All posts by Hillary Kangwana

Kagumo Teachers College Kuccps Courses, Fees, Duration, Requirements, Application Form & Job Opportunities

Kagumo Teachers College Kuccps Courses, Fees, Duration, Requirements, Application Form & Job Opportunities

Kagumo Teachers College Kuccps Courses, Fees, Duration, Requirements, Application Form & Job Opportunities

KAGUMO TEACHERS TRAINING COLLEGE

PROGRAMMES ON OFFER

# PROGRAMME CODE PROGRAMME NAME INSTITUTION TYPE YEAR 1 – PROGRAMME COST 2022 CUTOFF 2021 CUTOFF 2020 CUTOFF
1 1399264 DIPLOMA IN SECONDARY TEACHERS EDUCATION, CHEMISTRY AND MATHEMATICS KSH 67,189
2 1399266 DIPLOMA IN TEACHER EDUCATION (PHYSICS/CHEMISTRY) KSH 67,189
3 1399269 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN ARABIC AND ENGLISH KSH 67,189
4 1399361 DIPLOMA IN TEACHER EDUCATION (GERMAN/ ENGLISH OR C.R.E OR HISTORY OR GEOGRAPHY) KSH 67,189
5 1399903 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN ENGLISH AND HISTORY KSH 67,189
6 1399904 DIPLOMA IN TEACHER EDUCATION (FRENCH/GEOGRAPHY OR HISTORY OR C.R.E OR ENGLISH) KSH 67,189
7 1399910 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN BUSINESS STUDIES AND MATHEMATICS KSH 67,189
8 1399911 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN FASIHI YA KISWAHILI AND GEOG KSH 67,189
9 1399944 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN PHYSICS AND MATHEMATICS KSH 67,189
10 1399951 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN KISWAHILI AND CRE KSH 67,189
11 1399955 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN MATHEMATICS AND GEOGRAPHY KSH 67,189
12 1399958 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN GERMAN AND ENGLISH KSH 67,189
13 1399964 DIPLOMA IN TEACHER EDUCATION (ART AND DESIGN / ENGLISH ) KSH 67,189
14 1399965 DIPLOMA IN TEACHER EDUCATION (ART AND DESIGN / KISWAHILI) KSH 67,189
15 1399967 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN FRENCH AND ENGLISH KSH 67,189
16 1399971 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN ARABIC AND IRE KSH 67,189
17 1399972 DIPLOMA IN SECONDARY TEACHERS EDUCATION IN ENGLISH AND IRE KSH 67,189
18 1399983 DIPLOMA IN TEACHER EDUCATION (PHYSICS / COMPUTER STUDIES) KSH 67,189
19 1399984 DIPLOMA IN SECONDARY TEACHER EDUCATION IN AGRICULTURE AND CHEMISTRY KSH 67,189
20 1399C84 DIPLOMA IN TEACHER EDUCATION (AGRICULTURE/MATHEMATICS) KSH 67,189
21 1399C85 DIPLOMA IN TEACHER EDUCATION (POWER MECHANICS TECHNOLOGY/PHYSICS) KSH 67,189
22 1399C86 DIPLOMA IN TEACHER EDUCATION(POWER MECHANICS TECHNOLOGY/MATHEMATICS) KSH 67,189
23 1399C87 DIPLOMA IN TEACHER EDUCATION(POWER MECHANICS TECHNOLOGY/CHEMISTRY) KSH 67,189
24 1399C88 DIPLOMA IN TEACHER EDUCATION (AVIATION TECHNOLOGY/PHYSICS) KSH 67,189
25 1399C89 DIPLOMA IN TEACHER EDUCATION (AVIATION TECHNOLOGY/MATHEMATICS) KSH 67,189
26 1399C90 DIPLOMA IN TEACHER EDUCATION (AVIATION TECHNOLOGY/CHEMISTRY) KSH 67,189
27 1399C91 DIPLOMA IN TEACHER EDUCATION (MECHATRONICS TECHNOLOGY/PHYSICS) KSH 67,189
28 1399C92 DIPLOMA IN TEACHER EDUCATION (MECHATRONICS TECHNOLOGY/MATHEMATICS) KSH 67,189
29 1399C93 DIPLOMA IN TEACHER EDUCATION (MECHATRONICS TECHNOLOGY/CHEMISTRY) KSH 67,189
30 1399C94 DIPLOMA IN TEACHER EDUCATION (FINE ART/ENGLISH) KSH 67,189
31 1399C95 DIPLOMA IN TEACHER EDUCATION (FINE ART/KISWAHILI) KSH 67,189
32 1399D07 DIPLOMA IN TEACHER EDUCATION (DRAWING &DESIGN/MATHEMATICS) KSH 67,189
33 1399D08 DIPLOMA IN TEACHER EDUCATION (DRAWING & DESIGN/PHYSICS) KSH 67,189
34 1399D33 DIPLOMA IN TEACHER EDUCATION (MANDARIN/KISWAHILI) KSH 67,189
35 1399D34 DIPLOMA IN TEACHER EDUCATION (MANDARIN/ENGLISH) KSH 67,189

Free Form 3 Term 1-3 Exams Plus Marking Schemes for all subjects

Free Form 3 Term 1-3 Exams Plus Marking Schemes for all subjects

KISW F3 PP3 Q.pdf
AGRICULTURE FORM 3 PP1 Q.pdf
AGRICULTURE FORM 3 PP2 Q.pdf
BIOLOGY F3 PP1 Q.pdf
BIOLOGY F3 PP2 Q.pdf
BUSINESS FORM 3 PP1 QS.pdf
BUSINESS FORM 3 PP2 QS.pdf
CHEMISTRY F3 PP1 Q.pdf
CHEMISTRY F3 PP2 Q.pdf
CRE F3 PP1 Q.pdf
CRE F3 PP2 Q.pdf
CRE F3 PP2 Q.pdf
ENGLISH F3 PP1 Q.pdf
ENGLISH F3 PP2 Q.pdf
ENGLISH F3 PP2 Q.pdf
ENGLISH F3 PP3 Q.pdf
ENGLISH F3 PP3 Q.pdf
F3 ENDTERM 3 AGRIC PP1.pdf
F3 ENDTERM 3 AGRIC PP1.pdf
F3 ENDTERM 3 AGRIC PP2.pdf
F3 ENDTERM 3 AGRIC PP2.pdf
F3 ENDTERM 3 BIO PP1.pdf
F3 ENDTERM 3 BIO PP1.pdf
F3 ENDTERM 3 BIO PP2.pdf
F3 ENDTERM 3 BIO PP2.pdf
F3 ENDTERM 3 BST PP1.pdf
F3 ENDTERM 3 BST PP2.pdf
F3 ENDTERM 3 CHEM PP1.pdf
F3 ENDTERM 3 CHEM PP2.pdf
F3 ENDTERM 3 CRE PP1.pdf
F3 ENDTERM 3 CRE PP2.pdf
F3 ENDTERM 3 ENG PP1.pdf
F3 ENDTERM 3 ENG PP2.pdf
F3 ENDTERM 3 ENG PP3.pdf
F3 ENDTERM 3 GEO PP1.pdf
F3 ENDTERM 3 GEO PP2.pdf
F3 ENDTERM 3 HIS PP1.pdf
F3 ENDTERM 3 HIS PP2.pdf
F3 ENDTERM 3 KISW PP1.pdf
F3 ENDTERM 3 KISW PP2.pdf
F3 ENDTERM 3 KISW PP3.pdf
F3 ENDTERM 3 MATHS PP1.pdf
F3 ENDTERM 3 MATHS PP2.pdf
F3 ENDTERM 3 PHY PP1.pdf
F3 ENDTERM 3 PHY PP2.pdf
GEOGRAPHY F3 PP1 Q.pdf
GEOGRAPHY F3 PP2 Q.pdf
HISTORY F3 PP1 Q.pdf
HISTORY F3 PP2 Q.pdf
KISW F3 PP1 Q.pdf
KISW F3 PP2 Q.pdf
MATHEMATICS F3 P1 Q.pdf
MATHEMATICS F3 P2 Q.pdf
PHYSICS FORM 3 PP1 Q.docx
PHYSICS FORM 3 PP2 Q.pdf

2024 Sports, Games Calendar for Colleges Primary, Junior and Secondary Schools

Secondary, Junior and Primary Schools games 2024 Calendar (All Co-curricular Activities)

2024 National Co-Curricular Activities Calendar of Events for all Schools and Colleges

 

The Ministry of Education has released the 2024 Co-curricular activities calendar of events for Teachers Training Colleges, Primary, Secondary and Junior schools. According to the calendar, the school games and co-curricular will feature Junior Schools under the new Competency Based Curriculum.

As contained the Ministry’s latest circular, the 2024 The Federation of East Africa Secondary Schools Sports Associations, FEASSSA, games will be held in the Eastern Region of Uganda. The Prestigious East Africa School games will run from 14th -25th August, 2024. Bukedea Comprehensive School and Amus College have been selected to host the games.

THE FULL 2024 CO-CURRICULAR ACTIVITIES CALENDAR OF EVENTS

Here below are the dates for 2024 co-curricular activities to enable you to undertake the necessary planning.

2024 TERM ONE GAMES

PRIMARY SCHOOLS GAMES

 

TERM ONE GAMES (6th to 12th April, 2024)

 

Featuring: Athletics.

Host Region:               Central

Host County:               Nyeri

Venue:                        Nyeri

Clinic:                         6th to 7th April, 2024

Arrival of Teams:       7th April, 2024

Action Days:               9th to 11th April, 2024

Departure:                   12th April, 2024.

____________________________________________

 

 

 

KENYA NATIONAL DRAMA AND FILM FESTIVAL 2024

 (7th to 19th April, 2024)

Host Region:               Eastern

Host County:               Embu

Venue:                        kangaroo Schools and Embu University

Reporting:                   7th April, 2024

Action Days:               8th to 16th April, 2024

STATE CONCERT:   18th April, 2024

Departure:                   19th April, 2024.

____________________________________________

SNE SPECIAL SECONDARY SCHOOL ATHLETICS 

TERM ONE SNE GAMES 2024 (6th to 12th April, 2024).

Host Region:              Rift valley

Host County:              Nakuru

Venue:                        Nakuru

Clinic                          6th to 7th April, 2024

Arrival of Teams:         7th April, 2024

Action Days:              9th to 11th April, 2024

Departure:                  12th April, 2024

____________________________________________

SECONDARY SCHOOLS SPORTS

TERM ONE GAMES (6th to 14th April, 2024)

Featuring: Athletics, Basketball 5 on 5, Hockey, Cross Country, Handball, Rugby 15s (Boys only),  and Swimming

Host Region:               Eastern

Host County:               Machakos

Venue:                        Machakos

Clinic:                         6th to 8th april, 2024.

Arrival of teams:       7th April, 2024

Action Days:               9th to 13th April, 2024

Departure:                   14th April, 2024.

____________________________________________

JUNIOR SCHOOLS TERM ONE GAMES 2024

DATES: 6th to 12th April, 2024.

Featuring: Athletics, Cross Country, Basketball 5×5, Handball, Swimming.

Host Region: Eastern

Host County: Machakos

Clinic: 6th to 7th April, 2024

Arrival of Teams: 7th April, 2024

Action Days: 9th to 11th April, 2024

Departure: 12th April, 2024.

____________________________________________

KENYA SCIENCEAND ENGINEERING FAIR 2024

(6th t0 12th April, 2024)

Host Region:   Nairobi

Host County:   Nairobi

Venue:            Moi Girls High School

Action Days:   8th to 11th April, 2024

Departure:       12th April, 2024

____________________________________________

 

 

 

2024 TERM TWO GAMES

PRIMARY SCHOOL BALL GAMES

PRIMARY SCHOOLS 2024 TERM 2 GAMES

()

Host Region:

Host County:

Venue

Clinic

Arrival of Teams:

Action Days:

Departure:

____________________________________________

KENYA TEACHERS COLLEGES 2024 GAMES

(3rd to 13th June, 2024)

Host Region:   Eastern

Host County:   Machakos

Venue:            Machakos Teachers Training College.

Clinic:                         3rd to 4th June, 2024

Arrival:           4th June, 2024

Action Days:   5th to 12th June, 2024

Departure:       13th June, 2024.

____________________________________________

SECONDARY SCHOOL SPORTS

2024 TERM TWO GAMES (29th July to 7th August,2024))

Featuring: Soccer, Volleyball, Netball, Rugby7’s (Boys and Girls), Basketball 3 on 3 and Racquet Games

Region:                       Nyanza

Host County:               Kisii

Venue:                        Kisii

Clinic:                         29th to 30th July, 2024

Arrival of teams:       30th July, 2024

Action Days:               2nd to 6th August, 2024

Departure:                  7th August, 2024.

____________________________________________

SNE SPECIAL SECONDARY SCHOOLS SPORTS 

2024 TERM TWO GAMES (30th July to 7th August, 2024)

Host Region:               Nyanza

Host County:               Kisu,u

Venue:                        Kisumu

Clinic:                         30th to 31st July, 2024

Arrival of Teams:       1st August, 2024

Action Days:               3rd to 6th august, 2024

Departure:                   7th August, 2024

____________________________________________

JUNIOUR SCHOOLS BALL GAMES

JUNIOUR SCHOOLS TERM 2 GAMES: 30th July to 7th August, 2024)

FEATURING: Soccer, Volleyball, Netball and Basketball 3×3.

Region:                       Nyanza

Host County:               Kisii

Venue:                        Kisii

Clinic:                         30th July to 31st July, 2024.

Arrival of teams:       31st July, 2024

Action Days:               2nd to 6th August, 2024

Departure:                  7th August, 2024.

 

 

____________________________________________

PRIMARY SCHOOLS GAMES

 

TERM 2 GAMES (30th July to 7th August, 2024)

 

Host:               Western region

Host County:   Kakamega

Venue:            30th to 31st July, 2024

Arrival:           31st July, 2024

Action Days:   2nd to 6th August, 2024

Departure:       7th August, 2024.

 

_____________________________________________

SNE SPECIAL PRIMARY SCHOOL GAMES (30th July to 7th August, 2024)  

Host Region:            Rift Valley

Host County:            Kericho

Venue:                      Kericho

Clinic                        30th July to 3rd August, 2024.

Action Days:            2nd to 6th August, 2024

Departure:                7th August, 2024.

____________________________________________

KENYA MUSIC FESTIVAL (2nd to 14th August, 2024)

Host Region:   Rift Valley

Host County:   Uasin Gishu

Venue:            Uasin Gishu

Arrival:           2nd August, 2024.

Action Days:   3rd August to 11th August, 2024.

Gala:               12th August, 2024

State Concert: 13th August, 2024

Departure:       14th August, 2024.

____________________________________________

EAST AFRICA MUSIC DANCE AND DRAMA

Dates:             15th to 24th August, 2024

Host:               Jinja, Uganda

Arrival:           16th August, 2024

Action Days:   18th to 23rd August, 2024

Departure:       24th August, 2024.

____________________________________________

FEDERATION OF EAST AFRICA SCHOOLS SPORTS ASSOCIATION, FEASSSA, CHAMPIONSHIP.

2024 FEASSSA GAMES IN UGANDA.

DATES:          14th to 25th August, 2024.

Venue:            Eastern Region of Uganda

Host Schools: Bukedea Comprehensive and Amus College

Arrival:           14th August, 2024

Action Days:   15th  to 24th August, 2024

Departure:       25th August, 2024

____________________________________________

EAST AFRICA ESSAY WRITING COMPETTION FOR SECONDARY SCHOOLS

____________________________________________

 

feasssa 2024,

East Africa Secondary School Games 2024,

2023 school calendar Kenya,

Secondary School games 2024,

2023 school calendar,

school calendar 2024,

KSSSA Nakuru,

2024 calendar,

KCSE 2024 Timetable,

School games News,

 

Noonkopir Girls High School: Full details, location, CBE Subjects Offered, UIC, Knec Code

Noonkopir Girls High School: Full details, location, CBE Subjects Offered, UIC, Knec Code

NOONKOPIR GIRLS NATIONAL SENIOR SCHOOL LOCATION.

Noonkopir Secondary School is a government girls national boarding school located in Kitengela, Kitenkela Sub location, Kitenkela Location, Isinya Division, Kajiado County.

The school is a national school classified as C1. Get a list of all the New List of all National Schools under CBC, CBE/ CBET Curriculum.

NOONKOPIR GIRLS NATIONAL SENIOR SCHOOL’S CONTACTS.

Principal’s Phone Number:  +254 715 251 973/ +254 020 252 2311;

SCHOOL’S POSTAL ADDRESS: P.O. Box 243, Kitengela;

NOONKOPIR GIRLS NATIONAL SENIOR SCHOOL DETAILS SUMMARY

SCHOOL NAME:  –NOONKOPIR GIRLS SECONDARY SCHOOL

SCHOOL’S CLUSTER:  –C1

SCHOOL’S TYPE:  –PUBLIC

SCHOOL’S NATURE (Regular/  SNE):  –REGULAR

SCHOOL’S DISABILITY TYPE:  –NONE

SCHOOL’S ACCOMODATION TYPE:  –BOARDING

SCHOOL’S GENDER (BOYS’ GIRLS’ OR MIXED):  –GIRLS

REGION WHERE SCHOOL IS LOCATED:  –RIFT VALLEY

COUNTY  WHERE SCHOOL IS LOCATED: –KAJIADO

SUB COUNTY  WHERE SCHOOL IS LOCATED: –ISINYA

SCHOOL’S UNIQUE INSTITUTIONAL CODE (UIC):  –B7C7

SCHOOL’S KNEC CODE: –31567201

School Capacity: The National School can accomodate over Students.

N/B: Explanation on the acronyms used:

  • Cluster which is the School’s Category. C1 is for National Schools.
  • UIC stands for Unique Institutional Code (UIC)/NEMIS Code
  • KNEC stands for the Kenya National Examinations Council (KNEC) Code that can be used to check the school’s results online.

HOW TO JOIN GRADE 10 AT NOONKOPIR GIRLS NATIONAL SENIOR SCHOOL

Joining Grade 10 at the school is straight forward. Placement at the school is done by the Ministry of Education. Simply apply for consideration for placement by using this link: Grade 10 Selection System.

NOONKOPIR GIRLS NATIONAL SENIOR SCHOOL’S DETAILS AT A GLANCE.

SCHOOL NAME: NOONKOPIR GIRLS SECONDARY SCHOOL
SCHOOL’S CLUSTER: C1
SCHOOL’S TYPE: PUBLIC
SCHOOL’S NATURE (Regular/  SNE): REGULAR
SCHOOL’S DISABILITY TYPE: NONE
SCHOOL’S ACCOMODATION TYPE: BOARDING
SCHOOL’S GENDER (BOYS’ GIRLS’ OR MIXED): GIRLS
REGION WHERE SCHOOL IS LOCATED: RIFT VALLEY
COUNTY  WHERE SCHOOL IS LOCATED: KAJIADO
SUB COUNTY  WHERE SCHOOL IS LOCATED: ISINYA
SCHOOL’S UNIQUE INSTITUTIONAL CODE (UIC): B7C7
SCHOOL’S KNEC CODE: 31567201

LIST OF ALL SUBJECTS AND PATHWAYS OFFERED AT NOONKOPIR GIRLS NATIONAL SENIOR SCHOOL

The Senior school, being a National School, will offer all the three pathways, listed below, for grade 10-12 students:

  • STEM PATHWAY, THAT IS DIVED INTO: PURE SCIENCES, APPLIED SCIENCES and TECHNICAL STUDIES
  • SOCIAL SCIENCES PATHWAY, THAT IS DIVED INTO: LANGUAGES & LITERATURE and HUMANITIES & BUSINESS STUDIES
  • ARTS & SPORTS SCIENCE PATHWAY, THAT IS DIVED INTO:  ARTS and SPORTS

Get a full list of all the latest Grade 10 Subjects at the Senior School under CBE Curriculum:

ARTS & SPORTS PATHWAY SUBJECTS

S/No// PATHWAY// TRACK// SUBJECTS

1.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Arabic

2.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Biology

3.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Business Studies

4.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Computer Studies

5.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, CRE/IRE/HRE

6.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Fasihi ya Kiswahili

7.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, French

8.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, General Science

9.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Geography

10.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, German

11.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, History & Citizenship

12.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Literature in English

13.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Mandarin

14.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Advanced Mathematics

15.ARTS & SPORTS.ARTS.Fine Arts, Theatre & Film, Sports & Recreation

16.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Arabic

17.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Biology

18.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Business Studies

19.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Computer Studies

20.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, CRE/IRE/HRE

21.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Fasihi ya Kiswahili

22.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, French

23.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, General Science

24.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Geography

25.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, German

26.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, History & Citizenship

27.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Literature in English,

28.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Mandarin

29.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Advanced Mathematics

30.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Sports & Recreation

31.ARTS & SPORTS.ARTS.Music & Dance, Fine Arts, Theatre & Film

32.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Arabic

33.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Biology

34.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Business Studies

35.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Computer Studies

36.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, CRE/IRE/HRE

37.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Fasihi ya Kiswahili

38.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, French

39.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, General Science

40.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Geography

41.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, German

42.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, History & Citizenship

43.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Literature in English

44.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Mandarin

45.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Advanced Mathematics

46.ARTS & SPORTS.ARTS.Theatre & Film, Music & Dance, Sports & Recreation

47.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Arabic

48.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Business Studies

49.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Computer Studies

50.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, CRE/IRE/HRE

51.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Fasihi ya Kiswahili

52.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, French

53.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Geography

54.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, German

55.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, History & Citizenship

56.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Literature in English

57.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Mandarin

58.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Advanced Mathematics

59.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, Biology, Media Technology

60.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Arabic

61.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Business Studies

62.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Computer Studies

63.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, CRE/IRE/HRE

64.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Fasihi ya Kiswahili

65.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, French

66.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Geography

67.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, German

68.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, History & Citizenship

69.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Literature in English

70.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Mandarin

71.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Advanced Mathematics

72.ARTS & SPORTS.SPORTS & RECREATION.Sports & Recreation, General Science, Media Technology

73.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Arabic

74.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Computer Studies

SOCIAL SCIENCES PATHWAY

S/No// PATHWAY// TRACK// SUBJECTS

75.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, CRE/IRE/HRE

76.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Fasihi ya Kiswahili

77.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, French

78.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, General Science

79.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Geography

80.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, German

81.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Literature in English

82.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Mandarin

83.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Business Studies, History & Citizenship, Advanced Mathematics

84.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Arabic

85.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Computer Studies

86.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Fasihi ya Kiswahili

87.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, French

88.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, General Science

89.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Geography

90.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, German

91.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, History & Citizenship

92.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Literature in English

93.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Mandarin

94.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Business Studies, Advanced Mathematics

95.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, Arabic

96.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, Computer Studies

97.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, Fasihi ya Kiswahili

98.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, French

99.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, General Science

100.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, German

101.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, Literature in English

102.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, Mandarin

103.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, Geography, Advanced Mathematics

104.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Arabic

105.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Computer Studies

106.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Fasihi ya Kiswahili

107.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, French

108.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, General Science

109.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Geography

110.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, German

111.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Literature in English

112.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Mandarin

113.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.CRE/IRE/HRE, History & Citizenship, Advanced Mathematics

114.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Arabic

115.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Computer Studies

116.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Fasihi ya Kiswahili

117.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, French

118.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, General Science

119.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, German

120.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Indigenous Language

121.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Literature in English

122.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Mandarin

123.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Advanced Mathematics

124.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.Geography, Business Studies, Sign Language

125.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Arabic

126.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Business Studies

127.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Computer Studies

128.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, CRE/IRE/HRE

129.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Fasihi ya Kiswahili

130.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, French

131.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, General Science

132.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, German

133.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Literature in English

134.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Mandarin

135.SOCIAL SCIENCES.HUMANTIES & BUSINESS STUDIES.History & Citizenship, Geography, Advanced Mathematics

