&rpar;       Draw the structure of its polymer that contains three monomers&period;                     &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;b&rpar;       A sample of the polymer formed from the monomer has a molecular mass of                                   4992&period;Determine the number of monomers that formed the polymer&period;<&sol;p>&NewLine;<p>&lpar;C&equals; 12&semi; H&equals; 1&period;0&rpar;&period;                                                                                              &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<ol start&equals;"32">&NewLine;<li>2019 P2 Q1&period;<&sol;li>&NewLine;<&sol;ol>&NewLine;<p>&lpar;a&rpar;         Alkanes are said to be saturated hydrocarbons&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         What is meant by saturated hydrocarbons&quest;                                             &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Draw the structure of the third member of the alkane homologous series                            and name it&period;                                                                                      &lpar;2 marks&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;b&rpar;       When the alkane&comma; hexane&comma; is heated to high temperature&comma; one of the products is                             ethene&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         Write the equation for the reaction&period;                                                &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        Name the process described in &lpar;b&rpar;&period;                                                &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;c&rpar;       Study the flow chart in <strong>Figure 1<&sol;strong> below and answer the questions that follow&period;<&sol;p>&NewLine;<p>&lpar;i&rpar;         Identify A&period;                                                                                          &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;ii&rpar;        State one physical property of B&period;                                                   &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;iii&rpar;       Draw the structure of D&period;                                                                   &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;iv&rpar;      Give a reason why D pollutes the environment&period;                          &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&lpar;v&rpar;       Write an equation for the formation of F&period;                                      &lpar;1 mark&rpar;<&sol;p>&NewLine;<p>&nbsp&semi;<&sol;p>&NewLine;<p>&lpar;d&rpar;       Describe an experiment which can be used to distinguish butene from butanol&period;                                                                                                                                                          &lpar;2 marks&rpar;<&sol;p>&NewLine;

Leave a Reply

Your email address will not be published. Required fields are marked *