136.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, Business Studies

137.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, Computer Studies

138.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, CRE/IRE/HRE

139.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, General Science

140.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, Geography

141.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, History & Citizenship

142.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, Mandarin

143.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Arabic, French, Advanced Mathematics

144.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, Arabic

145.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, Business Studies

146.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, Chinese

147.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, Computer Studies

148.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, CRE/IRE/HRE

149.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, French

150.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, General Science

151.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, Geography

152.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, History & Citizenship

153.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Fasihi ya Kiswahili, Sign Language, Advanced Mathematics

154.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, Business Studies

155.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, Computer Studies

156.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, CRE/IRE/HRE

157.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, General Science

158.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, Geography

159.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, History & Citizenship

160.SOCIAL SCIENCES.LANGUAGES & LITERATURE.French, German, Advanced Mathematics

161.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Arabic

162.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Business Studies

163.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Computer Studies

164.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, CRE/IRE/HRE

165.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, French

166.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, General Science

167.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Geography

168.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, German

169.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, History & Citizenship

170.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Mandarin

171.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Advanced Mathematics

172.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Fasihi ya Kiswahili, Sign Language

173.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Arabic

174.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Business Studies

175.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Computer Studies

176.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, CRE/IRE/HRE

177.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Fasihi ya Kiswahili

178.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, French

179.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, General Science

180.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Geography

181.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, German

182.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, History & Citizenship

183.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Mandarin

184.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Advanced Mathematics

185.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Indigenous Language, Literature in English, Sign Language

186.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, Arabic

187.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, Business Studies

188.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, Computer Studies

189.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, French

190.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, Geography

191.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, History & Citizenship

192.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, Mandarin

193.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Literature in English, Fasihi ya Kiswahili, Sign Language

194.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, Business Studies

195.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, Computer Studies

196.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, CRE/IRE/HRE

197.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, General Science

198.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, Geography

199.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, History & Citizenship

200.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Mandarin, French, Mathematics

201.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, Business Studies

202.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, Computer Studies

203.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, CRE/IRE/HRE

204.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, French

205.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, General Science

206.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, Geography

207.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, History & Citizenship

208.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, Mandarin

209.SOCIAL SCIENCES.LANGUAGES & LITERATURE.Sign Language, Arabic, Advanced Mathematics

STEM PATHWAY SUBJECTS

S/No// PATHWAY// TRACK// SUBJECTS

210.STEM.APPLIED SCIENCES.Agriculture, Business studies, Aviation

211.STEM.APPLIED SCIENCES.Agriculture, Business studies, Biology

212.STEM.APPLIED SCIENCES.Agriculture, Business studies, Building Construction

213.STEM.APPLIED SCIENCES.Agriculture, Business studies, Chemistry

214.STEM.APPLIED SCIENCES.Agriculture, Business studies, Computer Studies

215.STEM.APPLIED SCIENCES.Agriculture, Business studies, Electricity

216.STEM.APPLIED SCIENCES.Agriculture, Business studies, General Science

217.STEM.APPLIED SCIENCES.Agriculture, Business studies, Geography

218.STEM.APPLIED SCIENCES.Agriculture, Business studies, Marine and fisheries

219.STEM.APPLIED SCIENCES.Agriculture, Business studies, Advanced Mathematics

220.STEM.APPLIED SCIENCES.Agriculture, Business studies, Metal work

221.STEM.APPLIED SCIENCES.Agriculture, Business studies, Physics

222.STEM.APPLIED SCIENCES.Agriculture, Business studies, Power Mechanics

223.STEM.APPLIED SCIENCES.Agriculture, Business studies, Woodwork

224.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Aviation

225.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Biology

226.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Building Construction

227.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Business Studies

228.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Chemistry

229.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Electricity

230.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, General Science

231.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Geography

232.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Home Science

233.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Marine & Fisheries

234.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Advanced Mathematics

235.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Metal Work

236.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Physics

237.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Power Mechanics

238.STEM.APPLIED SCIENCES.Agriculture, Computer Studies, Wood work

239.STEM.APPLIED SCIENCES.Agriculture, Geography, Aviation

240.STEM.APPLIED SCIENCES.Agriculture, Geography, Biology

241.STEM.APPLIED SCIENCES.Agriculture, Geography, Building Construction

242.STEM.APPLIED SCIENCES.Agriculture, Geography, Computer Science

243.STEM.APPLIED SCIENCES.Agriculture, Geography, Electricity

244.STEM.APPLIED SCIENCES.Agriculture, Geography, General Science

245.STEM.APPLIED SCIENCES.Agriculture, Geography, Marine & Fisheries

246.STEM.APPLIED SCIENCES.Agriculture, Geography, Advanced Mathematics

247.STEM.APPLIED SCIENCES.Agriculture, Geography, Metal Work

248.STEM.APPLIED SCIENCES.Agriculture, Geography, Physics

249.STEM.APPLIED SCIENCES.Agriculture, Geography, Power Mechanics

250.STEM.APPLIED SCIENCES.Agriculture, Geography, Wood work

251.STEM.APPLIED SCIENCES.Agriculture, Home Science, Aviation

252.STEM.APPLIED SCIENCES.Agriculture, Home Science, Biology

253.STEM.APPLIED SCIENCES.Agriculture, Home Science, Building Construction

254.STEM.APPLIED SCIENCES.Agriculture, Home Science, Business Studies

255.STEM.APPLIED SCIENCES.Agriculture, Home Science, Chemistry

256.STEM.APPLIED SCIENCES.Agriculture, Home Science, Electricity

257.STEM.APPLIED SCIENCES.Agriculture, Home Science, General Science

258.STEM.APPLIED SCIENCES.Agriculture, Home Science, Geography

259.STEM.APPLIED SCIENCES.Agriculture, Home Science, Marine & Fisheries

260.STEM.APPLIED SCIENCES.Agriculture, Home Science, Advanced Mathematics

261.STEM.APPLIED SCIENCES.Agriculture, Home Science, Metal Work

262.STEM.APPLIED SCIENCES.Agriculture, Home Science, Physics

263.STEM.APPLIED SCIENCES.Agriculture, Home Science, Power Mechanics

264.STEM.APPLIED SCIENCES.Agriculture, Home Science, Woodwork

277.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Aviation

281.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Biology

282.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Building Construction

283.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Chemistry

284.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Electricity

278.STEM.APPLIED SCIENCES.Computer Studies, Business studies, General Science

285.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Geography

279.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Marine & Fisheries

286.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Advanced Mathematics

287.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Metal Work

280.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Physics

288.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Power Mechanics

289.STEM.APPLIED SCIENCES.Computer Studies, Business studies, Wood Work

265.STEM.APPLIED SCIENCES.Computer Studies, Geography, Aviation

266.STEM.APPLIED SCIENCES.Computer Studies, Geography, Biology

267.STEM.APPLIED SCIENCES.Computer Studies, Geography, Building Construction

268.STEM.APPLIED SCIENCES.Computer Studies, Geography, Chemistry

269.STEM.APPLIED SCIENCES.Computer Studies, Geography, Electricity

270.STEM.APPLIED SCIENCES.Computer Studies, Geography, General Science

271.STEM.APPLIED SCIENCES.Computer Studies, Geography, Marine & Fisheries

272.STEM.APPLIED SCIENCES.Computer Studies, Geography, Advanced Mathematics

273.STEM.APPLIED SCIENCES.Computer Studies, Geography, Metal Work

274.STEM.APPLIED SCIENCES.Computer Studies, Geography, Physics

275.STEM.APPLIED SCIENCES.Computer Studies, Geography, Power Mechanics B

276.STEM.APPLIED SCIENCES.Computer Studies, Geography, Wood work

290.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Aviation

291.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Biology

292.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Building Construction

293.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Business Studies

294.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Chemistry

295.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Electricity

296.STEM.APPLIED SCIENCES.Computer Studies, Home Science, General Science

297.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Geography

298.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Marine & Fisheries

299.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Advanced Mathematics

300.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Metal Work

301.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Physics

302.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Power Mechanics

303.STEM.APPLIED SCIENCES.Computer Studies, Home Science, Wood Work

304.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Agriculture

305.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Aviation

306.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Building Construction

307.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Business Studies

308.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Chemistry,

309.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Computer Studies

310.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Electricity

311.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Geography

312.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Home Science

313.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Marine & Fisheries

314.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Metal Work

315.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Physics

316.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Power Mechanics

317.STEM.PURE SCIENCES.Advanced Mathematics, Biology, Woodwork

318.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Agriculture

319.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Aviation

320.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Building Construction

321.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Business Studies

322.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Computer Studies

323.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Electricity

324.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Geography

325.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Home Science

326.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Marine & Fisheries

327.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Metal Work

328.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Physics

329.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Power Mechanics

330.STEM.PURE SCIENCES.Advanced Mathematics, Chemistry, Wood Work

331.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Agriculture

332.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Aviation

333.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Building Construction

334.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Business Studies

335.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Computer Studies

336.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Electricity

337.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Geography

338.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Home Science

339.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Metal Work

340.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Power Mechanics

341.STEM.PURE SCIENCES.Advanced Mathematics, General Science, Wood Work

342.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Agriculture

343.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Aviation

344.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Building & Construction

345.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Business Studies

346.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Computer Studies

347.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Electricity

348.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Geography

349.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Home Science

350.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Marine & Fisheries

351.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Metal Work

352.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Power Mechanics

353.STEM.PURE SCIENCES.Advanced Mathematics, Physics, Woodwork

354.STEM.PURE SCIENCES.Biology, Chemistry, Agriculture

355.STEM.PURE SCIENCES.Biology, Chemistry, Aviation

356.STEM.PURE SCIENCES.Biology, Chemistry, Building Construction

357.STEM.PURE SCIENCES.Biology, Chemistry, Business Studies

358.STEM.PURE SCIENCES.Biology, Chemistry, Computer Studies

359.STEM.PURE SCIENCES.Biology, Chemistry, Electricity

360.STEM.PURE SCIENCES.Biology, Chemistry, Geography

361.STEM.PURE SCIENCES.Biology, Chemistry, Home Science

362.STEM.PURE SCIENCES.Biology, Chemistry, Metal Work

363.STEM.PURE SCIENCES.Biology, Chemistry, Power Mechanics

364.STEM.PURE SCIENCES.Biology, Chemistry, Wood Work

365.STEM.PURE SCIENCES.Biology, Physics, Agriculture

366.STEM.PURE SCIENCES.Biology, Physics, Aviation

367.STEM.PURE SCIENCES.Biology, Physics, Building Construction

368.STEM.PURE SCIENCES.Biology, Physics, Business Studies

369.STEM.PURE SCIENCES.Biology, Physics, Computer Studies

370.STEM.PURE SCIENCES.Biology, Physics, Electricity

371.STEM.PURE SCIENCES.Biology, Physics, Geography

372.STEM.PURE SCIENCES.Biology, Physics, Home Science

373.STEM.PURE SCIENCES.Biology, Physics, Metal Work

374.STEM.PURE SCIENCES.Biology, Physics, Power Mechanics

375.STEM.PURE SCIENCES.Biology, Physics, Wood Work

376.STEM.PURE SCIENCES.Chemistry, Physics, Agriculture

377.STEM.PURE SCIENCES.Chemistry, Physics, Aviation

378.STEM.PURE SCIENCES.Chemistry, Physics, Building Construction

379.STEM.PURE SCIENCES.Chemistry, Physics, Business Studies

380.STEM.PURE SCIENCES.Chemistry, Physics, Computer Studies

381.STEM.PURE SCIENCES.Chemistry, Physics, Electricity

382.STEM.PURE SCIENCES.Chemistry, Physics, Geography

383.STEM.PURE SCIENCES.Chemistry, Physics, Home Science

384.STEM.PURE SCIENCES.Chemistry, Physics, Metal Work

385.STEM.PURE SCIENCES.Chemistry, Physics, Power Mechanics

386.STEM.PURE SCIENCES.Chemistry, Physics, Wood Work

387.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Biology

388.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Chemistry

389.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Computer Studies

390.STEM.TECHNICAL STUDIES.Aviation, Business Studies, General Science

391.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Geography

392.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Home Science

393.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Marine & Fisheries

394.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Advanced Mathematics

395.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Media Technology

396.STEM.TECHNICAL STUDIES.Aviation, Business Studies, Physics

397.STEM.TECHNICAL STUDIES.Aviation, General Science, Agriculture

398.STEM.TECHNICAL STUDIES.Aviation, General Science, Business Studies

399.STEM.TECHNICAL STUDIES.Aviation, General Science, Computer Studies

400.STEM.TECHNICAL STUDIES.Aviation, General Science, Home Science

401.STEM.TECHNICAL STUDIES.Aviation, General Science, Marine & Fisheries

402.STEM.TECHNICAL STUDIES.Aviation, General Science, Advanced Mathematics

403.STEM.TECHNICAL STUDIES.Aviation, General Science, Media Technology

404.STEM.TECHNICAL STUDIES.Aviation, General Science, Power Mechanics

405.STEM.TECHNICAL STUDIES.Aviation, Geography, Biology

406.STEM.TECHNICAL STUDIES.Aviation, Geography, Business Studies

407.STEM.TECHNICAL STUDIES.Aviation, Geography, Chemistry

408.STEM.TECHNICAL STUDIES.Aviation, Geography, Computer Studies

409.STEM.TECHNICAL STUDIES.Aviation, Geography, General Science

410.STEM.TECHNICAL STUDIES.Aviation, Geography, Home Science

411.STEM.TECHNICAL STUDIES.Aviation, Geography, Marine & Fisheries

412.STEM.TECHNICAL STUDIES.Aviation, Geography, Advanced Mathematics

413.STEM.TECHNICAL STUDIES.Aviation, Geography, Media Technology

414.STEM.TECHNICAL STUDIES.Aviation, Geography, Physics

415.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Biology

416.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Chemistry

417.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Computer Studies

418.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, General Science

419.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Geography

420.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Home Science

421.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Marine & Fisheries

422.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Advanced Mathematics

423.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Media Technology

424.STEM.TECHNICAL STUDIES.Building Construction, Business Studies, Physics

425.STEM.TECHNICAL STUDIES.Building Construction, General Science, Computer Studies

426.STEM.TECHNICAL STUDIES.Building Construction, General Science, Geography

427.STEM.TECHNICAL STUDIES.Building Construction, General Science, Home Science

428.STEM.TECHNICAL STUDIES.Building Construction, General Science, Marine & Fisheries

429.STEM.TECHNICAL STUDIES.Building Construction, General Science, Advanced Mathematics

430.STEM.TECHNICAL STUDIES.Building Construction, General Science, Media Technology

431.STEM.TECHNICAL STUDIES.Building Construction, Geography, Biology

432.STEM.TECHNICAL STUDIES.Building Construction, Geography, Chemistry

433.STEM.TECHNICAL STUDIES.Building Construction, Geography, Computer Studies

434.STEM.TECHNICAL STUDIES.Building Construction, Geography, Home Science

435.STEM.TECHNICAL STUDIES.Building Construction, Geography, Marine & Fisheries

436.STEM.TECHNICAL STUDIES.Building Construction, Geography, Advanced Mathematics

437.STEM.TECHNICAL STUDIES.Building Construction, Geography, Media Technology

438.STEM.TECHNICAL STUDIES.Building Construction, Geography, Physics

439.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Biology

440.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Chemistry

441.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Computer Studies

442.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Geography

443.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Home Science

444.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Marine & Fisheries

445.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Advanced Mathematics

446.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Media Technology

447.STEM.TECHNICAL STUDIES.Electricity, Business Studies, Physics

448.STEM.TECHNICAL STUDIES.Electricity, General Science, Computer Studies

449.STEM.TECHNICAL STUDIES.Electricity, General Science, Home Science

450.STEM.TECHNICAL STUDIES.Electricity, General Science, Marine & Fisheries

451.STEM.TECHNICAL STUDIES.Electricity, General Science, Advanced Mathematics

452.STEM.TECHNICAL STUDIES.Electricity, General Science, Media Technology

453.STEM.TECHNICAL STUDIES.Electricity, Geography, Biology

454.STEM.TECHNICAL STUDIES.Electricity, Geography, Chemistry

455.STEM.TECHNICAL STUDIES.Electricity, Geography, Computer Studies

456.STEM.TECHNICAL STUDIES.Electricity, Geography, Home Science

457.STEM.TECHNICAL STUDIES.Electricity, Geography, Marine & Fisheries

458.STEM.TECHNICAL STUDIES.Electricity, Geography, Advanced Mathematics

459.STEM.TECHNICAL STUDIES.Electricity, Geography, Media Technology

460.STEM.TECHNICAL STUDIES.Electricity, Geography, Physics

461.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Biology

462.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Chemistry

463.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Computer Studies

464.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, General Science

465.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Geography

466.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Home Science

467.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Advanced Mathematics

468.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Media Technology

469.STEM.TECHNICAL STUDIES.Marine & Fisheries, Business Studies, Physics

470.STEM.TECHNICAL STUDIES.Marine & Fisheries, General Science, Computer Studies

471.STEM.TECHNICAL STUDIES.Marine & Fisheries, General Science, Home Science

472.STEM.TECHNICAL STUDIES.Marine & Fisheries, General Science, Advanced Mathematics

473.STEM.TECHNICAL STUDIES.Marine & Fisheries, General Science, Media Technology

474.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Biology

475.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Chemistry

476.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Computer Studies

477.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Home Science

478.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Advanced Mathematics

479.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Media Technology

480.STEM.TECHNICAL STUDIES.Marine & Fisheries, Geography, Physics

481.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Biology

482.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Chemistry

483.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Computer Studies

484.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Geography

485.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Home Science

486.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Marine & Fisheries

487.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Advanced Mathematics

488.STEM.TECHNICAL STUDIES.Media Technology, Business Studies, Physics

489.STEM.TECHNICAL STUDIES.Media Technology, General Science, Computer Studies

490.STEM.TECHNICAL STUDIES.Media Technology, General Science, Home Science

491.STEM.TECHNICAL STUDIES.Media Technology, General Science, Marine & Fisheries

492.STEM.TECHNICAL STUDIES.Media Technology, General Science, Advanced Mathematics

493.STEM.TECHNICAL STUDIES.Media Technology, Geography, Biology

494.STEM.TECHNICAL STUDIES.Media Technology, Geography, Chemistry

495.STEM.TECHNICAL STUDIES.Media Technology, Geography, Computer Studies

496.STEM.TECHNICAL STUDIES.Media Technology, Geography, Home Science

497.STEM.TECHNICAL STUDIES.Media Technology, Geography, Marine & Fisheries

498.STEM.TECHNICAL STUDIES.Media Technology, Geography, Advanced Mathematics

499.STEM.TECHNICAL STUDIES.Media Technology, Geography, Physics

500.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Aviation

501.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Biology

502.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Chemistry

503.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Computer Studies

504.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, General Science

505.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Geography

506.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Home Science

507.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Marine & Fisheries

508.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Advanced Mathematics

509.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Media Technology

510.STEM.TECHNICAL STUDIES.Metal Work, Business Studies, Physics

511.STEM.TECHNICAL STUDIES.Metal Work, General Science, Computer Studies

512.STEM.TECHNICAL STUDIES.Metal Work, General Science, Home Science

513.STEM.TECHNICAL STUDIES.Metal Work, General Science, Marine & Fisheries

514.STEM.TECHNICAL STUDIES.Metal Work, General Science, Advanced Mathematics

515.STEM.TECHNICAL STUDIES.Metal Work, General Science, Media Technology

516.STEM.TECHNICAL STUDIES.Metal Work, Geography, Biology

517.STEM.TECHNICAL STUDIES.Metal Work, Geography, Chemistry

518.STEM.TECHNICAL STUDIES.Metal Work, Geography, Computer Studies

519.STEM.TECHNICAL STUDIES.Metal Work, Geography, General Science

520.STEM.TECHNICAL STUDIES.Metal Work, Geography, Home Science

521.STEM.TECHNICAL STUDIES.Metal Work, Geography, Marine & Fisheries

522.STEM.TECHNICAL STUDIES.Metal Work, Geography, Advanced Mathematics

523.STEM.TECHNICAL STUDIES.Metal Work, Geography, Media Technology

524.STEM.TECHNICAL STUDIES.Metal Work, Geography, Physics

525.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Biology

526.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Chemistry

527.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Computer Studies

528.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, General Science

529.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Geography

530.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Home Science

531.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Marine & Fisheries

532.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Advanced Mathematics

533.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Media Technology

534.STEM.TECHNICAL STUDIES.Power Mechanics, Business Studies, Physics

535.STEM.TECHNICAL STUDIES.Power Mechanics, General Science, Computer Studies

536.STEM.TECHNICAL STUDIES.Power Mechanics, General Science, Home Science

537.STEM.TECHNICAL STUDIES.Power Mechanics, General Science, Marine & Fisheries

538.STEM.TECHNICAL STUDIES.Power Mechanics, General Science, Advanced Mathematics

539.STEM.TECHNICAL STUDIES.Power Mechanics, General Science, Media Technology

540.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Biology

541.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Chemistry

542.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Computer Studies

543.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Home Science

544.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Marine & Fisheries

545.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Advanced Mathematics

546.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Media Technology

547.STEM.TECHNICAL STUDIES.Power Mechanics, Geography, Physics

548.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Biology

549.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Chemistry

550.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Computer Studies

551.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, General Science

552.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Geography

553.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Home Science

554.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Marine & Fisheries

555.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Advanced Mathematics

556.STEM.TECHNICAL STUDIES.Wood Work, Business Studies, Physics

557.STEM.TECHNICAL STUDIES.Wood Work, General Science, Computer Studies

558.STEM.TECHNICAL STUDIES.Wood Work, General Science, Geography

559.STEM.TECHNICAL STUDIES.Wood Work, General Science, Home Science

560.STEM.TECHNICAL STUDIES.Wood Work, General Science, Marine & Fisheries

561.STEM.TECHNICAL STUDIES.Wood Work, General Science, Advanced Mathematics

562.STEM.TECHNICAL STUDIES.Wood Work, General Science, Media Technology

563.STEM.TECHNICAL STUDIES.Wood Work, Geography, Biology

564.STEM.TECHNICAL STUDIES.Wood Work, Geography, Chemistry

565.STEM.TECHNICAL STUDIES.Wood Work, Geography, Computer Studies

566.STEM.TECHNICAL STUDIES.Wood Work, Geography, General Science

567.STEM.TECHNICAL STUDIES.Wood Work, Geography, Home Science

568.STEM.TECHNICAL STUDIES.Wood Work, Geography, Marine & Fisheries

569.STEM.TECHNICAL STUDIES.Wood Work, Geography, Advanced Mathematics

570.STEM.TECHNICAL STUDIES.Wood Work, Geography, Media Technology

571.STEM.TECHNICAL STUDIES.Wood Work, Geography, Physics

FULL DETAILS FOR ALL OTHER NATIONAL SCHOOLS.

Lugulu Girls High Senior School: Full details, location, CBE Subjects Offered


Moi Girls Kamusinga High Senior School: Full details, location, CBE Subjects Offered


Friends Kamusinga Boys’ High Senior School: Full details, location, CBE Subjects Offered


Kibabii Boys High Senior School: Full details, location, CBE Subjects Offered


Cardinal Otunga Girls High Senior School: Full details, location, CBE Subjects Offered


Nalondo CBM Special High Senior School: Full details, location, CBE Subjects Offered


Joyvalley Special High Senior School: Full details, location, CBE Subjects Offered


St. Kizito Secondary School For The H.I: Full details, location, CBE Subjects Offered


Kaplong Girls High Senior School: Full details, location, CBE Subjects Offered


Kaplong Boys High Senior School: Full details, location, CBE Subjects Offered


Moi Siongiroi Girls’ High Senior School: Full details, location, CBE Subjects Offered

Tenwek Boys High Senior School: Full details, location, CBE Subjects Offered

Baringo Boys High Senior School: Full details, location, CBE Subjects Offered

Ossen Girls High Senior School: Full details, location, CBE Subjects Offered

Kapropita High Senior School: Full details, location, CBE Subjects Offered

Kabarnet High Senior School: Full details, location, CBE Subjects Offered

Precious Blood Kilungu Girls Secondary School’s KCSE Results, KNEC Code, Admissions, Location, Contacts, Fees, Students’ Uniform, History, Directions and KCSE Overall School Grade Count Summary

Precious Blood Kilungu Girls Secondary School’s 2023/2024 KCSE Results, KNEC Code, Admissions, Location, Contacts, Fees, Students’ Uniform, History, Directions and KCSE Overall School Grade Count Summary

Onjiko High School all details, KCSE Results Analysis, Contacts, Location, Admissions, History, Fees, Portal Login, Website, KNEC Code

LISTS OF ALL SENIOR SCHOOLS PER COUNTY FOR ALL THE 47 COUNTIES

List of all Senior Schools in West Pokot County

List of all Senior Schools in Wajir County

List of all Senior Schools in Vihiga County

List of all Senior Schools in Uasin Gishu County

List of all Senior Schools in Turkana County

List of all Senior Schools in Trans-Nzoia County

List of all Senior Schools in Tharaka Nithi County

List of all Senior Schools in Tana River County

List of all Senior Schools in Taita Taveta County

List of all Senior Schools in Siaya County

List of all Senior Schools in Samburu County

List of all Senior Schools in Nyeri County

List of all Senior Schools in Nyandarua County

List of all Senior Schools in Nyamira County

List of all Senior Schools in Narok County

List of all Senior Schools in Nandi County

List of all Senior Schools in Nakuru County

List of all Senior Schools in Nairobi County

List of all Senior Schools in Murang’a County

List of all Senior Schools in Mombasa County

List of all Senior Schools in Migori County

List of all Senior Schools in Meru County

List of all Senior Schools in Marsabit County

List of all Senior Schools in Mandera County

List of all Senior Schools in Makueni County

List of all Senior Schools in Machakos County

List of all Senior Schools in Lamu County

List of all Senior Schools in Laikipia County

List of all Senior Schools in Kwale County

List of all Senior Schools in Kitui County

List of all Senior Schools in Kisumu County

List of all Senior Schools in Kisii County

List of all Senior Schools in Kirinyaga County

List of all Senior Schools in Kilifi County

List of all Senior Schools in Kiambu County

List of all Senior Schools in Kericho County

List of all Senior Schools in Kakamega County

List of all Senior Schools in Kajiado County

List of all Senior Schools in Isiolo County

List of all Senior Schools in Homa Bay County

List of all Senior Schools in Garissa County

List of all Senior Schools in Embu County

List of all Senior Schools in Elgeyo-Marakwet County

List of all Senior Schools in Busia County

List of all Senior Schools in Bungoma County

List of all Senior Schools in Baringo County

List of all Senior Schools in Bomet County

Nyamira County best, top secondary schools; Indepth analysis

New List of All National Schools Per Region {For all 8 Regions}

New list of all National Schools in Western Region {CBE Senior Schools}

New list of all National Schools in Rift-valley Region {CBE Senior Schools}

New list of all National Schools in Nyanza Region {CBE Senior Schools}

New list of all National Schools in North-Eastern Region {CBE Senior Schools}

New list of all National Schools in Nairobi Region {CBE Senior Schools}

New list of all National Schools in Eastern Region {CBE Senior Schools}

New list of all National Schools in Coast Region {CBE Senior Schools}

New list of all National Schools in Central Region {CBE Senior Schools}

New List of all Mixed National Schools under CBC, CBE Curriculum

New List of all Girls’ National Schools under CBC, CBE Curriculum

Noonkopir Girls High School: Full details, location, CBE Subjects Offered, UIC, Knec Code

Gakere Secondary School’s CBE Subjects, Pathways, Contacts, Location, Fees, Admission {Full Details}

Gakere Secondary School is a public Mixed, (Boys’ and Girls’) Sub-County Level Day Senior School that is physically located at Tetu Subcounty in Nyeri County of the Central Region, Kenya. Placement in the school is done by the Ministry of Education of the Republic of Kenya. To be placed to join this school, a grade 9 learner has to select the school online and placement is done based on the available grade 10 vacancies.  We have also provided the School’s Official Phone Number Contact. Reach the Principal directly on: (+254) 0722247971.

Key Details about the school.

Country where found: Kenya.

Region: Central.

County: Nyeri County.

Subcounty: Tetu South Subcounty.

School Type/ Ownership: A Public School.

Nature os School/ CBE Level: Senior School (SS).

Category: Regular School

School’s Official Name: Gakere Secondary School

Sex: Mixed, (Boys’ and Girls’)  School.

School Cluster/ Level: Sub-County School whose Classification is C4.

Accomodation Type: Day  School.

Knec Code:  08221210

School’s Official Phone Number:  (+254) 0722247971.

Official Email Address for the School: gakeresec@gmail.com.

Postal Address:  Box 1497

Total Number of Subjects Combinations Offered at the School: 6 Subjects’ Combinations in various Pathways.

Fees paid at Gakere Secondary School

Fees paid at the school is determined by the Ministry of Education and is uniform for all Senior Schools; countrywide. National Senior schools have the highest fees set; followed by Extra-County, County and Sub-County schools in that order.

Subject Combinations Offered at Gakere Secondary School

View all available subject combinations at this school

SOCIAL SCIENCES

4
HUMANITIES & BUSINESS STUDIESCode: SS2019
Christian Religious Education,Geography,History & Citizenship
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2061
Business Studies,Geography,Literature in English
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2109
Business Studies,Christian Religious Education,Fasihi ya Kiswahili
3 SubjectsSOCIAL SCIENCES
LANGUAGES & LITERATURECode: SS1071
Indigenous Language,Kenya Sign Language,Literature in English
3 SubjectsSOCIAL SCIENCES

STEM

2
PURE SCIENCESCode: ST1004
Advanced Mathematics,Biology,Chemistry
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2053
Agriculture,Business Studies,Physics
3 SubjectsSTEM

How to get the School’s Knec Results.

To check the school’s Knec results, visit Knec Portal and search for the school by its name.

📍 How to get more Information about the School

For more information about admission requirements, facilities, and application procedures, contact the school directly. Use the official phone number indicated above to get information about the school’s fees, uniform, meals and performance.

How to Select Grade 10 Subjects and schools

To select Grade 10 schools and subjects under the Competency-Based Curriculum (CBC) in Kenya, Grade 9 learners should first choose a career pathway (STEM, Social Sciences, or Arts & Sports Science). Then, they’ll select three subject combinations within that pathway and finally, choose four schools for each combination, totaling 12 schools. To select preferred Grade 10 Schools and Subject Combinations, use the Ministry of Education portal selection.education.go.ke.

1. How you can Choose a Career Pathway:

  • Identify your interests and potential career aspirations.
  • Select one of the three pathways: STEM, Social Sciences, or Arts & Sports Science.
  • Confirm your choice to proceed with the pathway.

2. Select Subject Combinations:

  • The portal will provide you with a list of subject combinations available within your chosen pathway.
  • Choose three subject combinations that align with your interests and strengths.

3. Select Preferred Senior Schools:

  • For each subject combination, select four schools from the available clusters.
  • This ensures a diverse range of options and equal representation from different categories of schools.
  • A total of 12 schools will be selected: 4 for the first subject combination, 4 for the second, and 4 for the third.

LIST OF ALL SENIOR SCHOOLS PER COUNTY.

Senior School Subjects and Pathways selection Form.
Senior School Subjects and Pathways selection Form.

Senior School Selection Form educationnewshub.co.ke

ALL NATIONAL SCHOOLS IN KENYA

New list of all National Schools in North-Eastern Region {CBE Senior Schools}

New list of all National Schools in Nairobi Region {CBE Senior Schools}

List of National Schools Offering Biology, Building & Construction and Chemistry CBE Subjects

Nkubu High School: National School’s Full Details

Meru School : National School’s Full Details

New list of all National Schools in Eastern Region {CBE Senior Schools}

New list of all National Schools in Central Region {CBE Senior Schools}

Kaaga Girls High School : National School’s Full Details

St. Mary’s Girls High School Igoji : National School’s Full Details

Moyale Boys Secondary School : National School’s Full Details

Moi Girls High School Marsabit: National School’s Full Details

New list of all National Schools in Rift-valley Region {CBE Senior Schools}

New list of all National Schools in Nyanza Region {CBE Senior Schools}

Moi Girls’ Secondary School-Mandera: National School’s Full Details

New list of all National Schools in Coast Region {CBE Senior Schools}

Mandera Secondary School : National School’s Full Details

Matiliku Secondary School : National School’s Full Details

Mukaa Boys’ High School: National School’s Full Details

New List of All National Schools Per Region {For all 8 Regions}

New list of all National Schools in Western Region {CBE Senior Schools}

Number of KCSE candidates in all Boys’ National schools; School KNEC code, name, category, type and cluster

List of all the Boys’ national schools in Kenya; New list, their contacts, enrollment plus locations

New List of all Boys’ National Schools under CBC, CBE Curriculum

Mama Ngina Girls High School, the only girls’ national school in Mombasa County, relocated to ultra modern facilities

Chewoyet National School; full details, KCSE  Analysis, Contacts, Location, Admissions, History, Fees, Portal Login, Website, KNEC Code

New List of all Girls’ National Schools under CBC, CBE Curriculum

New List of all National Schools under CBC, CBE Curriculum

List of all National Schools in Kenya; Location, Knec Code and Type

New List of all Mixed National Schools under CBC, CBE Curriculum

ALL EXTRA COUNTY SCHOOLS IN KENYA

List of best performing, top, extra county schools in Nakuru County

Extra County Secondary Schools in Garissa County; School KNEC Code, Type, Cluster, and Category

Extra County Secondary Schools in Narok County; School KNEC Code, Type, Cluster, and Category

List of all Best Extra County High Schools in Kenya- Knec Code, Category, Cluster

Best and top extra county secondary schools in Nyeri county

Extra County Secondary Schools in Laikipia County; School KNEC Code, Type, Cluster, and Category

Best, top, Extra County Schools in Kirinyaga County

List of best performing Extra County schools in Machakos County

Nyeri County Best National, Extra County Secondary Schools

List of best Extra County secondary schools in Elgeyo Marakwet County

How to know 2024 form one admission results and download 2024 Extra County School admission letters, online: Education News

List of all Best Girls’ Extra County High Schools in Kenya- Knec Code, Category, Cluster

List of all Boys Extra County Schools in Kenya; Location, Knec Code and Type

ALL SENIOR SCHOOLS IN KENYA.

Kihuru-ini Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Del Monte Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

St. Teresa’s Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Ngatho Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mugumo Mixed Day Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kyaume Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Iembeni Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Muti Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Thungururu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gititu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Ngelelya Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Swani Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

St Benedict Ithanga Township Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Ithanga High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mwanawikio Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Matunda Mixed Day Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kanderendu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Karega Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Wamahiga Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mutunguru Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kigumo Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Marumi Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mugumoini Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kigumo Bendera High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mununga Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mathareini Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kinyona Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

St Francis Mukuyuini Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mairi Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Makomboki Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Muthithi Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Matu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mumbu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mwarano Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mariira Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Ikumbi Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gikigie Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Thamara Mixed Day Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Rarakwa Girls High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

St John The Baptist Kirie Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gatumbi Baptist Mixed Day Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Ndugamano Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Njora Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kigumo Girls High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Nguku Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Ack Kahumbu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kamukabi Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Turuturu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Njiiri Boys Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kiugu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Karinga Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Githima Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Bishop Gatimu Kinyona Girls Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kiaguthu Boys School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kianderi Girls High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mukumu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mukangu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Karingu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gathinja Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kamaguta Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gitare Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Dr. Gitau Matharite Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Mirichu Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kiumba Mixed Day Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gitie Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Theri Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kiboi Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Koimbi Boys High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gatara Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Gitura Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Murarandia Mixed Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Dr. Kiano Girls Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kianderi Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kahuhia Mixed High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kahuro Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kahatia Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Weithaga Mixed High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Yamugwe Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kirogo Boy’s High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kaganda High School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

County Secondary Schools in Isiolo County; School KNEC Code, Type, Cluster, and Category

County Schools in Kenya form the third tier of secondary schools; after National and Extra County schools, respectively. The schools admit students from majorly within the country. Admissions to these schools is done online by the Ministry of Education.These schools are in 3 Categories i.e category 1 (C1), Category 2 (C2) and Category 3 (C3). The Schools are either of Mixed or single sex type.

Here are the County Schools in Isiolo County:

School  Code School Name Category Type
17306301 OLDONYIRO SECONDARY SCHOOL County Mixed
17322301 SERICHO SECONDARY SCHOOL County Mixed
17356101 MERTI SECONDARY SCHOOL County Boys
17356102 MERTI MUSLIM GIRLS’ SECONDARY SCHOOL County Girls
17356203 BULESA SECONDARY SCHOOL County Mixed

More articles on Education matters;

 

Machakos Girls High School; KCSE Results Analysis, Contacts, Location, Admissions, History, Fees, Portal Login, Website, KNEC Code

Machakos Girls High School is one of the best girls boarding school in the Country. This article provides complete information about this school. Get to know the school’s physical location, directions, contacts, history, Form one selection criteria and analysis of its performance in the Kenya Certificate of Secondary Education, KCSE, exams. Get to see a beautiful collation of images from the school’s scenery; including structures, signage, students, teachers and many more.

 For all details about other schools in Kenya, please visit the link below;

MACHAKOS GIRLS HIGH SCHOOL’S PHYSICAL LOCATION

Machakos Girls High School is located in the Machakos Town constituency in Mumbuni; Eastern Region of Kenya. It is a girls’ only boarding school.

MACHAKOS GIRLS HIGH SCHOOL’S INFO AT A GLANCE

  • SCHOOL’S NAME: Machakos Girls High School
  • SCHOOL’S TYPE: Girls only boarding school
  • SCHOOL’S CATEGORY:
  • SCHOOL’S LEVEL: Secondary
  • SCHOOL’S LOCATION: located in the Machakos Town constituency in Mumbuni; Eastern Region of Kenya.
  • SCHOOL’S KNEC CODE:
  • SCHOOL’S OWNERSHIP STATUS: Public
  • SCHOOL’S PHONE CONTACT: 020-2507272
  • SCHOOL’S POSTAL ADDRESS:  P. O BOX 13 – 90100 MACHAKOS
  • SCHOOL’S EMAIL ADDRESS: machakosgirls09@yahoo.com
  • SCHOOL’S WEBSITE:

MACHAKOS GIRLS HIGH SCHOOL’S BRIEF HISTORY

The School was started as a Primary School for boys under the name Government African School in 1915. In 1946, the Primary School became a mixed school for boys and girls.
In 1950, the school was split and all the boys were moved to the now Machakos School. The school name changed to “Government African Girls’ Intermediate School.”

1959 – The first Form 1 class of 12 girls was started in 1959 and by the year 1960 the school had form 1 and 2 and standard 6,7and8 and its alo the same year that the school was changed to Machakos Girls High school.
In 1965 a double stream was introduced in form 1 class and in 1968 the whole school became a tripple streamed school from form 1-4. in 1972 a form 5 arts class was started and later in 1978 a second stream was granted but was changed to ascience stream in 1984. In 2007 a fourth stream was introduced in form 1.

FOR A COMPLETE GUIDE TO ALL SCHOOLS IN KENYA CLICK ON THE LINK BELOW;

Here are links to the most important news portals:

MACHAKOS GIRLS HIGH SCHOOL’S VISION

A centre of education and excellence for girls in Kenya and the world.

MACHAKOS GIRLS HIGH SCHOOL’S MISSION

To prepare complete girls who will participate and contribute meaningfully to the academic, socio-economic and political environment.

MACHAKOS GIRLS HIGH SCHOOL’S MOTTO

Success is Doing the Extra

MACHAKOS GIRLS HIGH SCHOOL’S CONTACTS

In need of more information about the school? Worry not. Use any of the contacts below for inquiries and/ or clarifications:

  • Postal Address:  P. O BOX 13 – 90100 MACHAKOS
  • Email Contact: machakosgirls09@yahoo.com
  • Phone Contact: 020-2507272

MACHAKOS GIRLS HIGH SCHOOL’S FORM ONE SELECTION CRITERIA & ADMISSIONS

Being a public school, form one admissions are done by the Ministry of Education. Vacancies are available on competitive basis. Those seeking admissions can though directly contact the school or pay a visit for further guidelines.

MACHAKOS GIRLS HIGH SCHOOL’S KCSE PERFORMANCE ANALYSIS

The school has maintained a good run in performance at the Kenya National Examinations Council, KNEC, exams. In the 2019 Kenya Certificate of Secondary Education, KCSE, exams the school featured in the list of top 200 schools nationally.

Machakos Girls High School managed a mean score of 7.7018 (B-; minus) in the 2019 Kenya Certificate of Secondary Education, KCSE, examination. The school registered a total of 228 candidates.

170 candidates scored a mean grade of C+(plus) and above; hence, booking direct tickets to university; which represented a percentage of 74.56% of the total candidates. Candidates who scored mean grade of A- (minus) were 1 . Others scored B+ (30), B (44), B- (48) and C+ ( 43 candidates).

Here is the school’s 2019 KCSE Mean Grade Summary;

MEAN GRADE NUMBER OF CANDIDATES
A 0
A- 5
B+ 30
B 44
B- 48
C+ 43
C 38
C- 13
D+ 6
D 1
D- 0
E 0
x 0
TOTAL 228

Also read;

 For all details about other schools in Kenya, please visit the link below;

MACHAKOS GIRLS HIGH SCHOOL’S PHOTO GALLERY

Planning to pay the school a visit? Below are some of the lovely scenes you will experience.

Machakos Girls High School

Also read:

HOW AGRICULTURE KCSE EXAMS ARE SET (KNEC GUIDE)

AGRICULTURE (443)

PAPER 1 (90 MKS)

FORM 1 TOPICS

  1. Introduction to Agriculture
  2. Factors influencing Agriculture
  3. Crop production I – Land preparation
  4. Water supply, Irrigation and Drainage
  5. Organic manure
  6. Basic economics – Farm Records

FORM 2 TOPICS

  1. Inorganic fertilizers
  2. Crop production 2 – Planting
  3. Nursery practices
  4. Field practices
  5. Vegetables

FORM 3 TOPICS

  1. Land tenure and Land reforms
  2. Soil and water conservation measures
  3. Weeds and weed control
  4. Crop pests and pest control
  5. Crop diseases and disease control
  6. Specific crops
  • Maize, sorghum, finger millet, bulrush millet, beans, rice
  • Industrial crops – cotton, sugarcane, pyrethrum
  1. Forage crops

FORM 4 TOPICS

  1. Production economics
  2. Farm accounts
  3. Agricultural marketing and organizations
  4. Agro forestry.

PAPER 2 (90 MKS)

FORM 1 TOPICS

  1. Farm tools and equipment
  2. Livestock breeds

FORM 2 TOPICS

  1. Introduction to livestock health
  2. Parasitwes and parasite control
  3. Livestock nutrition

FORM 3 TOPICS

  1. Selection and breeding
  2. Livestock rearing practices
  3. Farm structures
  4. Livestock diseases

FORM 4 TOPICS

  1. Poultry production
  2. Cattle production
  3. Farm power and machinery

 

  1. C. S. E. FORMAT

SECTION A (30 MKS)

State, list, name, give

SECTION B (20 MKS)

Photographs, diagrams,

SECTION C (40 MKS)

Explain, describe, outline, State and explain

Tea farmers to get Sh.5.5 billion mini bonus from KTDA

Tea farmers to get Sh.5.5 billion mini bonus from KTDA
The Kenya Tea Development Agency (KTDA) has disbursed a Sh.5.5 billion mini bonus to small scale tea farmers in the country, aimed at cushioning them from the rising cost of living.

 

Agriculture Cabinet Secretary (CS) Mithika Linturi said that in December 2022 during the KTDA Annual General Meeting (AGM), he requested the board to consider making a mini bonus payment to the farmers in January so that they can be able to pay school fees considering that schools reopen later this month.

The CS said that KTDA has the overall management authority of 71 factories and the government has committed to help the management improve on the earnings of the tea farmers.

“The tea sector is key to the growth of our economy as it contributes two per cent of the Gross Domestic Product (GDP) and four per cent of the agricultural GDP, with the sector supporting 650,000 farmers whose factories are managed by KTDA,” he said.

Linturi explained that from the information that they are getting, tea production increased in the months of November and December 2022 as a result of the fertilizer subsidy programme that the government has been undertaking.

“As government, we will continue working to ensure that the cost of production is brought down so that there is great benefit to our farmers,” said the CS, adding that as a Ministry they have instructions from the president to ensure that tea farmers get the best from their produce.

He highlighted that the government is sourcing for funds to finance the construction of 11 lines that will be able to process orthodox tea which fetches more money in the world market. This move will ensure that Kenyan farmers are able to make more money from their tea.

“It is also the commitment of the government within this year to increase value addition to our teas so that we are able to get to at least 50 per cent, this will help us reduce the amount of unprocessed tea that we export,” said Linturi.

He said that they are inviting private sector players to invest in value addition, even as the government prepares itself to build common user facilities in the special economic zones, especially in Dongo Kundu, where value addition to the tea can be done.

“Once those common user facilities are done, those who cannot be able to put up the value addition lines can be able to access the government facilities and pack their tea and export it,” explained the CS.

Linturi added that our embassies are ambassadors for Kenyan tea and they are trying to encourage them to continue looking for markets for the Kenyan tea and other produce.

“Our greatest tea markets are Pakistan and Egypt and we still feel we can be able to get a greater share of the market by trying to explore other markets,” he said.

KTDA Holdings Chairman David Ichoho said that from the disbursed money, Sh.2.7 billion is payment with respect to mini bonuses for the factories, whose directors passed resolutions to pay mini bonuses to their farmers.

Ichoho said that the balance of Sh.2.8 billion will go towards paying farmers for the December green leaf delivered to factories.

“Farmers will be paid between Sh.5 and Sh.10 as a mini bonus per kilo of green leaf delivered to their factories for the six months up to December 31st, 2022. The Sh.2.7 billion mini bonus payment represents 449 million kilos of green leaf delivered to KTDA-managed factories over the six-month period,” said Ichoho.

He said that during the same period, average tea prices for KTDA at the auction stood at Sh.326 per kilogram of made tea compared to Sh.306 over the same period in the 2020/2021 financial year.

KCSE Maths Best Revision Kit

MATHEMATICS I

PART I

 

SECTION I (50 MARKS)

 

 

  1. Evaluate without mathematical tables leaving your answer in standard form

0.01712 X 3

855 X 0.531                                                                                                                  (2 Mks)

  1. Six men take 14 days working 8 hours a day to pack 2240 parcels. How many more men working

5 hours a day will be required to pack 2500 parcels in 2 days                                                      (3 Mks)

 

 

 

 

 

  1. M                                  In quadrilateral OABC, OA = 4i – 3j. OC = 2i + 7j

AB = 3OC. cm: mB = 2:3. Find in terms of  i and j

C                                                           vector Om                                           (3 Mks)

 

 

 

 

 

O                                                A

 

  1. By matrix method, solve the equations

5x + 5y = 1

4y + 3x = 5                                                                                                                         (3 Mks)

 

 

  1. In the given circle centre O, ÐABC = 1260.

Calculate ÐOAC                                           (3 Mks)

 

A                                     C

 

 

 

B

 

  1. Solve the equation

2(3x – 1)2 9 (3x – 1) + 7 = 0                                                                                               (4 Mks)

  1. Maina, Kamau and Omondi share Shs.180 such that for every one shilling Maina gets, Kamau gets 50

Cts and for every two shillings Kamau gets, Omondi gets three shillings. By how much does Maina’s

share exceed Omondi’s                                                                                                         (3 Mks)

  1. Expand (2 + 1/2x)6 to the third term. Use your expression to evaluate 2.46 correct to 3 s.f (3 Mks)
  2. The probability of failing an examination is 0.35 at any attempt. Find the probability that

(i)   You will fail in two attempts                                                                                  (1 Mk)

(ii)   In three attempts, you will at least fail once                                                                       (3 Mks)

  1. Line y = mx + c makes an angle of 1350 with the x axis and cuts the y axis at y = 5. Calculate the

equation of the line                                                                                                             (2 Mks)

  1. During a rainfall of 25mm, how many litres collect on 2 hectares? (3 Mks)
  2. Solve the equation a 3a – 7 = a – 2 (3 Mks)

3       5          6

  1. The sum of the first 13 terms of an arithmetic progression is 13 and the sum of the first 5 terms is

–25. Find the sum of the first 21 terms                                                                                (5 Mks)

  1. The curved surface of a core is made from the shaded sector on the circle. Calculate the height of

the cone.                                                                                                                            (4 Mks)

 

 

 

 

 

O

20cm      1250                   20 cm

 

 

 

 

 

 

  1. Simplify (wx – xy – wz + yz) (w + z) (3 Mks)

z2 – w2

  1. The bearing of Q from P is North and they are 4 km apart. R is on a bearing of 030 from P and on

a bearing of 055 from Q. Calculate the distance between P and R.                                        (3 Mks)

 

SECTION II (50 MARKS)

  1. In the given circle centre O, ÐQTP = 460, ÐRQT = 740 and ÐURT = 390

 

 

U                                                   T                                P

 

 

Q

S          390

      Calculate                                                                                    R

(a)  ÐRST                                                        (1 Mk)

(b)  ÐSUT                                                       (3 Mks)

(c)  Obtuse angle ROT                                    (2 Mks)

(d)  ÐPST                                                        (2 Mks)

  1. The exchange rate on March 17th 2000, was as follows: –

1 US$ = Kshs.74.75

1 French Franc (Fr) = Kshs.11.04

      A Kenyan tourist had Kshs.350,000 and decided to proceed to America

(a)  How much in dollars did he receive from his Kshs.350,000 in 4 s.f?                               (2 Mks)

(b) The tourist spend  ¼  of the amount in America and proceeded to France where he spend Fr

16,200. Calculate his balance in French Francs to 4 s.f                                                   (3 Mks)

(c) When he flies back to Kenya, the exchange rate for 1 Fr = Kshs.12.80. How much more in

Kshs. does he receive for his balance than he would have got the day he left?                 (3 Mks)

  1. On the provided grid, draw the graph of y = 5 + 2x – 3x2 in the domain -2 £ x £ 3               (4 Mks)

(a) Draw a line through points (0,2) and (1,0) and extend it to intersect with curve y = 5 + 2x – 3 x 2

read the values of x where the curve intersects with the line                                         (2 Mks)

(b)  Find the equation whose solution is the values of x in (a) above                                     (2 Mks)

  1. (a) Using a ruler and compass only, construct triangle PQR in which PQ = 3.5 cm, QR = 7 cm

and angle PQR = 300                                                                                                     (2 Mks)

(b)  Construct a circle passing through points P, Q and R                                                     (2 Mks)

(c)  Calculate the difference between area of the circle formed and triangle PQR                   (4 Mks)

  1. The given Region below (unshaded R) is defined by a set of inequalities. Determine the inequalities (8 Mks)

Y

 

4

 

 

 

2                   R              (3,3)

  

 

X

-3                           5

 

 

 

 

 

 

 

  1. The table below shows the mass of 60 women working in hotels

 

Mass (Kg) 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 85 – 89
No. of women 8 14 18 15 3 2

 

(a)   State (i)   The modal class                                                                                             (1 Mk)

(ii)  The median class                                                                                           (1 Mk)

(b)   Estimate the mean mark                                                                                                           (4 Mks)

(c)   Draw a histogram for the data                                                                                       (2 Mks)

  1. XY, YZ and XZ are tangents to the circle centre O

at points A, B, C respectively. XY = 10 cm,

YZ = 8 cm and XZ = 12 cm.                                                                                         (2 MKS)

Z

 

 

C

 

 

 

 

..                    B

X

 

A                    Y

 

 

(a)  Calculate, length XA                                                                                                    (2 Mks)

(b)  The shaded area                                                                                                                  (6 Mks)

  1. Maina bought a car at Kshs.650,000. The value depreciated annually at 15%

(a)  After how long to the nearest 1 decimal place will the value of the car be Kshs.130,000        (4 Mks)

(b)  Calculate the rate of depreciation to the nearest one decimal place which would make the value of

the  car be half of its original value in 5 years                                                              (4 Mks)

 

MATHEMATICS I

PART II

SECTION 1 (50 MARKS)

 

 

  1. Simplify 32a10   -2/5 ÷  9b4      11/2

b15             4a6                                                                                                 (2 Mks)

 

  1. Use logarithm tables to evaluate

Ö0.375 cos 75

tan 85.6                                                                                                       (4 Mks)

  1. The marked price of a shirt is Shs.600. If the shopkeeper gives a discount of 20% off the marked price, he makes a loss of 4%. What was the cost of the shirt? (3 Mks)
  2. The surface area (A) of a closed cylinder is given by A = 2pr2 + 2prh where r is radius and h is height of the cylinder. Make r the subject. (4 mks)
  3. In the circle centre O, chords AB and CD intersect at X. XD = 5 cm

      XC = 1/4 r where r is radius. AX:XO = 1:2 Calculate radius of the circle.                             (3 mks)

 

A             5cm       D

 

 

C                O

 

B

 

 

  1. Simplify     2       –        1                                                                                             (3 mks)

5 – 2Ö3     5 + 2Ö3

 

 

  1. P is partly constant and partly varies as q2. When q = 2, P = 6 and when q = 3, P = 16. Find q when P = 64                               (4 mks)
  2. The figure on the side is a tent of uniform cross-section A                           F

ABC. AC = 8m, BC = 8m, BD = 10m   and (ACB = 1200.                  8m

If a scout needs 2.5 m3 of air, how many scouts can fit                      120o C                     E

in the tent.                                                                                                            8m                   (4 mks)

B                              D

10m

  1. The length of a rectangle is given as 8 cm and its width given as 5 cm. Calculate its maximum % error in its perimeter                (3 mks)
  2. ABCD is a rectangle with AB = 6 cm, BC = 4 cm AE = DH = 4 cm BF = CG = 12 cm. Draw a

labelled net of the figure and show the dimensions of the net

  1. Expand (1 + 2x)6 to the 3rd term hence evaluate (1.04)6 (4 mks)
  2. The eye of a scout is 1.5m above a horizontal ground. He observes the top of a flag post at an

angle of elevation of 200. After walking 10m towards the bottom of the flag post, the top is observed at angle of elevation of 400. Calculate the height of the flag post                                  (4 mks)

  1. A bottle of juice contains 405ml while a similar one contains 960ml. If the base area of the

larger Container is 120 cm2. Calculate base area of the smaller container.                             (3 mks)

  1. It takes a 900m long train 2 minutes to completely overtake an 1100m long train travelling at

30km per hour. Calculate the speed of the overtaking train                                                  (3 mks)

  1. Okoth traveled 22 km in 23/4 hours. Part of the journey was at 16 km/h and the rest at 5 km/h.

Determine the distance at the faster speed                                                                           (3 mks)

  1. P and Q are points on AB such that AP:PB = 2:7 and AQ:QB = 5:4 If AB = 12 cm, find PQ

(2 Mks)

SECTION B (50 MARKS)

 

  1. The income tax in 1995 was collected as follows:

      Income in Kshs. p.a                rate of tax %

1 – 39,600                               10

39,601 – 79,200                               15

79,201 – 118,800                             25

118,801 – 158,400                           35

158,401 – 198,000                           45

      Mutua earns a salary of Kshs.8,000. He is housed by the employer and therefore 15% is added to his salary to arrive at its taxable income. He gets a tax relief of Shs.400 and pay Shs.130 service charge. Calculate his net income                                                                                    (8 Mks)

  1. The probability Kioko solves correctly the first sum in a quiz is 2/5 Solving the second correct

is 3/5 if the first is correct and it is 4/5 if the first was wrong. The chance of the third correct is

2/5 if the second was correct and it is 1/5 if the second was wrong. Find the probability that

(a)  All the three are correct                                                                                    (2 Mks)

(b)  Two out of three are correct                                                                              (3 Mks)

(c)  At least two are correct                                                                                     (3 Mks)

  1. A businessman bought pens at Shs.440. The following day he bought 3 pens at Shs.54. This

purchase reduced his average cost per pen by Sh.1.50. Calculate the number of pens bought earlier and the difference in cost of the total purchase at the two prices                                      (8 mks)

 

 

 

 

  1. In D OAB, OA = a, OB = b

OPAQ is a parallelogram.

      ON:NB = 5:-2, AP:PB = 1:3

Determine in terms of a and b vectors

(a)  OP                                                                                                                   (2 Mks)

(b)  PQ                                                                                                                   (2 Mks)

(c)  QN                                                                                                                   (2 Mks)

(d)  PN                                                                                                                   (2 mks)

 

  1. A cylindrical tank connected to a cylindrical pipe of diameter 3.5cm has water flowing at 150

cm per second. If the water flows for 10 hours a day

(a)  Calculate the volume in M3 added in 2 days                                                                   (4 ms)

(b) If the tank has a height of 8 m and it takes 15 days to fill the tank, calculate the base radius

of the tank                                                                                                                     (4 mks)

  1. A joint harambee was held for two schools that share a sponsor. School A needed Shs.15 million while

School B needed 24 million to complete their projects. The sponsor raised Shs.16.9 million while other

guest raised Shs.13.5 million.

(a) If it was decided that the sponsor’s money be shared according to the needs of the school

with the rest equally, how much does each school get                                               (5 mks)

(b) If the sponsor’s money was shared according to the schools needs while the rest was in the  ratio of

students, how much does each school get if school A has 780 students and school B 220

students                                                                                                                        (3 mks)

  1. Voltage V and resistance E of an electric current are said to be related by a law of the form

V = KEn where k and n are constants. The table below shows values of V and E

      V

0.35 0.49 0.72 0.98 1.11
E 0.45 0.61 0.89 1.17 1.35

      By drawing a suitable linear graph, determine values of k and n hence V when E = 0.75(8mks)

  1. The vertices of triangle P,Q,R are P(-3,1), Q (-1,-2), R (-2,-4)

(a)  Draw triangle PQR and its image PIQIRI of PQR under translation T =    3    on the provided grid                                                                                                                4                        (2 Mks)

(b)  Under transformation matrix m =    4  3  , PIQIRI is mapped on to PIIQIIRII. Find the

co-ordinates of PIIQIIRII and plot it   1  2    on the given grid                                          (4 Mks)

(c)  If area of D PIQIRI is 3.5 cm2, find area of the images PIIQIIRII                                        (2 Mks)

 

 

 

 

 

 

 

MATHEMATICS I

PART 1

MARKING SCHEME

 

  1. 171 X 171 X 3 X 10-5 M1

                                  855 X 531

= 2 X 10-6                                                                                     A1

  2

 

  1. No. of men = 6 X 14 X 8 X 2500 M1

                                  2 X 5 X 2240

= 75                                                                            A1

Extra men        = 75 – 6 = 69                                                                B1

 3

  1. OM = 2i + 7j + 2/5 (4i – 3j + 6i + 21j – 2i – 7j) M1

= 2i + 7j + 2/5 (8i + 11j)                                                           M1

= 26 i + 57 j

5       5                                                                               A1

  3

 

 

 

 

 

  1. 2 5       x         =      1

3  4       y                   5                                                                                    M1

 

x          -1/7   5/7       1

y    =     3/7   -2/7      5                                                                M1

 

x    =  3

y       -1

 

x, 3, y = -1                                                                                A1

 3

 

  1. Reflex ÐAOC = 126 x 2 = 2520 B1

Obtuse ÐAOC = 360 – 252 = 1080                                                               B1

= 1/2 (180 – 108)0

= 360                                                                                B1

 3

  1. 18x2 – 39x + 18 = 0

6x2 – 13x + 6 = 0                                                                                         B1Ö equation

6x2 – 9x – 4x + 6 = 0

3x(2x – 3) (3x – 2) = 0                                                                                  M1

x = 2/3  or                                                                                  A1

x =1 ½                                                                                      B1

4

 

  1. M :  K  :  O  =  4 : 2 : 3                                                                              B1Ö ratio

      Maina’s  = 4/9 X 180

= 80/-                                                                                     B1Ö Omondi’s

      Omondi’s = 60/-                                                                                          and Maina’s

      Difference = Shs.20/-                                                                                   B1 difference

3

  1. (2 + 1/2x)6 = 26 + 6(25) (1/2x + 15 (24) (1/2 x)2 M1

= 64 + 96x + 60x2                                                                     A1

2.46      = (2 + 1/2 (0.8))6

= 64 + 96 (0.8) + 60 (0.64)                                                        M1

= 179.2

@179 to 3 s.f                                                                             A1

 4

  1. P (FF) = 7/20 X 7/20

= 49/100                                                                                                            B1

P (at least one fail) = 1 – P (FI FI FI)

= 1- 13/20   3                                                      M1

= 1 – 2197                                                       M1

8000

= 5803

                                                     8000                                                                        A1

 4

 

  1. grad = term 135

= -1                                                                                                            B1

y  = mx + c

y  = -x + 5                                                                                          B1

 2

 

  1. Volume = 2 x 10,000 x 10,000 x 25 M1Ö x section area

1000                 10                                                            M1Ö conv. to litres

= 500,000 Lts                                                               A1

 3

 

  1. 10a – 6(3a – 7) = 5(a -2) M1

10a – 18a + 42 = 5a – 10

– 13a    = -52                                                                                        M1

a        = 4                                                                                           A1

 3

  1. 2a + 12d = 2

2a + 4d = -10                                                                                              M1

8d   = 12

d   = 11/2                                                                                                   A1

a   = -8                                                                                                     B1

S21  = 21/2 (-16 + 20 X 3/2)                                                                           M1

= 147                                                                                             A1

 5

 

  1. 2 p r = 120 x p x 40 M1

360

r = 6.667 cm                                                                                         A1

h =  Ö 400 – 44.44                                                                                 M1

= 18.86 cm                                                                                          A1

 4

  1. = (w (x – z) – y (x – z)) (w + z) M1Ö factor

(z – w) (z + w)

= (w – y) (x – z) (w + z)                                                             M1Ö grouping

(z – w) (z + w)

= (w – y) (x – z)

z – w                                                                                         A1

 3

 

R

250                                                                                B1Ö sketch

  1. 550

Q  125                                            PR = 4 sin 125                                              M1

Sin 25

A1

30

P                                                                                                          3

  1. (a) <RST = 1800 – 740        = 1060                                                              B1

(b) < RTQ = 900– 740           = 160                                                                B1

< PTR = 460 + 160         = 620                                                                B1

< SUT = 620 – 390         = 230                                                                B1

(c)  Reflex ÐRQT = 180 – 2 x 16

= 180 – 32 = 1480                                                                      B1

Obtuse ROT = 360 – 148 = 2120                                                                   B1

(d)  < PTS = 46 + 180 – 129 = 970                                                                      B1

< PST = 180 – (97 + 39) = 440                                                                      B1

8

(a)  Kshs.350,000 = $ 350,000                                                                           M1

74.75

= $ 4682                                                                                   A1

(b) Balance             = 3/4 x 4682

= $ 3511.5                                                                          B1

$3511.5      = Fr 3511.5 x 74.75                                                                   M1

11.04

= Fr 23780                                                                    A1

Expenditure      = Fr 16 200

Balance            = Fr 7580

(c) Value on arrival = Kshs.7580 X 12.80

= Kshs.97,024

Value on departure        = Kshs.7580 X 11.04                                                              B1 bothÖ

= Kshs.83 683.2

Difference                      = Kshs.97,024 – 83683.2                                         M1

= Kshs.13,340.80                                                   A1

 8

X -2 -1 0 1 2 3
Y -11 0 5 4 -3 -16

B1Övalues

 

y

S1Ö scale

8 —                                                                P1Ö plotting

6 —                                                                C1 Ö curve

4 —

2

 

-2 —    1            2          3                                x

-4 —

-6 —

-8 —                                                        y=2x=2

-10 —

-12 —

-14 —                                                                            x   =-0.53 + 0.1  BI

-16 —                                                                           Nx = 1.87+ 0.1

 

y = 5+2x-3x2 =2-2x                  MI for equation

3x2-4x-4x-3=0                   AI equation

8

x     = -0.53 ± 0.1                                                                     B1

mx   = 1.87 ± 0.1

 

 

y = 5 + 2x – 3x2 = 2 – 2x                               M1 Ö for equation

\ 3×2 – 4x – 3 = 0                                                         MA1 Ö equation

 8

 

 

 

 

 

 

 

 

 

20.

 

 

 

 

B1 Ö 300

 

R                                                                                                      B1 Ö 2 ^ PQ, QR

B1 Ö 2 ^ bisectors

B1 Ö circle

 

 

9                         Q

 

 

Radius = 4.2 ± 0.1                                                                                 B1Ö radius

Area of circle = 22/7 x 4.22

= 55.44 ± 3 cm2

Area of D PQR = 1/2 x 3.5 x 7.5 sin 30                                                    M1Ö D and circle

= 6.5625 cm2

Difference               = 55.44 – 6.5625                                                                 M1Ö sub

= 48.88 cm2                                                                       A1

 8

  1. Line (i) y/2 + x/5 = 1

5y + 2x = 10                                                                             B1Öequation

5y + 2x = 10                                                                             B1Ö inequality

      Line (ii)      y/4 + x/-3 = 1

3y = 4x + 12                                                                 B1Ö equation

3y < 4x + 12 or 3y – 4x < 12                                          B1Ö inequality

      Line (iii)     grad = -1/3 y inter = 4

3y + x = 12 or 3y = -x + 12                                            B1Ö equation

3y + x < 12                                                       B1Ö inequality

      Line (iv)      y – 3 = -3

x – 3      2

2y + 3x = 15                                                                 B1Ö equation

\         2y + 3x £ 15                                                                 B1Ö equation

  8

CLASS

F x Fx Cf
60 – 64

65 – 69

70 – 79

75 – 79

80 – 84

85 – 89

8

14

18

15

3

2

62

67

72

77

82

87

 496

938

1296

1155

246

174

8

28

40

55

58

60

  Sf = 60       Sfx 3809  

 

B1Ö x column

B1Ö f column

 

 

 

 

(a)  (i)  Modal class   = 70 – 74                                                                    B1Ö model class

(ii) Median class = 70 – 74                                                                    B1Ö median

 

(b)              Mean =  3809

                                         60                                                                           M1

= 63.48                                                                         A1

 

S1Ö scale

B1 Ö blocks

59.5 – 64.5

64.5 – 69.5 e.t.c.

 8

(c)

 

Histogram

 

 

 

20  —

 

 

15  —

 

 

10 – –

 

 

5  —

 

 

 

 

55    60        65        70        75        80        85        90

 

  1. (a) XA = a, YA = 10 – a, YB = 10 – a, CZ = 10 – a = ZB

YZ = 10 – a + 12 – a = 8                                                                         M1

2a = 14

a = 7 cm                                                                                 A1

Cos X = 100 + 144 – 64

240                                                                               M1Ö any angle of the D

= 0.75

X = 41.410

     1/2 X = 20.700                                                                                     A1Ö 1/2 of the angle

 

r = OA = 7tan 20.7                                                                                   B1 Ö radius

= 2.645 cm

Shaded area = 1/2 X 10 X 12 sin 41.41 – 22/7 X 2.6452                                    M1 Ö D & circle

= 39.69 – 21.99

= 17.7 cm2                                                                    A1Ö

 8

 

 

 

 

 

 

 

  1. (a) 650,000 (0.85)n = 130,000                                                         M1Ö formula

1.15n    = 0.2

n    = log 0.2                                                         M1Ö

log 0.85

1.3010

1.9294

= – 0.6990                                                        M1

– 0.0706

= 9.9 years                                                       A1

(b)  650,000 (1 – r/100) 5 = 325,000                                                                 M1

(1 – r/100) 5 = 0.5

1 – r/100     = 0.5 1/5                                                                   M1

= 0.8706

r/100 = 0.1294                                                                 A1

r    = 12.9 %                                                               B1

 8

MATHEMATICS I

PART II

MARKING SCHEME

 

SECTION I (50 MARKS)

 

 

  1. = b15      2/5    X    4a6   3/2

32a10                9b4                                                                   M1Ö reciprocal

 

 

=          2a5                                                                                           A1

27                                                                                            2

 

      No.             Log.                

0.375          1.5740 +

cos 75         1.4130

2.9870 _

tan 85.6      1.1138

3.8732 =  4 + 1.8732

2                  2

2.9366

0.0864

 

  1. S. Price =  80   X 600

100

= Shs.480                                                                         B1

Cost Price = x

96x       = 480                                                                            M1

100

x  =   Shs.500                                                                      A1

 3

  1. r2 + hr = A/2p M1

r2 + hr + (h/2)2 = A/2A + h/4                                                                            M1

(r + h/2)2 =  Ö 2A + h2

4p                                                                                        M1

r    = -h/2 ±   Ö2A + h2                                                                            A1

4p                                                                               4

 

  1. (12/3r) (1/3 r) = (1/4 r) (5) M1

4r2 – qr = 0

r(4r – q) = 0                                                                                                 M1

r = 0

or   r  = 2.25                                                                                         A1

 3

 

  1. = 2 (5 + 2Ö3) – 1 (5 – 2Ö3) M1

(5 – 2Ö3) (5 + 2Ö3)

= 10 + 4Ö3 – 5 +2Ö3                                                                                                M1

13

= 5 + 6Ö3                                                                                                    A1

13                                                                                                      3

  1. P = Kq2 + c

6 = 4k + c

16 = 9k + c                                                                                     M1 Ö subtraction

5k = 10

k = 2

c = -2                                                                                                         A1 Ö k and c

      P = 64     2q2 = 66

q  = Ö33

= ± 5.745                                                                                A1

 4

  1. Volume = 1/2 X 8 X 8 sin 120 X 10 M1 Ö area of x-section

      No. of scouts = 32 sin 60 X 10                                                         M1 Ö volume

2.5                                                                               M1

= 110.8

= 110                                                                                        A1

 3

 

  1. Max. error = 2(8.5 + 5.5) – 2(7.5 + 4.5)

2

= 2                                                                                           B1

% error = 2/26 X 100                                                                                 M1

= 7.692%                                                                                  A1

G                                                                          3

 

 

  1. B1 Ö net

 

H             D                             G                       H                                  B1 Ö dimen. FE must be 10cm

 

4cm                                                                                  4cm

 

B1 Ö labelling

E 4cm  A                        12cm      F     10cm    E                                      3

4cm                12cm

E

F

  1. (1 + 2x)6 = 1 + 6(2x) + 15 (2x)2 M1

= 1 + 12x + 60x2                                                                       A1

(1.04)6 = (1 + 2(0.02))6

= 1 + 12 (0.02) + 60(0.02)2                                                        M1

= 1.264                                                                                     A1

 4

 

 

 

 

  1. BT = 10 cm                              B1

CT = 10 sin 40                          M1

= 6.428 m                                 A1

A1 10cm    B                  C                                h = 6.428 + 1.5

1-5                                  = 7.928                                  B1

  4

 

 

  1. A.S.F = 405 2/3  =  27  2/3   =   9                                                                  B1

960           64            10

smaller area = 29  X 120                                                                        M1

164

= 67.5 cm2                                                                                A1

  3

 

  1. Relative speed = (x – 30)km/h B1

2 km     =          2 hrs

(x – 30)km/h      60                                                                             M1

2x – 60 = 120

x = 90 km/h                                                                              A1

  3

  1. 16 Km/h 5 Km/hr

x Km                          (22 – x) Km

x + 22 – x   = 11

16        5           4                                                                                    M1

5x + 352 – 16x = 220                                                                 M1Ö x-multiplication

11x  = 132

x  = 12 km                                                                  A1

  3

 

  1. AP = 2/9 x 12 = 22/3 cm B1 Ö both AP & AQ

      AQ = 5/9 x 12 = 62/3 cm

\ PQ = 62/3 – 22/3 = 4 cm                                                                            B1 Ö C.A.O

  2

 

  1. Taxable income = 115/100 x 8000 M1

= Shs.9200 p. m

= Shs.110,400 p.a                                                                   A1

Tax dues = 10/100 x 39600 + 15/100 x 39600 + 25/100 x 31200                 M1 Ö first 2 slabs

= 3960 + 5940 + 7800                                                               M1 Ö last slab

= Shs.17,700 p.a

= 1475 p.m                                                                               A1

net tax = 1475 – 400

= Shs.1075                                                                             B1 Ö net tax

Total deductions = 1075 + 130

= Shs.1205

net income = 8000 – 1205                                                                      M1

= Shs.6795                                                                   A1

  8

 

 

 

 

 

(a)  P (all correct) = 2/3 x 3/5 x 2/5                                                                  M1

= 12/125                                                              A1

(b)  P (2 correct) = 2/5 x 3/5 x 3/5 + 2/5 x 2/5 X 1/5 + 3/5 x 4/5 x 2/5

                                                                                                                        M1

= 18/125 + 4/125 + 24/125                                         M1

= 46/125                                                              A1

(c) P (at least 2 correct)

= P(2 correct or 3 correct)

= 46/125 + 12/125                                                                           M1

= 46 + 12                                                                                  M1

125

=  58

                                         125                                                                          A1

  8

  1. Old price/pen = 440

x

New price/pen = 494                                                                 B1Öboth expressions

x + 3

440494   = 1.50

x      x + 3                                                                               M1 Ö expression

440(x + 3) – 494x = 1.5x2 + 4.5x                                                M1Ö x-multiplication

x2 + 39x – 880 = 0                                                                     A1 Ö solvable quad. Eqn

x2 + 55x – 16x – 880 = 0                                                 M1 Ö factors or equivalent

(x – 16) (x + 55) = 0

x = -55

or x = 16                                                                                   A1 Ö both values

\ x = 16

difference in purchase = 19 X 1.50                                                        M1

= Shs.28.50                                                           A1

  8

  1. (a) OP = a + 1/4 (b – a) M1

= 3/4 a + 1/4 b                                                                            A1

(b)  PQ = PO + OQ

= –3/4 a – 1/4 b + 1/4 (a – b)                                                          M1

= –1/2 a – 1/2 b                                                                           A1

(c)  QN = QO + ON

= 1/4 (b – a) + 5/3 b                                                              M1

= 23/12 b – 1/4 a                                                                    A1

(d)  PN = PB + BN

= 3/4 (b – a) + 2/3 b                                                               M1

= 17/12 b – 3/4 a                                                                     A1

  8

  1. (a) Volume in 2 days = 22 x 3.5 x 3.5 x 150 x 20 x 3600 M1 Ö area of x-section

7       2        2           1,000,000                                 M1 Ö volume in cm3

= 103.95 m3                                                                  M1 Ö volume in m3

(b)  22 X r2 x 8 = 103.95 x 15   x 7                                                               M1

7                               2

 

r2 = 103.95 x 15 x 7                                                                   M1

                                  2 x 2 2x 8

= 31.01                                                                                     M1

r = 5.568 m                                                                               A1

  8

  1. (a) Ration of needs for A:B = 5:8

A’s share = 5/13 x 16.9 + 1/2 x 13.5                                                          M1

= 13.25 Million                                                                         A1

B’s share = (13.5 + 16.9) – 13.25                                                                        M1

= 13.25                                                                                     M1

  • A’s share 5/13 x 16.9 + 39/50 x 13.5

6.5 + 10.53

= 17.03 m                                                                                 A1

B’s share = 30.4 – 17.03                                                                         M1

= 13.37 Million                                                                         A1

  8

  1. Log V = n Log E = log k
Log V -0.46 -0.13 -0.14 -0.01 0.05
Log E -0.35 -0.21 -0.05 0.07 0.13

B1Ö log V all points

B1Ö log E all points

S1 Ö scale

P1Ö plotting

Log V = n log E + log K                                    L1 Ö line

                                                Log K = 0.08

K = 1.2 ± 0.01                                                  B1 Ö K

N = 0.06/0.06                                                        B1 Ö n

= 1 ± 0.1

\ v = 1.2E                                                       B1Ö v

when E = 0.75, V = 0.9 ± 0.1                            8

  1. (a) T 3 PQR ® PIQIRI

4    PI (0,5), QI (2,2) RI (1,0)

PI QI RI       PII  QII  RII

(b)  4  3    0   2   1   =   15    14   4                                                              M1 Ö

1  2     5   2   0        10     6    1                                                             A1 Ö

 

PII (15,10), QII (14,6), RII (4,1)                                                               B1Ö

(c)  Area s.f = det M

= 5

 

area of PII QII RII = 5 (area PIQIRI)

= 5 X 3.5                                                          M1Ö

= 16.5 cm2                                                        A1

  8

 

 

 

MATHEMATICS 2

PART I

 

SECTION A: 

 

  1. Use logarithm tables to evaluate                      (4 mks)

 

0.0368 x 43.92

361.8

 

  1. Solve for x by completing the square                           (3mks)

2x2  – 5x + 1 = 0

 

  1. Shs. 6000 is deposited at compound interest rate of 13%. The same amount is deposited at 15% simple interest. Find which amount is more and by how much after 2 years in the bank       (3mks)

 

  1. The cost of 3 plates and 4 cups is Shs. 380. 4 plates and 5 cups cost Shs. 110 more than this. Find the cost of each item.                                                                                                        (3mks)

 

  1. A glass of juice of 200 ml content is such that the ratio of undiluted juice to water is 1: 7 Find how many diluted glasses can be made from a container with 3 litres undiluted juice       (3mks)

 

  1. Find the value of θ within θ  < θ < 360if  Cos (2 θ + 120) =  γ3                                                     (3mks)

2

 

  1. A quantity P varies inversely as Q2 Given that P = 4 When Q = 2.  , write the equation joining P and  Q

hence find P when Q = 4                                         a                                                                      (3mks)

 

  1. A rectangle measures 3.6 cm by 2.8 cm. Find the percentage error in calculating its perimeter.                                                                                                                                                 (3mks)

 

  1. Evaluate:          11/6   x  ¾  –  11/12                                                                                              (3mks)

½  of 5/6

 

  1. A metal rod, cylindrical in shape has a radius of 4 cm and length of 14 cm. It is melted down and recast into small cubes of 2 cm length. Find how many such cubes are obtained          ( 3mks)

 

  1. A regular octagon has sides of 8 cm. Calculate its area to 3 s.f.             (4mks)

 

  1. Find the values of x and  y if                                                                                                       ( 2 mks)

3          x          1   =     2

2          1          -1         y

 

  1. An equation of a circle is given by x2 + y2 – 6x + 8y – 11 = 0       (3mks)

Find its centre and radius

 

 

 

 

 

 

  1. In the figure given AB is parallel to DE. Find the value of x and y

 

 

 

 

 

 

 

 

  1. A line pass through A (4,3) and B(8,13). Find                                                  (6 mks)

(i)  Gradient of the line

(ii)  The magnitude of AB

(iii) The equation of the perpendicular bisector of AB.

 

  1. A train is moving towards a town with a velocity of 10 m/s. It gains speed and the velocity becomes 34 m/s after 10 minutes . Find its acceleration (2mks)

 

 

SECTION B:

 

  1. Construct without using a protractor the triangle ABC so that BC=10cm, angle ABC = 600 and

BCA = 450

  1. On the diagram , measure length of AC
  2. Draw the circumference of triangle ABC
  3. Construct the locus of a set of points which are equidistant from A and B.
  4. Hence mark a point P such that APB = 450 and AP = PB
  5. Mark a point Q such that angle AQB = 450 and AB = AQ

 

  1. (a) A quadrilateral ABCD has vertices A(0,2) , B(4,0) , C(6,4) and D(2,3). This is given a

transformation by the matrix   -2  0  to obtain its image AI B I CI DI. under a second transformation

0 – 2

which has a rotation centre (0,0) through –900 , the image AII  BII  CII  DII  of AI  BI  CI  DI  is

obtained.    Plot the three figures on a cartesian plane                                                         (6mks)

(b)  Find  the  matrix of  transformation  that  maps  the  triangle  ABC  where A (2,2)   B (3,4)   C (5,2)

onto  A B C   where  A( 6,10)  B  (10,19 )  C ( 12, 13).                                                    ( 2mks)

 

 

 

 

19.

 

 

 

 

 

 

In the triangle OAB, OA = 3a , OB = 4b and OC = 5/3 OA.  M divides OB in the ratio 5:3

  1. Express AB and MC in terms of a and b
  2. By writing MN in two ways, find the ratio in which N divides
  3. AB
  4. MC

 

 

 

 

 

 

  1. In the figure below, SP = 13.2 cm, PQ = 12 cm, angle PSR = 80O and angle PQR = 900. S and Q are the centres       (8mks)

 

Calculate:

The area of the intersection of the two circles

The area of the quadrilateral  S P Q R

The area of the shaded region

 

 

 

 

 

 

 

 

 

 

 

  1. In an experiment the two quantities x and y were observed and results tabled as below
X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28

 

  1. By  plotting  1/y  against x, confirm that y is related to x by an equation of the form

 

Y =      q

 

 

P + x

where p and q are constants.                                                                             (3mks)

 

(b)  Use your graph to determine p and q                                                                                   (3mks)

 

(c )  Estimate the value of   (i) y when x = 14

(ii) x when y = 0.46                                                             (2mks)

 

  1. A racing cyclist completes the uphill section of a mountain course of 75 km at an average speed of v km/hr. He then returns downhill along the same route at an average speed of (v + 20) km/hr. Given that the difference between the times is one hour, form and solve an equation in v.

Hence

  1. Find the times taken to complete the uphill and downhill sections of the course.
  2. Calculate the cyclists average speed over the 150km.

 

  1. In the diagram below, X is the point of intersection of the chords AC and BD of a circle. AX = 8 cm, XC = 4cm and XD = 6 cm
  2. Find the length of XB as a fraction
  3. Show that XAD is similar to XBC
  4. Given that the area of AXD = 6cm2, find the area of BXC
  5. Find the value of the ratio

Area of       AXB

Area of        DXC

 

 

 

 

 

 

 

  1. A town B is 55 km on a bearing of 0500. A third town C lies 75km due south of B. Given that D lies on a bearing of 2550 from C and 1700 from A, make an accurate scale drawing to show the positions of the four towns.                                                                                           (3mks)

(scale 1cm rep 10 km)

From this find,

(a) The distance of AD and DC in km                                                                     (2mks)

(b) The distance and bearing of B from D                                                               (2mks)

(c)  The bearing of  C from A                                                                                 (1mk)

 

MATHEMATICS 2

PART 1

MARKING SCHEME             (100MKS)

 

 

  1. No. Log

=   3.6502

0.3681              2.5660

0.3682              1.6427 +                                -4  =  1.6502      = 2.8251

0.2087              Logs                            2

361.8                2.5585              + – v   ans  (4)         6.6850 x 10 -2

3.6502                                         = 0.06685

 

  1. 2 x2 – 5x + 1 = 0

x2 5 x + ½ = 0

2

x25 x   = ½

2

x – 5x  +     5 2    =  ½   +     5    (m)

2         4                        4

 

= x –  5    = ½ +      25    =  17                    (3)

4                   16        16

 

= x – 5/4  =  17/16   =    1.0625

x – 5/4    ±  1.031

X1 = -1.031 = 1.25 = 0.2192

X2 = 1.031  + 1.25  = 1.281

 

  1. A1 = P(1 + R/100)2 = 6000  x  113/100 x 113/100 = Sh. 7661.40

 

A2 = P + PRT/100         =   6000 + 15 X 2 = 6000 + 1800

100

=   Shs. 7800

 

Amount by simple interest is more by Shs.  (7800 – 7661. 40)

Shs. 138.60

  1.   Let a plate be p and a cup c.

3p + 4c = 380  x 5             15p + 20c  = 1900

4p + 5c  = 490  x 4       16p + 20c  = 1960 

-p      -60                (m)

 

 

 

 

 

p = Shs 60

 

3(60) + 4 c = 380

4c = 380 –180 = 2000                (3)

c=   Shs. 50

Plate = Shs. 60 ,            Cup = Shs. 50            (A both)

 

  1. Ratio of juice to water = 1          :           7

In 1 glass = 1/8 x 200 = Sh 25

3 litres = 300 ml (undiluted concentrate)           (3)

No. of glasses =v    3000  =  120 glasses

25

 

  1. Cos (2 θ + 120) = 3/2 = 0.866

Cos 30 , 330, 390, 690, 750 ….

            2 θ + 120                = 330

2 θ = 210          ,     = 1050                                                                                        (3)

2 θ = 390 – 120   = 2700          θ2 1350

2 θ =  690 – 120  = 5700  ,       θ3 2850       (for 4 ans)

θ4= 315o    ( for >2)

2 θ =  750 – 120   = 6300 ,

 

  1. P =          k                      4  =  K/4           (substitution)

Q2                         9

K = 4 X 4         =            16

9                           9

P =  16   v         when Q = 4

9Q2

 

P =         16        =   1/9              (A)                 (3)

9x4x4

 

  1. The perimeter = (3.6 + 2.8 ) x 2 = 12.8 cm

Max perimeter = (3.65 + 2.85) x 2 = 23 cm    Expressions

% error =   13 –12.8     x  100    m         =     0.2        x     100  (3)

12.8                                     12.8

= 1.5620%        (A)

 

  1.      1 1/6 x ¾  – 11/12   = (7/6 x ¾ )  -11/12         =  7/8 – 11/12   =   21-22  

½  of 5/6                       ½ of 5/6                        5/12              5/12

= -1/24    = -1  x 12    =  -1

5/12        24   5          10       (3)

 

  1. Volume of rod = П r2h = 22/7 x 4  x 14 = 704cm3                (m)

                    Volume of each cube = 2x2x2 = 8 cm3                         A

 

No. of cubes = 704 /8  = 88 cm3   A

 

 

 

 

 

 

 

 

 

  1. < AOB = 360 = 450

                          8

Tan 67.5 =  h

4

h = 4 x 2.414                A

=  9.650cm

Area of 1 triangle = ½ x 8 x 9.656 x 8 cm = 38.628 x 8   vm

Octagon area  =  38.628 x 8      m

=  309.0 cm2        (A)

 

  1. 3   2        -1             2

=

2              1          -1           y

 

3 – x = 2       (1)       x = 1                          (2)

2 –  1 = y                 y = 1  (A)

 

  1. x 2 + y2 – 6x + 8y – 11 = 0

x2 – 6x + (-3)2 + y2 + 8y + (4)2 = 11 + (-3)2 + (4)2         (completing the square)

(x – 3)2 + (y+4)2 = 11 + 9 + 16 = 36

(x – 3)2 + (y + 4)2 = 62                                                                                          

Centre is  (3, -4)

Radius       = 6 units           As                                            (3)

 

 

14.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs A C B  and D C E are similar

AB       =          AC       =  and   AB       =          BC

                         DE                    DC                 DE                   CE

 

10    =  6 + x

3          6

= 10   =  15 + y,     m

3            y                                                    60 = 18 + 3x

10y  = 15 + 3y                                                   3x = 42

7y = 15                                                                x = 14

 

y = 15/7              (A)                                                                             (3)

A (4 , 3)           B(8,13)

 

  1. (i) gdt          = change in y    = 13-3 = 10     =  5

change in x       8-4       4          2

 

(ii)      Mag  AB  =  8     -4           4                                                    =

13 -3         10

Length =   Ö42 + 10   = Ö116 = 10.77 units

(iii)   Mid point  = 4 +8  ,    3 + 3

2             2

=  (6, 8)    (mid point)                                                (5 mks)

gdt of perpendicular to AB = -ve rec. of 5/2

-2/5

Eqn is  y = -2/5 x + c

8 = -2/5  x 6 + c    =  40  = -12  +  5c

= c = 52/5

 

y = -2/5 x + 52/5        (A)

 

 

  1. Acceleration = Change in velocity

Time

= (34 – 10) m/s                  = 24 m/s

60 x 10                                600

 

= 0.04m/s2-                                (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Triangle                                    (8)

AC = 9cm

Circumference Centre

Circle

Perpendicular bisector of AB

P

Q

 

 

 

  1. (b) a b   2       3          5        6          10        12

c          d   2       4          2        10        19        13

 

2a +2b = 6  x 2       = 49 + 4b = 12

3a + 4b = 10             3a + 4b = 10

a     = 2              4 + 2b = b

 

2c + 2d = 10×2 = 4c + 4d = 20                2 b = 2  b = 1

3c + 4d  = 19        3c + 4d  = 19

c           = 1

2 (1)  + 2d = 10

2d = 8                           Matrix is           2          1      (A)

d = 4                                                  1          4

 

 

 

 

 

OC = 5/3 (31) = 5A

 

19.

 

 

(a)  = AO + OB                         MC = MO + OC

= -3a  = 4b                         = -5/8 (4b) + 5

= 5A – 5/2 b

 

(b) MN = 5 Mc     = 3(5a – 5/2 b)

= 5 s a – 5/2 s b

 

MN = BN + BN

=  3/8 (4 b) + (1 – t) (-BA)

=  3/8 (4 b) + (1 – t)(3a – 4 b)

=  3/2  b + 3 ta –4b + 4tb

= (3-3t) a (4t – 5/2)b

 

MN = MN

= 5 s a – 5/2  sb = (3-3t)a +   (4t – 5/2 )b

=  5 a =  3 – 3t       = 5s + 3t =3

= -5/2 s = 4t –5/2  v     5s + 8t = 5 

-5t = -2            t = 2/5

5 s   = 3 – 3(2/5)

= 3 – 6/5 = 9/5

= 3 – 6/5 = 9/5

s = 9/25

 

(i)    AN :     NB = 2 : 3

 

(ii)   MN :    9   :  16

 

 

 

 

 

 

 

 

20.

 

 

θ x pr2

360

 

  1. Area of sector SPR =  80/360 x 13.2 x 13.2 x 3.142

=  121.6

Area of triangle SPR ½ x 13.2  x 13.2 x sin 80

= 85.8 cm2

(m of area of ) A (at least one)

(m of area)  A(at least one)

Area of segment = 121.6 – 85.8

= 35.8 cm2

Area of sector QPR = 90/360 x 3.142 x 12 x12

 

Area of  PQR = ½ x 12 x 12 = 722

                    Area of segment = 113.1 – 72

= 41.1cm2

Area of intersection = (35.8 + 41.1) = 76.9 cm2

 

b).  Area of quadrilateral  = Area of   PQR + SPR

=  85.8 + 72 = 157.8cm2

Area of shaded region  =  Area of Quadrilateral – Area of sector SPR

=  157.8 – 121.6

=  36.2 cm2

 

 

  1. y = q                   p + x = q                       1  =  x + p

p + x                          y                      y      q    q

 

Gradient  = 1/q   at (0, 0.95)  (8,2.0)  (8,2.0)  gradient   =  2.0 – 0.95  =  1.05

8                 8

1          =  0.1312

q

=  1      =  7.619

0.1312

q =  7.62.

 

y(1/y)  Intercept   p    =  0.95     P   =  0.95

q                7.62

 

p = 7.62 x 095  =  7.27

at x =  14,  y = 2.7

at  y = 0.46,  1/y  =  2.174

x  =  9.6.

 

 

 

 

 

 

  1. a) Distance  =  75km   uphill speed  =  vkm/h

uphill Time  =  75/v hrs

Downhill speed  = ( + 20)  km/h

Downhill Time    =        75         hrs.

                                             v + 20

Takes larger uphill

75  –  75             =  1

v         v+20

75 (v+20) – 75v            = 1

v(v + 20)                    1

75v + 1500 – 75v  =  v(v + 20)  =  v2 + 20v.

v2 + 20v  – 1500  =  0

v  =  – 20 +  202 – 4(1)  (-1500)

2(1)

v  =  –20 +  400 + 6000  = –20 + v6400

2                        2.

V1     =  –20  +  80      =  30km/hr

2

V2    =   – 20 – 80      X   impossible

2

speed uphill      =  30 km /hr,  T = 75  time =  2 ½ hrs

30

speed downhill =  50 km /hr  Time = 75      Time =  2 ½ hr

50

Average speed   =  Total  distance         =  150km          =  37.5 km/ hr

                                                Total time                      4hrs

 

X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28
1/y 1.0 1.56 2.0 2.38 2.94 3.57

 

 

  1. A                 B

 

 

 

 

D                      C

 

A x X x C  =  BX .  XD

8 x 4           =  6BX

BX       =  8 x 142          =   16  

6                     3

X AD   =  XBC

XA       =  8    =  24      =  3

XB        16        16          2

XD      =    6      =    3

XC               4              2

 

<   AXD   =   BXC            (vertically opposite  <s))

                                                    SAS holds  :  they are similar.

LSF  =   3/2    ASF  =  (3/2)2  =  9/4

Area  A x A  =  6cm2    Area  B x C  =  6 x 9       =  27   =  13.5cm2

4

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. a) AD =   50km

DC   =   35km

BD  = 90km

Bearing is 020

Bearing is 134o                                                                                                       (8mks)

 

 

MATHEMATICS  I

PART II

 

SECTION (52 MARKS)

 

  1. Without using tables, simplify

1.43 x 0.091 x 5.04

2.86 x 2.8 x 11.7                                                                                             (3mks)

 

  1. Make x the subject of the formula if

y = a/x  +  bx                                                                                                    (3mks)

 

  1. Give the combined solution for the range of x values satisfying the inequality

2x + 1<  10 – x  <   6x – 1                                                                                 (3mks)

 

  1. A man is employed at a KShs. 4000 salary and a 10% annual increment. Find the total amount of money received in the first five years                                                                   (4mks)

 

  1. A town A is 56 km from B on a bearing 0620.  A third town C is 64 km from B on the bearing of 140o.  Find

(i) The distance of A to C                                                                                        (2mks)

(ii) The bearing of A from C                                                                                          (3mks)

 

  1. Expand (x + y)6 hence evaluate (1.02) to 3d.p.                                                         (3mks)

 

  1. Rationalise the denominator in                                                                               (2mks)

 

Ö 3

1 – v3

 

 

 

  1. The table below shows daily sales of sodas in a canteen for 10 days.

 

 Day 1 2 3 4 5 6 7 8 9 10
No. of 52 41 43 48 40 38 36 40 44 45

 

Calculate the 4 day moving averages for the data                                                     (3mks)

 

  1. Find the image of the line y = 3x = 4 under the transformation whose matrix is.

3mks

2           1

-1         2

 

  1. Three points are such that A (4 , 8), B(8,7), C (16, 5). Show that the three points are collinear                                                                                                                                          (3mks)
  2. Write down the inverse of the matrix 2 – 3 hence solve for x and y if

4     3

2x  – 3y = 7

4x + 3y +5                                                                                                        (3mks)

 

  1. Use the table reciprocals to evaluate to 3 s.f. 3mks

1/7  +  3/12  +  7/0.103

 

 

 

 

 

 

 

Given that O is the centre of the circle and OA is parallel to CB, and that angle

ABC =   1070,  find

(i) Angles AOC,                (ii) OCB               (iii) OAB                                                 (3mks)

  1. Two points A and B are 1000m apart on level ground, a fixed distance from the foot of a hill. If the angles of elevation of the hill top from A and B are 60o and 30o respectively, find the height of the hill                                                                                           (4 mks)
  2. Two matatus on a dual carriageway are moving towards a bus stop and are on level 5 km from the stop. One is travelling 20 km/hr faster than the other, and arrives 30 seconds earlier. Calculate their speeds.       (5mks)
  3. If log x = a and log y = b, express in terms of a and b

Log  x 3 

VY                                                                                                             (2mks)

 

SECTION B:

 

  1. The table below gives the performance of students in a test in percentage score.
Marks 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of Students  

2

 

4

 

7

 

19

 

26

 

15

 

12

 

5

 

Using an assumed mean of 44.5, calculate

  1. The mean
  2. The standard deviation
  3. Find the median mark

 

 

 

  1. Draw the graph of y = 2x2 – x – 4 for the range of x -3  = x  =  3.  From your  graph

State the minimum co-ordinates

  1. Solve the equations
  2. 2x2 – x – 4 = 0
  3. 2x2 – 3x – 4 = 0

 

 

 

 

 

 

  1. Two concentric circles are such that the larger one has a radius of 6cm and the smaller one radius of 4 cm. Find the probability that an item dropped lands on the shaded region           4mks

 

  1. Two unbiased dice are thrown. Find the probability of obtaining (4mks)
  2. A product of 6
  3. A sum of 8

iii. The same number showing                                                                             (4mks)

 

 

 

 

 

 

 

 

 

 

Two pulley wheels centers A and B are joined by a rubber band C D E F G H C round them.  Given that larger wheel has radius of 12 cm and AB = 20 cm, CD and GF are tangents  common to  both  wheels and that CBA = 60o), Find

  1. BD (Length)
  2. CD

iii.  Arc length CHG and DEF, hence find the length of the rubber.

 

  1. V A B C D is a right pyramid with a square base A B C D of side 5 cm. Each of its four triangular

faces is inclined at 750 to the base. Calculate

  1. The perpendicular height of the pyramid
  2. The length of the slant edge VA
  3. The angle between edge VA and base A B C D
  4. The area of the face VAB

 

  1. Plot the graphs of y = sin xo and y = cos 2xo on the same axes for –180 £ x £180o.

Use your graphs to solve the equation 2 sin x = cos  2x

 

  1. The depth of the water in a rectangular swimming pool increases uniformly from 1M at the shallow

end to 3.5m at the deep end.  The pool is  25m long  and  12m  wide. Calculate the volume of the pool

in cubic meters.

The pool is emptied by a cylindrical pipe of internal radius 9cm. The water flows through the pipe at speed of 3 metres per second.  Calculate the number of litres emptied from the pool in two minutes to the nearest 10 litres.          (Take II = 3.142)

 

 

 

  1. A rectangle A B C D is such that A and C lie on the line y = 3x. The images of B and D under a

reflection in the line y = x are B1 (-1, -3) and D1 (1,3) respectively.

  1. Draw on a cartesian plane, the line y = x  and mark points B1 and D1
  2. Mark the points B and D before reflection
  3. Draw the line y = 3x hence mark the points A and C to complete and draw the rectangle ABCD.

State its co-ordinates, and these of A1 and C1.

  1. Find the image of D under a rotation, through – 900, Center the origin.

 

 

MATHEMATICS I

PART II

MARKING SCHEME.

  1. 1.43 X 0.091 X 5.04100000        91 X 504           =        7/103

                        2.86 X 2.8 X 11.7             105             2 x 28 x 117 x 103

                                                                                                                                                                                    (3)

                                                                                                                         = 0.007            (A)

  1. y = a/x + bx yx = a + bx2

Either

bx2 – yx + a = 0

 

x =     y   ±   v y2 –  4ab

2b                                                         (3)

 

  1. 2x + 1£  10 – x  £    bx  -1

2x + 1 £ 10 – x            10 –x £  6x –1

3x £   9                                    11£   7x

x  £  3                               x   £ 11/7                                                             (3)

11/7 £  x   £   3

 

  1. a = 4000 r = 110/100   =      1.1   ( 4000, 4000 + 4000, 4400 + 0/100 (4400——)

(a and r)

Sn  =  a(r n – 1)       

                                    R  -1                                                     1.1 Log  = 0.04139

     X   5

0.20695

 

0.1                               (4)

= 4000 (1.15 –1)   (any)

1.1 –1                                                   4000 (1.6 – 1)

0.1

A  =  4000 ( 0.6105)

0.1

= Sh. 2442       =    Sh. 24,420       (A)                                       (4)

0.1

 

  1. (i) b2=  a2 + b2 – 2ab Cos B

= 642  + 562– 2(64) (56) cos 78

= 4096 + 3136  – 7168 (0.2079)

= 7232  – km 1490.3

 

b2  = 5741.7  = 5.77 km                  (5)

 

(ii)        b                a

            Sin B          Sin A

 

75.77    =      64

Sin 78         sin A         Sin A = 64 x 0.9781     

75.77                   

Sin A = 0.08262

A  = 55.70  (or B = 46.30)

 

Bearing = 90 – 28 – 55.7

= 0.06.30                       (A)

 

  1. (x + y) 6 =  1 (x) 6 (y)0 + 6 (x)5 (y)1+15(x)4 (y)2 + 20x3y3 + 15x2y4 + 6xy5 + y6

(1.02)6 = (1 +0.02)6 x = 1

y = 0.02

 

(1.02)6 = 1+6 (0.02) + 15 (0.02)2 + 15(0.02) + 20(0.02)3 + 15 (0.02)4                          

=  1 + 0.12  + 0.006 + 0.00016

= 1.12616

= 1.126  (to 3 d.p)                                                                                 (3)

 

  1.       3(1 +  3)                 =  3  +  3          3 + v3

(1-  3)(1+  3)                     1-3                          2

 

  1. Moving averages of order 4

M1        =  52 + 41 + 43 + 48                  184       = 146

4                                   4

M2            184 – 52 + 40   = 172  = 43                               for 7

4                 4                                   for > 4

M3             = 172– 40 + 38 = 170    = 42.5

4                     4

M4             170 – 38+36  = 168   = 42

4                  4

M5        = 168 – 36 + 40 = 173    = 43                (3)

4                4

M6             = 172 – 40 + 44 = 176    = 44

4              4

M7             = 176 – 44 + 45 = 177    = 44.25

4             4

 

  1. y = 3x + 4

A(0,4) B (1,7) Object points

                                                A         B          A         B

2          1          0          1          4          9

=

-1         2          4          7          8          13

Y =  Mx + C

M = 13 – 8  =  5  = 1

9-4                  5     1

 

y = x+c                                  y = x + 4

8 = 4 + c    c  = 4

 

  1. AB = 8     -4                        4                      BC =   16      – 8                        -8     for either

=

7     -8                      -1                                  5        – 7             -2

 

 

AB = ½   BC  and AB and BC share point B.

A,B,C  are collinear.                                                                (3)

 

  1. 2          -3

 

4          3          det. = 6 + 12 = 18

Inv.=     1         3          3

18

-4         2

1         3      3     2     -3   x       1           3   3       7

18                                            18

-4    2      4       2  y                     -4  2       5

x                       36

1

y          18        -18                    (3)

x = 2, y = -1      (A)

 

  1. 1/7 + 3/12.4 + 7/0.103

1/7 + 3/1.24 x 10-1 + 7/1.03 x 10-1

 

  0.1429 + 3(0.8064) + 7 x 10 (0.9709)

10

= 0.1429 + 0.2419 + 67.96                                 (3)

=70.52                             (A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. (i) ADC = 2×73

= 1460

 

(ii) OCB = x = 180 – 146 = 34

(iii) 360 – 107 – 146 – 34

= 73 0

 

  1. Tan 300 = y/x y  =  x tan  30

Tan 600  = 1000 + y       ;     y = x tan 60 – 1000

X

X tan 300  = x tan 60 – 1000

0.5773 x = 1.732x – 1000

1.732x – 0.577 = 1000

1.155x = 1000

x = 1000

1.155           = 866.0 m         (A)                   (4)

 

 

  1. 5 km Slower speed = x km/hr

Time    = 5/x

Faster = (x+20) k/h

Time = 5/x=20            T1 – T2 = 5/x  – 5/x+20 = 30/3600

5 (x+20) –5x       1

x(x+20) 120

120 (5/x + 100 – 5x) = x2 + 20x             (5)

x2 + 20x – 12000

x = –20      400 + 48000

2

x = -20 ±  220

2

Spd = 100 km/h

And x = 120 km/h                                 (A)

  1. Log x = a log y = b

Log  x3  = Log x3  –  log y ½

y

= 3 Log x – ½ Log y

= 8a –  ½ ab

 

SECTION B

 

17.

Marks Mid point (x) d = x-44.5 F E = d/10 Ft T2 Ft2   v
0-9 4.5 -40 2 -4 -8 16 32
10-19 14.5 -30 4 -3 -12 9 36
20-29 24.5 -20 7 -2 -14 4 28
30-39 34.5 -10 19 -1 -19 1 19
40-49 44.5 -0 26 0 0 0 0
50-59 54.5 -10 15 1 15 1 15
60-69 64.5 20 12 2 24 4 48
70-79 74.5 30 5 3 15 9 45

=90                              =1                                =223

 

 

(a)   Mean = (1 / 90 x 10) + 44.5 = 44.5 + 0.111

= 44.610

 

(b)   Standard deviation = 10  233/90  – (1/90)2                        

                                                            10  2.478  – 0.0001                              (8)

10   2.478

10 x 1.574  = 15. 74    (A)

(c)    Median 45.5th value  = 39.5  + (13.5 x 10/ 26)

39.5 + 5.192                 (A)

44.69

 

(a)     The probability  = Shaded area

                                     Large circle area

Shaded area = ПR2 – П r2

= 22/7 (42 – 32) v  = 22/7 x 7  = 22

            Large area  = 22/7 x4x4 = 352/7 (A)

Probability = 22         = 22  x  7 =    7

352/7            352      16

 

(b)

  1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6

(M)

 

(i)    P(Product of 6) = P((1,6) or (2,3) or (3,2) or (6,1))

= 4/36   =  1/9

(4)

(ii)   P (sum of 8)   = P( (2,6) or (3,5) or (4,4) or (5,3) or (6,2) )

= 5/36               (A)

 

(iii)  P (same number)  = P (1,1) or (2,2) or (3,3) or (4,4) or (5,5) or (6,6)

6/36  = 1/6   (A)

 

 

 

 

 

 

 

 

 

 

(i)         Cos 60   = x/20 x = 20 x 0.5  = 10 cm

BD = 12 – 10 = 2 cm

 

(ii)          CD = y  Sin 60  = y/20                        y = 20x 0.8666

CD = 17.32 cm

 

 

 

 

(iii)        CHG  = 120        reflex  = 2400

CHG = 240/360 x 2 x p x r

= 50.27

DBF = 1200/360  x 2 x  П x  r  =  1/3 x 2 x 3.142 x 2

=  4.189                               (A)

Length C D E f G H C  =          50.27 + 2(17.32) + 4.189

= 89.189                     (A)

 

  1. (a) From the diagram, XO = 5/2 = 2.5

Tan 750 = VO/2.5          v m

VO  =  2.5 x 3.732

 

Perpendicular height  = VO  = 9.33 cm

2                      (A)

  1. Diagonal of base = 52 + 52  = 50
        Length of diag.   50       = 7.071    = 5.536

VA2 = AO2 + VO2     (m)

3.5362  + 9.32

12.50 + 87.05

= 99.55 = 9.98 cm2        (A)                  (8)

 

 

(c )                   = VAO  Tan =      9.33     = 2.639

3.536

VAO = 69.240                                                (A)

 

 

(d)                    Cos VBA = = 2.5 /9.98   = 0.2505

VBA = 75.490

Area VBA = ½  x 5  x 4.99 x sin 75.45             m  ( or other perimeter)

= 5 x 4.99 x   0.9681

= 24.15 cm2                  (A)

 

  1. Volume = cross – section Area x L

X-sec Area = (1 x 25)  +  (½  x 25 x 2.5)

=  25 + 31.25  =  56. M

Volume  = 56.25 x 12

= 675 m3                               

            Volume passed / sec  = cross section area x speed

= П r2 x l           = 3.14  x  9/100 x  9/100  x 3                 (8)

= 0.07635  m3 /sec         v (M)

Volume emptied in 2 minutes

= 0.07635 x 60 x 2

= 9.162 m2                (A)

1 m3  = 1000 l

= 9.162 litres

= 9160 litres                 (A)

 

 

 

 

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICS II

PART I

 

SECTION A (52 MARKS)

 

  1. Use tables to evaluate

3Ö 0.09122 + Ö 3.152                                                           (5mks)

0.1279 x 25.71

  1. Simplify  (a – b)2

a2 – b2                                                             (2mks)

 

 

  1. The gradient function of a curve that passes through point: (-1, -1) is 2x + 3.

Find the equation of the curve.                                                                               (3mks)

  1. Find the value of k for which the matrix k     3

has no inverse.   (2mks)                            3     k

  1. Without using tables, evaluate       log 128 – log 18

log 16 – log 6                                                          (3mks)

  1. Find the equation of the locus of points equidistant from point L(6,0) and N(-8,4). (3mks)
  2. The value of a machine is shs. 415,000. The machine depreciates at a rate of 15% p.a. Find how many years it will take for the value of the machine to be half of the original value. (4mks)
  3. Use reciprocal tables to evaluate to 3 d.p. 2             1   

0.321           n2.2                                          (4mks)

  1. Using the trapezium rule, estimate the area bounded by the curve y = x2, the x – axis and the co-ordinates x = 2 and x = 5 using six strips. (4mks)
  2. Solve the equation for 00 £ q £ 3600 and Cos2q + ½ Cosq = 0 (3mks)
  3. Point P divides line MK in the ratio 4:5. Find the co-ordinates of point P if K is point (-6,10) and M is

point (3,-8)                                                                                                                          (3mks)

  1. How many multiples of 3 are there between 28 and 300 inclusive. (3mks)
  2. The line y = mx – 1, where m is a constant , passes through point (3,1). Find the angle the line makes with the x – axis. (3mks)
  3. In the figure below, AF is a tangent to the circle at point A. Given that FK = 3cm, AX = 3cm, KX = 1.5cm and AF = 5cm, find CX and XN. (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Make X the subject of the formula (3mks)

V = 3Ö k + x

sk – x

 

 

 

 

 

 

 

 

  1. Write down the inequalities that describe the unshaded region below. (4mks)

y

 

 

0.5         2                   x

 

-1.5

-2

 

      SECTION B (48 MARKS)

     

  1. Draw the graph of y = -x2 + 3x + 2 for –4 £ x £ 4. Use your graph to solve the equations

(i.) 3x + 2 – x2 = 0               (ii) –x2 – x = -2                                                       (8mks)

 

  1. The marks obtained by Form 4 students in Examination were as follows:

 

 

Marks 0-9 10-19 20-29 30-39 40-49 50-59
No. of students 2 8 6 7 8 10
Marks 60-69 70-79 80-89 90-99  
No. of Students 9 6 3    

      Using 74.5 as the Assumed mean, calculate:

(i) The mean mark

(ii) The standard deviation                                                                                      (8mks)

  1. In the figure below, a and b are the position vectors of points A and B respectively. K is a point on

AB such that the AK:KB = 1:1. The point R divides line OB in the ratio 3:2 and point S divides OK in

the ratio 3:1.

 

B

R

B                                 K

 

0               a                     A

(a) Express in terms of a and b

(i) OK       (iii) RS

(iii) OS      (iv) RA

(b) Hence show that R,S and A are collinear.                                                          (8mks)

 

  1. The figure below is the roof of a building. ABCD is a rectangle and the ridge XY is centrally placed.

 

 

 

 

 

 

 

 

 

 

 

Calculate:

(i) The angle between planes BXC and ABCD.

(ii) The angle between planes ABXY and ABCD.                                                          (8mks)

  1. On the same axis, draw the graph of y = 2cosx and y = sin ½x for 00 £ x £ 1800, taking intervals of 150

                                                                                                                                                                                                          (6mks)

From the graph, find:

(a) The value of x for which 2cosx = sin ½ x                                                                              (1mk)

(b) The range of values of x for which –1.5 £ 2cos x £ 1.5                                              (1mk)

  1. Two towns T and S are 300km apart. Two buses A and B started from T at the same time travelling towards S. Bus B travelled at an average speed of 10km/hr greater than that of A and reached S 1 ¼ hrs earlier.

(a) Find the average speed of A.                                                                                    (6mks)

(b) How far was A from T when B reached S.                                                                (2mks)

  1. P and Q are two ports 200km apart. The bearing of Q from P is 0400. A ship leaves port Q on a bearing of 1500 at a speed of 40km/hr to arrive at port R 7 ½ hrs later. Calculate:

(a) The distance between ports Q and R.                                                                        (2mks)

(b) The distance between ports P and R.                                                                  (3mks)

(c) The bearing of port R from port P.                                                                      (3mks)

  1. A farmer has 15 hectares of land on which he can grow maize and beans only. In a year he grows maize on more land than beans. It costs him shs. 4400 to grow maize per hectare and shs 10,800 to grow beans per hectare. He is prepared to spend at most shs 90,000 per year to grow the crops. He makes a profit of shs 2400 from one hectare of maize and shs 3200 from one hectare of beans. If x hectares are planted with maize and y hectares are planted with beans.

(a) Write down all the inequalities describing this information.                                      (13mks)

(b) Graph the inequalities and find the maximum profit he makes from the crops in a year.          (5mks)

 

 

MATHEMATICS II

PART II

 

  1. Use logarithm tables to Evaluate

3Ö 36.5 x 0.02573

1.938                                                                                                              (3mks)

  1. The cost of 5 shirts and 3 blouses is sh 1750. Martha bought 3 shirts and one blouse for shillings 850. Find the cost of each shirt and each blouse.             (3mks)
  2. If K = ( y-c  )1/2

4p

  1. a) Make y the subject of the formula.       (2mks)
  2. b) Evaluate y, when K = 5, p = 2 and c = 2                                                                   (2mks)
  3. Factorise the equation:

x + 1/x = 10/3                                                                                                             (3mks)

  1. DA is the tangent to the circle centre O and Radius 10cm. If OD = 16cm, Calculate the area of the shaded Region.       (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Construct the locus of points P such that the points X and Y are fixed points 6cm apart and

ÐXPY =     600.                                                                                                            (2mks)

  1. In the figure below, ABCD is cyclic quadrilateral and BD is diagonal. EADF is a straight line,

CDF = 680, BDC = 450 and BAE = 980.

 

 

 

 

 

 

 

 

Calculate the size of:                                                                                               (2mks)

  1. a) ÐABD                                       b) ÐCBD
  2. Otieno bought a shirt and paid sh 320 after getting a discount of 10%. The shopkeeper made a profit of 20% on the sale. Find the percentage profit the shopkeeper would have made if no discount was allowed?       (2mks)
  3. Calculate the distance:
  4. i) In nautical miles (nm)
  5. ii) In kilometres (km)

Between the two places along the circle of Latitude:

  1. a) A(300N, 200E) and B(300N, 800E) (Take Radius of Earth = 6371Km).                (2mks)
  2. b) X(500S, 600W) and Y(500S, 200E) (Take Radius of Earth = 6371Km).                  (2mks)
  3. A rectangular tank of base 2.4m by 2.8m and height 3m contains 3,600 litres of water initially. Water flows into the tank at the rate of 0.5m/s. Calculate the time in hours and minutes required to fill the tank. (4mks)
  4. Expand (1 + a)5 up to the term of a power 4. Use your expansion to Estimate (0.8)5 correct to 4 decimal places. (4mks)  
  5. A pipe is made of metal 2cm thick. The external Radius of the pipe is 21cm. What volume of metal is there in a 34m length of pipe (p = 3.14).       (4mks)
  6. If two dice are thrown, find the probability of getting: a sum of an odd number and a sum of scoring more than 7 but less than 10. (4mks)
  7. Find the following indefinite integral ò 8x5 – 3x dx                                                                  (4mks)

x3

  1. The figure below represents a circle of radius 14cm with a sector subtending an angle of 600 at the centre.

 

 

.

 

 

 

 

 

 

 

Find the area of the shaded segment.                                                                                         (3mks)

 

 

 

 

 

 

 

 

  1. Use the data below to find the standard deviation of the marks.

 

Marks (x ) Frequency (f)
5

6

7

8

9

3

8

9

6

4

(4mks)

 

SECTION II (48MKS)

 

  1. The figure below shows a cube of side 5cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate:

  1. a) Length FC                                                                                                      (1mk)
  2. b) Length HB                                                                                                        (1mk)
  3. c) Angle between GB and the plane ABCD. (1mk)
  4. d) Angle between AG and the Base.       (1mk)
  5. e) Angle between planes AFC and ABCD. (2mks)
  6. f) If X is mid-point of the face ABCD, Find angle AGX. (2mks)
  7. Draw on the same axes the graphs of y = Sin x0 and y = 2Sin (x0 + 100) in the domain 00 £ x0 £ 1800
  8. i) Use the graph to find amplitudes of the functions.
  9. ii) What transformation maps the graph of y = Sin x0 onto the graph of : y = 2Sin (x0 +100).
  10. The table below shows the masses to the nearest gram of 150 eggs produced at a farm in Busiro

country.

Mass(g) 44 45 46 47 48 49 50 51 52 53 54 55
Freq.  1  2  2  1  6  11  9  7  10  12  16  16
Mass(g) 56 57 58 59 60 61 62 63 64 65 70  
Freq.  10  11  9  7   5  3  4  3  3  1  1  

 

Make a frequency Table with class-interval of 5g. Using 52g as a working mean, calculate the mean mass. Also calculate the median mass using ogive curve.

  1. A shopkeeper stores two brands of drinks called soft and bitter drinks, both produced in cans of same

size. He wishes to order from supplies and find that he has room for 1000 cans. He knows that bitter

drinks has higher demand and so proposes to order at least twice as many cans of bitter as soft. He

wishes however to have at least 90cans of soft and not more than 720 cans of bitter. Taking x to be

the number of cans of soft and y to be the number of cans of bitter which he orders. Write down the

four inequalities involving x and y which satisfy these conditions. Construct and indicate clearly by

shading the unwanted regions.

 

 

 

 

  1. Two aeroplanes, A and B leave airport x at the same time. A flies on a bearing 0600 at 750km/h and B flies on bearing of 2100 at 900km/h:
  2. a) Using a suitable scale draw a diagram to show the positions of Aeroplanes after 2hrs.
  3. b) Use your graph to determine:
  4. i) The actual distance between the two aeroplanes.
  5. ii) The bearing of B from A.

iii) The bearing of A from B.

  1. The Probabilities that it will either rain or not in 30days from now are 0.5 and 0.6 respectively. Find the probability that in 30 days time.
  2. a) it will either rain and not.
  3. b) Neither will not take place.
  4. c) One Event will take place.
  5. Calculate the Area of each of the two segments of y = x(x+1)(x-2) cut off by the x axis. (8mks)
  6. Find the co-ordinates of the turning point on the curve of y = x3 – 3x2 and distinguish between them.

 

MATHEMATICS II

PART I

MARKING SCHEME:

 

  1. 0.09122 = (9.12 x 10-2)2 = 0.008317

Ö 3.152 = 1.776

3Ö 1.776 + 0.008317

0.1279 x 25.91

= 3Ö 1.784317              No.             log      

0.1279 x 25.91           1.784         0.2514

0.1279    -1.1069

25.71           1.4101 +

0.5170

-1.7344

x 1/3

10-1 x 8.155(6)                    1-1.9115

Or 0.8155(6)

 

  1. (a – b)(a – b) a – b

(a – b)(a + b)       a + b

 

  1. dy = 2x + 3

dx

y = x2 + 3x + c

-1 = 1 – 3 + c

c = 1     ;     E.g  y = x2 + 3x + 1

 

  1. K2 – 9 = 0

K = ± 3

 

  1. log 128    =  log       64

18                    9

 

log   16        log     8 

6                    3

2 log (8/3)

log (8/3)

= 2

 

  1. Midpoint -8 + 6, 4 + 0         (-1, 2)

2         2

Gradient of LN = 4/-14 = -2/7

Gradient of ^ bisector = 7/2

y – 2  = 7/2

x + 1

y = 7/2X + 11/2

 

  1. 207,500 = 415,000(1 – 15 )n

100

0.5 = ( 85 )n

100

0.5 = 0.85n

log 0.5 = n log 0.85

log 0.5  = n

log 0.85

n = –1.6990   =    -0.3010 = 4.264yrs

-1.9294      -0.0706

 

  1. 2 x      1        =   1  . x 20 = 0.3115 x  20 = 6.230

3.21 x 10-1    3.21

   1     =         1      =  0.5807 = 0.005807

172.2    1.722 x 102           100

6.230 – 0.005807 = 6.224193

= 6. 224(3d.p)

 

X 2 2.5 3 3.5 4 4.5 5
y 4 6.25 9 12.25 16 20.25 25

h = ½

Area= ½ x ½[29+2(6.25+9+12.25+16+20.25+25)]

= ¼ [29 + 127.5]

= ¼  x 156.5  =  39.125  sq. units.

 

  1. Cos q (cos q + ½ ) = 0

cos q = 0        cos q = -0.5

q = 900, 2700    q = 1200, 2400              

\ q = 900, 1200, 2400, 2700

 

  1. MP = 4 MK MK =      -9

9                                   -18

MP = 4 ( -9  ) = ( -4 )

9  -18          8

\ P is ( -1,0 )

 

  1. a = 30 d = 3   l = 300

300 = 30 + 3 (n – 1 )

300 = 30 + 3n – 3

300 – 27 = 3n

273 = 3n

91 = n  

 

 

 

 

  1. y = mx – 1

1 = 3m – 1

m = 2/3 = 0.6667

tan q = 0.6667  ;     q = 33.690    

 

  1. FK x FC = FA2

FC = 25/3 = 8 1/3 cm

CX = 81/3 – 9/2 = 23/6 = 35/6 cm

CX x XK = XA x XN

33/6 x 3/2 = 3 x XN

\ XN = 111/12 cm

 

  1. V3 = k + x

k – x

V3k – V3x = k + x

V3k – k = x + V3x

V3k – k = x( 1 + v3)

V3k – k  = x

1 + V3

 

  1. (i.) x = 2 Þ x £ 2

(ii) y = -2 Þ y > -2

(iii)pts. (0.5,0)

(0,-1.5)

m = -1.5 – 0  = 3

0 – 0.5

Eq. Y = 3x – 1.5    y < 3x – 1.5

 

     

SECTION B

 

X -4 -3 -2 -1 0 1 2 3 4
Y -26 -16 -8 -2 2 4 4 2 -2

(i) Roots are x = -0.5   x = 3.6

 

(ii)  y = -x2 + 3x + 2

0 = -x2 – x + 2 

y = 4x     (-2, -8) (1, 4)

Roots are x = -2, x = 1

 

  1. class x f       d=x-74.5       fd             d2       fd2    

0 – 9        4.5    2         – 70         – 140       4900        9800

10 – 19    14.5     8         – 60         – 480       3600     28,800

20 – 29    24.5     6         – 50         – 300       2500     15,000

30 – 39    34.5     7         – 40         – 280       1600     11,200

40 – 49    44.5     8         – 30         – 240         900       7,200

50 – 59    54.5    10        – 20         – 200         400       4,000

60 – 69    64.5     9         – 10           – 90         100          900

70 – 79    74.5     6            0               0              0              0

80 – 89    84.5     3          10              30         100          300

90 – 99    94.5     1          20            20         400          400   

Sf =       Sfd =                                     Sfd2 =     77,600

60                        -1680

(i) Mean = 74.5 + -1680

60

= 74.5 – 28  =    46.5

(ii) Standard deviation = Ö 77600 – ( –1680 )2

60            60

= Ö 1283.3 – 784

= Ö 499.3 = 22.35

 

  1. a (i.) OK = OA + AK = ½ a + ½ b

(ii) OS = ¾ OK = 3/8 a + 3/8 b

(iii)RS = RO + OS = 3/8 a – 9/40 b

(iv) RA = RO + OA = – 3/5 b + a

 

  1. RA = a – 3/5 b   RS = 3/8 a + 9/40 b

= 3/8( a – 3/5 b)

\ RS = 3/8 RA

The vectors are parallel and they have a common

point R  \ point R, S and A are collinear

 

 

 

 

 

 

 

 

 

 

 

 

 

KB = 3m   NK = 1.5m   XB = 5m

(i)  XK = Ö 52 – 32  = Ö 16 = 4m

let ÐXKN = q

cos q = 1.5  = 0.375

4

q = 67.97(8)0

 

(ii) In DXNK

XN = Ö 42 – 1.52 = Ö 13.75 = 3.708

In D SMR; MR = KB = 3m

SM = XN = 3.708m

Let ÐSRM = a

tan a = 3.708  =1.236

3

a = 51.02(3)0

 

 

 

 

 

 

 

 

 

21.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.

 

  0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Y =2cosX 2.00 1.93 1.73 1.41 1.00 0.52 0.00 -0.52 -1 -1.41 -1.73 -1.93 -2.00
Y = sin ½ X 0.00 0.13 0.26 0.38 0.50 0.61 0.71 0.79 0.87 0.92 0.97  0.99 1.00

(a) X = 730 ± 10

(b) Between 40.50 and 139.50

 

 

  1. 300km

T                                               S

Let the speed of A be X km/hr

Speed of B = (X + 10) km/hr

Time taken by A = 300 hrs

X

Time taken by B = 300 hrs

X + 10

300300  =  5

x    x + 10    4

300(x + 10) – 300x  = 5

x(x + 10)    4

300x + 300 – 300x = 5

x2 + 10x

x2 + 10x – 2400 = 0.

x = 44.25

X = -54.25 N/A

(b) Distance covered by A in 1 ¼ hrs  = 44.25 x 5/4  = 55.3 km

Distance of A from T is 300 – 55.3 = 244.7 km

 

 

 

 

 

 

 

 

 

  1. (a) Distance = 15 x 40 = 300km

2

(b)

 

 

 

 

 

 

 

 

 

 

 

PR2 = 2002 + 3002 –2x 200 x 300 cos700

= 130,000 – 41040   =   88,960

PR = 298.3 km

 

(c) 298.3  = 300

sin 700    sin a

sin a = 300 sin 700

298.3

= 0.9344

a = 69.10

 

Bearing of R from P is

40 + 69.1 = 109.10

 

  1. (i.) X > y

(ii) 4,400X + 10,800Y £ 90,000

Simplifies to 11X + 27y £ 225

(iii) X + y £ 15

X > 0;  y > 0

Boundaries

x = y pts (6,6) (12,12)

11x + 27y = 225 pts (13,3) (1,8)

X + y = 15 pts (0,15) (8,7)

Objective function

2400 x 3200y

(pt (2,1)

2400X + 3200y = 8000

Search line ® 3X + 4y = 10

Point that give maximum profit is (12,3)

\ maximum profit

= 2400 x 12 + 3200 x 3 = 38,400 shs.

 

 

 

 

 

 

 

 

 

MATHEMATICS  II

PART II

MARKING SCHEME

 

  1. No log.

36.5        1.5623

0.02573   –2.4104 +

-1.9727

1.938         0.2874 –

-1.6853

 

-3  + 2.6853 

3         3

-1 + 0.8951

1.273(4) ¬ 0.1049

= 1.273(4)

 

  1. Let shirt be sh x,

let blouse be sh. y.

5x + 3y =1750 (i.)

3x + y = 850    (ii)

mult (ii) by 3

9x + 3y = 2550 (iii)

Subtract  (iii) – (i.)

– 4x = -800

Subt for x

  1. = 250

Shirt = sh 200  ;   Blouse = sh 250

     

  1. (a) K2 = y – c

4p

y – c = 4pK2

y = 4pK2 + c

(b)    y = 4 x 2 x 25 + 2   ;      y = 202

 

  1. x2 + 1 – 10x = 0

3

3x2 – 10x + 3 = 0

3x (x – 3) – 1(x – 3) = 0

(3x – 1) (x – 3 ) = 0

x = 1/3  or x = 3                                                                                                             

 

  1. Area D OAD pyth theorem AD =12.49cm

½  x 12.49 x 10  =   62.45cm2

Cos q = 10/16 = 0.625

q = 51.30                                     62.5

Sector 57.30  x 3.14 x 100    40.2 –

360                        = 22.3

 

 

 

 

 

 

 

 

  1. ÐXPY = 600

\ÐXC1Y = 1200

              B1             \ÐC1XY = ÐC1YX

= 1800 – 1200  = 300

2

 

 

 

 

Construct 300  angles

at XY to get centres

B1           C1 and C2  mojar arcs drawn

2            on both sides with C1X and C2X

as centres.

 

 

 

 

 

 

 

 

 

 

  1. DAB = 1800 – 980  = 820

ADB = 180 – (68 + 45 ) = 670

                                                                                                                                              ABD = 180 – (67 + 82)

= 310

 

(a) 1800 – (67 + 82)0 = 310

       ÐABD = 310                                                                                 Opp = 1800

(b) (180 – 82)0 = 980                                                                                   82 + 98 = 1800

        1800  – (980 – 450) =

ÐCBD = 370                                                                                  180 – (98 + 45)

= 370

  1. 10 x 320

100     Discount = sh 32

Sold at      sh 288

If no Discount = ( 320 x 20 ) % = 22.7%

288

 

  1. (a) Dist along circle of lat.

Long diff x 60 x cos q nm

100 x 60 x Cos 500

100 x 60 x 0.866

5196nm =      100 x 2pR Cos 500

                                               360

100  x 2 x 3.14 x 6371

360                       =  5780Km

 

 

 

 

 

 

(b) 80 x 60 Cos 50  = 3895 Km

 

  1. Vol =2.8 x 2.4 x 3 = 20.16m3

          1m3 = 1000 L

20.16m3 = 20160 L

20160

    3600       

16560 L to fill

0.5 L – 1 sec

16560 L – ?

 165600

5 x 3600

33120  hr

3600             @ 9.41 hrs     ;     @ 564.6 min.

 

  1. 15 + 5.14a + 10.13.a2 + 10.12a3 + 5.1.a4

a = -0.2

1 + 5(-0.2) + 10(-0.2)2 + 10(-0.2)+ 5 (-0.2)4

1 – 1.0 + 0.4 – 0.08 + 0.008  =   0.3277 (4d.p)                                                                                                                     

 

  1. Area of metal : Material – Cross section.

p(R2 – r2)

3.14 (21 –19)

Vol  6.28cm2 x 3400cm

= 215.52m3        

                                       

  1. Possibility space:

 

.            1  2  3  4  5  6 

1     2  3  4  5  6  7

2     3  4  5  6  7  8

3     4  5  6  7  8  9

4     5  6  7  8  9  10

5     6  7  8  9 10 11

6     7 8  9 10 11 12

 

P(odd) = 3/6 = ½

P(Sum > 7 but < 10)   =   9 /36

\ P(odd) and P(sum > 7 but < 10 )

= ½  x 9/36 = 9/72     =  1/8

 

  1. ò( 8x5/x3 – 3x/x3) d4

ò( 8x2 – 3x-2) d4                                                                

16x3/3 + 6x-3/-3  + C                                                 

16x3/3 – 2/x+ C

 

  1. Area of DAOB

½  x 14 x 14 x 0.866  =  84.866cm2

Area of sector  =  60  x3.14 x 14 x14 = 10.257

360

Shaded Area

84.666  –  10.257 = 74.409cm2                            

 

 

 

 

 

Marks F Fx fx2
5 3 15 75
6 8 48 288
7 9 63 441
8 6 48 384
9 4 36 324

 

åx =    åf=30   åfx=210   1512

S.d =  Ö åfx2  –  ( åfx )2

                             åf            åf

= Ö 1512   –  (210)

30            30

=  Ö 50.4 – 49

=   Ö 1.4  = 1,183                                                       

 

       SECTION II                                               .

 

  1. (a) FC = Ö 52 + 7.072 = Ö 50 = 7.071

(b) HB = Ö 52 + 7.072    = Ö 75 = 8.660

(c) q = Tan-1 5/5 = Tan-1   = 450                                                         

(d)  b = Tan-1 5/7.071 = Tan-1 0.7071  =  35.30                                                        

(e)  y = Tan-1 5/3.535   = Tan-1    = 54.70                                                        

(f) ÐAGX = 19.40

 

 

  1. y = Sin x
      x0 00 300 600 900 1200 1500 1800
sin x0 0 0.50 0.66 1.00 0.866 0.500 0

 

y = 2 Sin (x0 + 100)

      X0 00 300 600 900 1200 1500 700
2 Sin(x +100) 0.3472 1.286 1.8794 1.286 0.3472 -0.3472 -1.8794

Amplitudes for y = Sin x0 is 1

For

y = Sin(x+100) is 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c.f X F
61 53 12
16   54
93 55 16
103 56 10
11   57
123 58 9
130 59 7
135 60 5
138 61 3
142 62 4
145 63 3
148 64 3
149 65 1
150 70 1

 

Mean =  x    + 52  + -4

150

52 –  0.02

=     51.08

Median  =     51.4g.

 

class interval 59

Class interval mid point Freg. c.f
44-48 46 12 12
49-53 51 49 61
54-58 56 64 125
59-63 69 22 147
64-68 66 3 130
69-73 71 1 150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. X + Y £ 1000

X £ 2Y

Y < 720

X > 90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.(a)    1cm = 200Km/h

A = 200 x 7.5  =  1500 Km

B =  200 x 9  = 1800Km.

 

(b) (i.) 15.8cm x 200                     (ii) Bearing 2240

= 3160 Km.                              (iii) Bearing 0490

 

  1. (a) P(R) x P(R)1                         (b) P(R)¢ x P(R)                        (c) P(R) x P(R’)

= 0.5 x 0.6                                     0.5 x 0.4                                          P(R)’ x P(R)

= 0.3                                     =  0.2                                            0.5 x 0.6 = 0.3

0.5 x 0.4 = 0. 2= 0.5

  1. y = x(x + 1)(x – 2)

= x3 – x2 – 2x

A1 = ò(x3 – x2 –2x) d4                                

-1[¼ x4 –  1/3 x2]-1

= 0 – ( ¼ + 1/3 – 1)    =  5/12

A2 = 2ò(x3 – x2 –2x) d4

0ò ¼ x4 – 1/3 x3 – x2)-20                     

= ( ¼ .16 – 1/3 .8 – 8 )

= 4-0 – 8/3 – 4  =   – 8/3

              A1 = 5/12= A2 = 2 2/3         

                            

  1. y = x3 – 3x2

dy  = 3x2 – 6x

At stationary

Points      dy = 0

dx

i.e   3x2 – 6x = 0

3x(x – 2) = 0

x = 0 or 2

Distinguish

dy = 3x2 – 6x

dx

d2y  =  6x – 6

dx2

    (i)    x = 0  dy2 = 6x – 6 = -6                 (ii)       x = 2

dx2                                                 d2y  =  6

-6 < 0 – maximum.                               dx2

\ (0,0) Max Pt.                                                6 > 0 hence

Minimum Pt.

x = 2,  y = 8 – 12 = -4

(2, -4)     minimum point.

 

MATHEMATICS II

PART I

 

SECTION 1 (52 Marks)

  1. Without using tables evaluate:

 

Ö7.5625 x 3Ö3.375

15                                                                                                        (5 mks)

 

  1. Make k the subject of the formula.

y = 1  Ök + y                                                                            

T2      k                                                                                                       (3 mks)

 

  1. If A = (x, 2) and xB     =     x     and if AB = (8), find the possible values of x.

-2                                                                                 (3 mks)

  1. Simplify completely. (3 mks)

rx4 – r

2xr – 2r

 

  1. Solve the equation. (3 mks)

Log 3 (8-x)  –  log 3 (1+x) = 1

 

  1. Under an enlargement scale factor -1, A(4,3) maps onto A1 (4,-5). Find the co-ordinates of the centre of enlargement. (3 mks)

 

  1. Find the equation of the line perpendicular to the line 4x-y = -5 and passing through the point (-3,-2).       (2 mks)
  2. Find the standard deviation of the data below:

3,5,2,1,2,4,6,5                                                                                                   (4 mks)

 

  1. What is the sum of all multiples of 7 between 200 and 300? (4 mks)

 

  1. Solve the equation.

½ tan x  =  sin x for -1800  £  x  £  3600.                                                            (3 mks).

 

  1. Expand (1-2x)4. Hence evaluate (0.82)4 correct to 5d.p. (4 mks)

 

  1. The line y = mx – 3 passes through point (5,2). Find the angle that the line makes with the x-axis. (2 mrks)
  2. A two digit number is such that 3 times the units digit exceed the tens digit by 14. If the digits are reversed, the value of the number increases by 36. Find the number (4 mks)

 

 

 

 

 

 

  1. In the figure below, O is the centre of the circle, OA = 7 cm and minor arc AB is 11 cm long. Taking P = 22/7, find the area shaded. (3 mks)

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. A box contains 36 balls, all identical except for colour. 15 of the balls are black, 15 are brown and the rest are white. Three balls are drawn from the box at random, one at a time, without replacement. Find the probability that the balls picked are white, black and brown in that order. (2 mks)

 

  1. Find the inequalities that describe the unshaded region R below. (4 mks)

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION  2 (48 Marks)

 

  1. Draw the graph of y = x2 + x – 6 for -4 £ x £

Use your graph to solve the equations.

(i)  x2 + x – 6 = 0                       (ii) x2 + 2x – 8 = 0                                             (8 mks)

 

  1. The diagram below represents a bucket that has been placed upside down. The radius of the top surface is 15cm and that of the bottom is 40cm. The vertical height of the bucket is 50cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine:-

  • The volume of the bucket.
  • The curved surface area of the bucket. (leave your answers in terms of p)

 

  1. Draw, on the same axes, the graphs of y = cos q and y = 5 sin q for – 1800 £ q £ 1800
  • From your graph, determine the amplitude of each wave.
  • For what value(s) of q is cosq – 5 sin q = 0 (8 mks)

 

  1. A point P lies on a coast which runs from West to East. A ship sails from P on a bearing of 0320. When it reaches Q, 7km from P, a distress signal is observed coming from another ship at R. Given that R is N.E of P and on a bearing of 0660 from Q, calculate:
  • Ð
  • The distance QR, between the two ships.
  • The shortest distance from R to the shore. (8 mks)

 

  1. A bag contains x red balls and y yellow balls. Four times the number of red balls is equal to nine times the number of yellow balls and twice the total number of balls exceeds the number of yellow balls by 44.
  • How many balls of each colour are three in the bag?
  • If two balls are drawn out of the bag at random one at a time with replacement what is the probability that the two balls are red? (8 mks)

 

  1. A Kenyan businessman goes on a trip to West Germany through Italy and back to Kenya. In Kenya he is allowed to take Ksh. 67,000 for sales promotion abroad. He converts the Kenya currency into US dollars. While in Italy, he converts 2/5 of his dollars into Italian lire, which he spends in Italy. While in West Germany, he converts 5/8 of the remaining dollars into Deutsche marks which he uses up before coming to Kenya. Using the conversion rates 1 US dollar = 1.8 Deutsche marks = 16.75

Ksh = 1340 Italian lire. Answer the following questions:

  • How many US dollars did he take out of Kenya?
  • How many Italian lire did he spend in Italy?
  • How much money, in Deutsche marks did he spend in West Germany?
  • How much money in Ksh. did he have on his return to Kenya? (8 mks)

 

  1. PQRS is a parallelogram in which PQ = r and PS = h. Point A is the midpoint of QR and B is a point on PS such that PS : PB = 4:3. PA and QB intersect at M.

 

 

 

 

 

 

 

 

 

 

Given that PM = kPA and BM = tBQ where k and t are scalars, express PM in two different ways and hence find the values of k and t.

Express PM in terms of r and h only.                                                                                   (8 mks)

 

 

 

 

 

 

 

 

  1. Two variables T and X are connected by the equation T = abx where a and b are constants. The values of T and X are given in the table below:

 

T 6.56 17.7 47.8 129 349 941 2540 6860
X 2 3 4 5 6 7 8 9

 

 

Draw a suitable straight line graph and use it to estimate the values of a and b.              (8 mks)

 

 

MATHEMATICS III

PART II

 

Section I:   (52 Marks)

 

  1. Use mathematical tables to evaluate:

 

8.67                                                                                                                        (3 mks)

Ö 0.786 x (21.72)3

 

  1. Simplify completely. (3 mks)

4      –    1

x2 – 4        x-2

 

  1. An Indian on landing at Wilson Airport changes Re 6000 into Kenya shillings when the exchange rate is Re = Ksh. 1.25. He spent Ksh. 5000 when in Kenya and converted the remaining amount to Rupees at the same rate as before. Find out how much the Indian is left with in Rupees. (3mks)

 

  1. The last of three consecutive odd numbers is (2x+3). If their sum is 105, find the value of x. (4 mks)

 

  1. a S  b is defined by:           a S b  =  (a + b)

ab

If B S   (2  S   3)  =  4  S   1, Find B.                                                                                   (3 mks)

  1. Find the value of M. (3 mks)

 

 

M

 

850

 

1600

 

 

  1. (a) Expand (1+2x)6 upto the term containing x3 .                                                                (2 mks)

 

(b)  By putting x = 0.01, find the approximate value of (1.02)6 correct to 4 S.F.                    (2 mks)

 

 

  1. Show that x is the inverse of : Y =    3          -3      1           X =       2      1                       (3 mks)

-5        2                     5      3

 

 

 

 

 

 

  1. The probabilities of three candidates K, M and N passing an examination is 2/3, ¾ and 4/5 Find the probability that :

(a)  All pass:                                                                                                           (1 mk)

(b)  At least one fails:                                                                                              (2 mks)

 

  1. In the figure, PR is tangent to the circle centre O. If ÐBQR=300, ÐQBC=270,and ÐOBA=370, find ÐBAC and Ð

 

C                        A

 

 

 

 

B                                                                                            P                                                                                 R

  1. A frustrum of height 10cm is cut off from a cone of height 30cm. If the volume of the cone before cutting is 270cm3 , find the volume of the frustrum. (3 mks)

 

  1. Evaluate 0 (2 mks)

( 3x2 –  1 ) dx

4 x 2

1

  1. If one litre of water has a mass of 1000g, calculate the mass of water that can be held in a rectangular tank measuring 2m by 3m by 1.5m. (give your answer in tonnes). (2 mks)
  2. Write down the three inequalities which define the shaded region. (3 mks)

 

 

 

(3,2)

 

 

 

 

 

 

(2,1)                                   (4,1)

 

 

 

 

  1. The depth of sea in metres was recorded on monthly basis as follows:

 

Month March April May June July
Depth (m) 5.1 4.9 4.7 4.5 4.0

Calculate the three monthly moving averages.                                                               (3 mks)

  1. A number of women decided to raise sh. 6300 towards a rural project for bee keeping. Each woman had to contribute the same amount. Before the contribution, seven of them withdrew from the project. This meant the remaining had to pay more. If n stands for original number of women, show that the increase in contribution per woman was: 44100                   (3 mks)

n(n-7)

 

 

 

 

 

SECTION II:   (48 Marks)

 

  1. Find the distance between points A(500 S, 250 E) and B(500 S, 1400 E) in:

(i)   Km                  (ii)   nm                                                                                                (8 mks)

(take radius of earth to be 6400km, P =  3.14)

 

  1. The distance S in metres, covered by a moving particle after time t in seconds, is given by :

S  =  2t3 + 4t3– 8t + 3.

Find:

(a)  The velocity at :            (i)  t  =  2                      (ii)  t  =  3

  • The instant at which the particle is at rest. (8 mks)

 

  1. A car starts from rest and its velocity is measured every second for six seconds. (see table below).
Time (t) 0 1 2 3 4 5 6
Velocity v(ms -1) 0 12 24 35 41 45 47

 

Use trapezium rule to calculate the distance travelled between t = 1 and t = 6.                (8 mks)

 

  1. Using a pair of compass and ruler only, construct triangle ABC such that AB=9cm, BC=14cm and ÐBAC = 1200 . Draw a circle such that AB, BC and AC are tangents. What is the radius of this circle?                                                                                                                                (8 mks)
  2. The marks scored by 100 students in mathematics test is given in the table below:
Marks 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of students 8 15 15 20 15 14 13

 

(a)  Estimate the median mark.                                                                               (2 mks)

(b) Using 44.5 as the assumed mean, calculate:-

(i)         The mean mark:                                                                                   (2 mks)

(ii)        The variance:                                                                                        (2 mks)

(iii)       The standard deviation:                                                                         (2 mks)

 

  1. (a) On the same axes, draw the graphs of : y  =  sin x  ;  y  =  cos x

y  =  cosx  +  sin X for 00 Ð X Ð 3600 .

(b)  Use your graph to deduce

(i) The amplitude

(ii) The period of the wave y = cos x + sin x.

(c) Use your graph to solve:

Cos x  = – sin x for 00 Ð X Ð 3600 .

 

  1. Given a circle of radius 3 units as shown in the diagram below with its centre at O(-1, 6). If BE and DE are tangents to the circle where E (8,2). Given further that Ð DAB = 800.

B

 

 

A                                                                              E

C

 

 

D

(a)  Write down the equation of the circle in the form ax2 + bx + cy2 + dy + e = 0 where a, b, c,             d, e are constants.                                                                                       (2 mks)

(b)  Calculate the length DE.                                                                                   (2 mks)

(c)  Calculate the value of angle BED.                                                                     (2 mks)

(d)  Calculate the value of angle DCB.                                                                     (2 mks)

 

  1. A building contractor has to move 150 tonnes of cement to a site 30km away. He has at his disposal 5 lorries. Two of the lorries have a carrying capacity of 12 tonnes each while each of the remaining can carry 7 tonnes. The cost of operating a 7 tonne lorry is sh. 15 per km and that of operating a 12 tonne lorry is sh. 25 per km. The number of trips by the bigger lorries should be more than twice that made by smaller lorries.                                                                                     (8 mks)

 

(a)  Represent all the information above as inequalities.

  • How should the contractor deploy his fleet in order to minimise the cost of moving the cement?                                                                                                                                   (8 mks)

 

 

MATHEMATICS III

PART I

MARKING SCHEME

 

 

 

 

 

 

SOLUTION MRK AWARDING  
1. Ö7.5625 = 2.75

 

3Ö3.375 = 3Ö3375 X 3Ö10-3

 

3 Ö33 x 53 x 10-1 = 3 x 5 x 10-1 = 1.5

 

= 2.75 x 1.5  =  2.75  =  0.275

1.5 x 10          10

 

1

 

1

 

1

1

1

 

 

Method for Ö7.5625

Square root

 

Method for 3Ö

3Ö

Answer

 
    5    
2. T2y  =  Ö k+y

K

T4y2k =  k+y

T4y2k – k  =  y

K(T4y2-1) =  y

K  =  y

T4y2 – 1

 

 

1

 

 

1

 

1

 

 

Removal of square root

 

Rearrangement of terms

Answer

 
    3    
3. (x 2)         x      =  (8)

-2

 

x2 – 4  =  8

 

x  =  +Ö12 = + 2Ö3 = + 3.464

 

1

 

 

1

 

1

 

 

Matrix equation

 

 

Quadratic equation

Answers in any form

 
    3    
4. r(x2 – 1)

2r(x – 1)

 

r(x2 – 1)(x2 + 1)

2r (x – 1)

 

r(x – 1)(x + 1)( x2 + 1)

2r (x – 1)

 

=   (x + 1)( x2  + 1)

2

 

 

 

 

1

 

 

 

1

 

 

1

 

 

 

 

Complete factorisation of numerator

 

Factorisation of denominator

 

Answer

 
    3    
5.       1  =  log3 3

8 – x    =   3

1+x

 

-4x  =  -5

 

x = 5

4

1

 

 

 

1

 

1

 

 

 

Logarithic expression.

 

 

Equation

 

Answer

 

 

 
    3    
6. Let the centre be (a,b)

 

4-9        =  -1      4-a

-5-b                  3-b

 

4-a  =  -4+9           -5-b  =  -3+b

a  =  4                     b  =  -1

centre is (4,-1)

 

 

 

1

 

 

1

 

1

 

 

 

 

 

Equation

 

 

Linear equations

 

Centre

 

 
    3    
7. Y  =  4x + 5

Gradient = 4

Gradient of ^ line – ¼

y + 2  =  – 1

x + 3        4

4y + x  =  -11

 

 

1

1

 

 

Gradient of ^ line.

Equation.

 

 
    2    

8.

X  = 28  =  3.5

8

 

 

standard deviation = Ö 22 = Ö2.75  =  1.658

8

 

 

1

 

 

1

1

 

1

 

Mean

 

 

d values

d2 values

 

Answer

 
    4

 

   
9. a = 203    d = 7   L = 294

 

294  =  203 + 7(n-1)

n  =  14

 

S 14  =  14 (203 +  294)

2

 

=  7 x 497

=  3479

 

1

 

1

 

 

1

 

 

 

1

 

For both a and b

Equation

 

 

For n

 

 

 

Sum

 

 
    4    
10. Sin x  =  2 sin x

Cos x

 

Sin x  =  2 cosx

Sin x

 

2 cos x  =  1

cos x  =  0.5

 

x  =  600, 3000, -600

 

 

 

1

 

 

 

1

 

1

 

 

 

 

Simplification

 

 

 

Equation

 

All 3 values

 
    3    
11. (1 +-2x)4  =  1-8x + 24x2 – 32x3 + 16x4

 

(0.82)4  =  (1 + -2 x 0.09)4

x     =  0.09

(0.82)4  = 1 – 0.72 + 0.1944 – 0.023328 + 0.00119376

= 0.35226576

@  0.35227 (5 d..p)

1

 

 

1

1

 

1

 

Expansion

 

 

Value of x

All terms

 

 

Rounded

 
    4    
12.   2  =  5m – 3

m =  1

tan q  =  1                    q  =  450

 

1

1

 

 

Value of m.

Angle

 
    2    
13.  Let the number be xy

3y  =  x + 14

10y + x  =  10x + y + 36  =  9y – 9x  Þ  36

3y – x  =  14

9y – 9x  =  36

y  =  5

x  =  1

the number is 15.

 

1

1

 

1

 

 

1

 

 

1st equation

2nd equation

 

method of solving

 

Answer

 

 
   

 

S

4    
14. Let ÐAOB  =  q

  q  x  2  x   22  x  7  =  11

360              7

q  =  900

 

Area shaded  =   90 x 22 x 7 x 7 – 1 x 7 x 7

360    7                2

77 49

2     2

= 28  =  14cm2

2

 

 

 

1

 

1

 

 

1

 

 

 

 

Value of q

 

Substitution

 

 

Answer

 
    3    
15. P(WBb)  =  6 x 15 x 15

36    35   34

 

=   15

476

1

 

 

1

 

Method

 

 

Answer

 
    2    
16. Equation                                  inequality

L1    y =  x                                   y  £  x

L2    y = -2                                   y  ³ -2

L3    2y + 5x = 21                        2y + 5x < 21

1

1

1

1

 

1 mark for each inequality.

Method for obtaining L3

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(i)  roots are x = -3

x = 2

(ii)  y = x2 + x-6

0 = x2 + 2x-8

y = -x + 2

roots are x = -4

x =  2

4 2

 

 

 

 

 

 

 

1

 

1

 

 

1

 

1

 

1

 

For all correct points.

1 for atleast five correct points.

 

 

 

Correct plotting.

 

Scale

 

 

Smoothness of

curve

 

Both roots

 

 

Linear equation

 

 

Both roots

 

   

 

  8  
         
18.    h     =  15

h+50     40

 

h   = 30cm

H  =  80cm

 

(a)  Volume  =  1/3 p x 40 x 40 x 80 – 1/3  p x 15 x 15 x 30

 

128000 p  –  6750 p

3               3
=   121,250p cm3

3

 

(b)   L2  =  802 + 402                      L    =  152 + 302

= 6400 + 1600                      = 225 + 900

=  8000                                   = 1125

L    =  89.44 cm                    L    =  33.54 cm

Curved surface area of bucket = p x 40 x 89.44

p x15x33.54

= 3577.6p – 503.1p

=  3074.5cm2

1

 

 

1

 

 

1

 

 

 

 

1

 

1

 

1

 

1

 

1

 

Expression

 

 

Value of H

 

 

Substitution

 

 

 

 

Volume

 

L

 

L

 

 

Substitution

 

Area

 

 
    8    
 

 

19.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
         
 

20.

 

 

 

(i)  ÐRPQ  =  130

        ÐPQR  =  320+900+240 =  1460

ÐPRQ  =  1800 – (1460 + 130)

=  210

 

(ii)    P      =        7

sin130         sin 210

P    =   7 sin 130

Sin 210

=  4.394km

 

 

 

 

 

 

 

 

 

 

 

P                                                               T

 

(iii)    Let PR  =  q

 

q       =       7

sin 1460      sin 210

 

q     =  7 sin 1460

sin 21

q       =  10.92 km

 

sin 450  =    RT

10.92

 

RT  =  10.92 sin 450

 

= 7.72 km (2 d..p)

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

1

 

 

1

 

1

 

 

 

Fair sketch

 

 

 

 

 

 

ÐPRQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation

 

Method

 

 

 

Equation

 

 

 

 

 

 

Distance PR

 

 

Equation

 

RT

 

 

 

 

 
  8    
21. (a)  4x  =  9y

2(x+y)  =  y+44  Þ  2x + y  =  44

 

4x – 9y = 0

4x + 2y = 88

11y = 88

y   =  8

 

x  =  18

(b)  P(RR)  =   18  x  18   =  81

26      26      169

 

1

 

1

 

2

 

1

1

1

1

 

 

 

Equation

 

Equation

 

Method of solving

Value y

Value x

Method

Answer

 
    8    
22. (a)  67,000 Ksh  =  67,000 US dollars

16.75

= 4,000 dollars

 

(b)  2 x 4,000  =   1600 US dollars

5

1600 US dollars  =  1600 x 1340

=  2,144,000 Italian lire

(c)  Remainder  =  2400 US dollars

5  x  2400   =  1500 US dollars

8

1500 US dollars = 1500 x 1.8

= 2700 Deutche marks

(d)  Remainder  =  900 US Dollars

900 US Dollars = 900 x 16.75 Ksh.

=  15,075 Ksh.

 

1

 

1

 

1

 

1

1

 

 

1

1

1

 

 

Method

 

Answer

 

Method

 

Answer

 

For 1500

 

 

Answer

 

Method

Ksh.

 
    8    
23. PM  =  kPA

=  k(r + 1h)

2

=  kr + 1kh

2

PM  =  PB +  BM

3h + t BQ

4

=   3h + t(-3h + r)

4          4

 

3h – 3t h + tr

4     4

3 –   3t    h + tr

4     4

 

t = k           33t  =  1k

4   4       2

33t = 1 t

4    4     2

5t  =   3

4       4

t  =  3 + 4

4    5

= 3

5

\   k = 3

5

\   PM  =  3r  +  3h

5       10

 

 

 

1

 

1

 

 

1

 

 

1

 

1

 

 

1

 

1

1

 

 

 

 

 

PM

 

PM

 

 

PM simplified

 

 

 

 

 

 

 

Both equations

 

method

 

 

 

 

Value of k

 

Value k

PM

 

 
    8    
         
 

 

 

24.

Y

LogT

 

 

 

Log T  =  log a + x log b

Log T  Þ  0.82, 1.25, 1.68, 2.11, 2.54, 2.97, 3.40, 3.84

 

y – intercept = log a = 0

a = 1

gradient  =  3.84 – 0.82  =   3.02

9 – 2                  7

= 0.4315

 

log b = 0.4315   =  0.4315

b = antilog 0.4315

b  =  2.7

 

1
1

 

 

 

 

 

 

 

1

2

 

1

 

1

 

 

 

 

1

8

Plotting
Labeling of axis

 

 

 

 

Linear

All correct logs

 

Value of a

Method of gradient

 

Value of  b

 

MATHEMATICS III

PART II

MARKING SCHEME

 

  1. SOLUTION MARKS    AWARDING
1.    No                                      log

 

8.69                                   0.9390

0.786                                 1.8954

21.72                                 1.3369

1.2323

1.7067 – 2

 

21.7067

2           2

– 1  +  0.8533

0.7134 x 10 -1     =  0.07134

 

 

 

 

 

M1

 

 

M1

 

 

 

A1

 

 

ü reading to 4 s.f

 

 

 

 

 

 

Rearranging

    3  
2.  

 4                   –         1

(x-2)(x+2)                  (x-2)

 

 – x+2

(x-2(x+2)

– (x-2)

(x-2(x+2)

 

-1

x+2

 

 

 

M1

 

 

M1

 

 

A1

 

 

 
    3  
3.  

Re6000  =  Ksh. 75000

Spent 5000 Rem 2500

Rem    2500

1.25

Re 2000

M1

 

 

M1

 

A1

 

 
    3  
4. 2x – 1  ,  2z + 1  ,  2x + 3

6x +  3  =  105

6x  =  102

x  =  17

M1

M1

A1

A1

 

Allow M1 for us of different variable.
    4  
5.  

4 * 1  =  5

4

2 * 3  =  5

6

A * 5  =  5

6      4

A + 5  =  5  x  5A

6      4       6

A +  5  =  25 A

6       24

A   =  20

 

 

M1

 

 

 

 

M1

 

 

A1

3

 
6.  

 

 

 

 

180 – M + 20 + 95  =  180

295  –  M  =  180

– M  =  – 115

M  =  115

 

 

 

B1

 

 

B1

 

 

A1

 

 
    3  
 

7.

 

1 + 2x + 60x2 + 160x3 +

1 + 0.2 + 0.006 + 0.00016

=  1.20616

=  1.206

 

M1

M1

M1

A1

4

 

Only upto term in x3.

Correct substitution

 

Only 4 s.f.

 

8.  

3   -1      2    1    =    I

-5   2       5    3

 

6   -5             3    -3

-10 +10         -5 + 6

 

1      0

0       1

 

 

M1

 

M1

 

 

A1

 

 

Matrix multiplication gives :

 

I       1   0

0   1

  3  
9. (a)   2  x  3  x  4      =  2

3      4      5           5

(b)

2  x  3  x 1     +     2  x  1  x  4     +     1  x  3  x  4
3      4     5            3      2      5             3      4      5

 

1  +  4  +  1

10     15     5

 

=     17

10

M1

 

 

M1

 

 

 

 

A1

 

 

 
    3  
10. ÐQCB  =  300

180 – (27 + 30)  =  1230

\     BAC  =  570.

 

 

 

 

OBA  =  370

OAB  =  370

 

 

AOB  =  1060

\ ACB  =  530

 

 

 

M1

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

 

 

Isosceles triangle.

 

Angle at centre is twice angle at circumference.

    3  
11. V  =  1  x  3.14  x  r 2  x 10  =  270

L.S.F.      20   =  2

30       3

V.S.F  =    2   3        =     8

3                   27

Vol. of cone  =  8  x  270

27               =      80cm3

\ Vol. Of frusturm  = (270 – 80)  =  190cm3

 

 

 

M1

 

M1

 

 

A1

 

 
    2  
12.

 

 

 

 

 

 

 

 

3x 3  –  x  -1          2

3       -1         1

 

x 3  +  1     2

x     1

 

8  +  1     –   ( 1  –  1)

2

8 1  –  2     =         6  1

2                           2

 

 

 

 

 

 

M1

 

 

 

A1

2

 
13. (2 x 3 x 1.5)  volume

9 m3

1L  º  1000 cm3

1000 L  =  1 m3

9000 L  =  9 m3

1000 L  =  1 tonne

9000 L  =  9 tonnes.

 

 

M1

 

 

 

A1

 

 
    2  
14.      y   ³ 1            (i)

y   <  x – 1     (ii)

y   <  5 – x     (iii)

 

B1

B1

 

 
    3  
15. M1  =  5.1  +  4.9  +  4.7  =  4.9

3

M2  =  4.9 + 4.7 + 4.5  =  4.7

3

M3  =  4.7 + 4.5 + 4.0  =  4.4

3

M1

M1

M1

 

 

 
    3  
16. Original contribution per woman  =  6300

N

Contribution when 7 withdraw  =  6300

(n-7)

Increase   –  Diff.

6300   –   6300

n-7          n

6300n  –  6300(n-7)

n(n-7)

6300n – 6300 + 44100

n(n-7)

44100

n(n-7)

 

 

 

M1

 

 

M1

 

1

3

 
SECTION II (48 Marks)

 

17. (i)

1150

 

A                                B

 

Centre of circles of latitude 500 S.  R Cos 500

AB  =  115  x  2p R Cos 50o

115  x  40192  x  0.6428

360

=  8252.98  km

 

(ii)   Arc AB 60 x 115  Cos 50 nm

60 x 115 x 0.6428 nm

4435 nm

 

 

 

 

 

M1

M1

 

 

M1

 

A1

 

M1

M1

M1

A1

 

 

 

 

 

 

 

No.                     log

60                      1.7782

1+5                    2.0607

0.6428               1.8080

4435nm             3.6469

    8  
18. (a)  V  =  ds  =  6t2 + 8t – 8

dt

(i)  t  =  2

V  =  6×4 + 8×2 – 8

= 32 ms-1

(ii)  t  =  3

V =  6×9 + 8×3 – 8

= 70ms-1

 

(b)  Particle is at rest when V = 0

6t2 + 8t – 8 = 0

2(3t – 2) (t+2) = 0

t  =  2                   t  =  -2

3

particle is at rest at t = 2 seconds

3

   

 

 

 

 

 

 

 

 

 

 

 

Do not accept t = -2. Must be stated.

    8  
19. Area under velocity – time.

graph  gives distance.

 

A  = { h ½  (y1 + y6 ) + y2 + y3 + y4 + y5 )}

 

= 1 { ½ ( 12+47) + 24 + 35 + 41 + 45)}

=  29.5 + 14.5

=  174.5m

 

 

B1

B1

M1

M1

B1

B1

A1

 

Trapezium rule only accepted.

Formula.

 

Substitution into formular.

    8  
20.                  Drawing actual

Scale 1cm  =  2cm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radius      1cm

=  2cm

 

M1

 

M1

 

M1

 

M1

 

M1

M1

 

M1

M1

 

 

Bisect ÐA

 

Bisect Ð B

 

Intersection at centre of inscribed circle.

Draw circle.

 

Measure radius.

Arcs must be clearly shown.

  8  
 

 

 

21.

 

 

 

 

mean = 44.5 +  130

100

=  44.5  +  1.3

=  45.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Variance  S (x – A) 2  =  2800

Sf               100

= 28

S.D.  =  Ö 28  =  5.292

 

 

 

 

M1

 

 

 

 

 

A1

 

M1

 

A1

M1

A1

 

 
    8  
 

 

 

 

 

22.

y = sin x

x    0        60        120        180     240      30      360

sin x 0    0.866     0.866      0     -0.866   -0.866    0

y = cos x

x     q        60        120        180     240    300  360

cos x 1     0.5       -0.5       -1.0     -0.5     0.5   1.0

y = cosx + sinx

x            q        60       120        180     240      30     360

cosx + sinx 1  1.366   0.366       -1   -1.366  -0.366 1.0

(c)      Cos x = – sin x

x  =  450 , 2250

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i)  amplitude   =  1.366

(ii)  Period  =  3000

 

 

 

(a)  (x+1) 2  +  (y-6)2  =  32

x2 + 2x + 1 + y2 – 12y + 36  =  9

x2 + 2x + y2 – 12y + 28  =  0

 

(b)  cos 10  =  OD             DE  =  3

DE                   0.9848

DE  =  3.046

 

(c)  Twice ÐOED

100 x 2  =  200

 

(d)  DAB  =  800

\ DCB  =  1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

A1

 

M1

A1

 

 

M1

A1

 

M1

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formular

(x-a)2 + (y-b)2 = r2

 

 

 

 

 

 

 

 

 

Cyclic quad.

 

 

    8  
24. Let number of trips by 12 tonne lorry be x.

Let number of trips by 7 tonne lorry be y.

 

(a)   x > 0  ;  y > 0

24x + 21y  £  150

 

12 x 25 x X + 15 x 7 x y £ 1200

300x + 105y  £  1200

x > 2y

 

(b)  Ref. Graph paper.

Minimising:

3 – 12 tonne lorry and 2 – 7 tonne lorries should be deployed.

 

 

 

B1

 

 

 

B1

B1

 

 

 

 

 

 

 

MATHEMATICS IV

PART I

 

SECTION 1 (52MKS)

 

  1. Evaluate using logarithms 3Ö7.673 – 15.612

12.3                                                              (4mks)

 

  1. Solve x   –  3x  –  7    =  x – 2                                                                                   (3mks)

3            5             5

 

  1. In the given figure CD is parallel to BAC, calculate the values of x and y. (3mks)

 

 

C                                       D

 

 

 

 

 

 

B                                                A

 

  1. The surface area and volume of a sphere are given by the formulars S = 4pr2 and V= 4/3 pr3.

Express V in terms of S only.                                                                                (3mks)

 

  1. A line perpendicular to y = 3-4x passes through (5,2) and intercepts y axis at (0,k)

Find the value of K.                                                                                              (3mks)

 

  1. An alloy is made up of metals P,Q,R, mixed in the ratio 4:1: 5: A blacksmith wants to make 800g of the

alloy. He can only get metal P from a metallic ore which contains 20% of it. How many Kgs of the ore

does he need.                                                                                                           (3mks)

 

 

  1. The co-ordinate of point A  is (2,8) vector AB =   5    and vector BC  =  4   Find the

-2                                 3

co-ordinate of point C.                                                                                             3mks)

 

  1. Two buildings are on a flat horizontal ground. The angle of elevation from the top of the shorter building to the top of the taller is 200 and the angle of depression from the top of the top of the shorter building to the bottom of the taller is 300. If the taller building is 80m, how far apart are they

(4mks)

  1. The given figure is a quadrant of a piece of paper from a circle of radius 50cm. It is folded along AB

and AC to form a cone . Calculate the height of the cone formed.

(4mks)

 

 

 

 

5Ocm

 

 

50cm

 

 

  1. Express 3.023 as a fraction                                                                                      (2mks)
  2. Point A (1,9), Point B(3,5) and C (7,-3). Prove vectorically that A,B and C are collinear.       (4mks)
  3. A salesman gets a commission of 4% on sales of upto shs 200,000 and an additional 2% on

sales above this. If in January he got shs 12,200 as commission, what were his total sales    (4mks)

  1. Water flows through a cylindrical pipe of diameter 3.5cm at the rate of 2m/s. How long to the nearest minute does it take to fill a spherical tank of radius 1.4m to the nearest minute? (4mks)
  2. Rationalize the denominator in Ö3

Ö 7 – 2

Leaving your answer in the form Öa + Öb

C

Where a ,b, and c are integers                                                                              (3mks)

  1. For positive values of x, write the integral solutions of 3£ x2  £  35                 (4mks)
  2. 8 girls working 5 hours a day take 12 days to drain a pool. How long will 6 girls working 8 hours a day take to drain the pool?( Rate of work is equal) (2mks)

 

SECTION II  (48 mks)

 

  1. In the given circle centre O , A,E,F, is target to the circle at E. Angle FED = 300  <DEC = 200 and  <BC0  = 150

 

 

 

 

A                                                                       F

 

 

 

 

Calculate   (i) <CBE                                                                                              (3mks)

(ii)  <BEA                                                                                            (2mks)

(iii) <EAB                                                                                            (3mks)

 

  1. The sum of the 2nd and third terms of a G.P is 9/4 If the first term is  3,

(a) Write down the first 4 terms of the sequence .                                              (5mks)

(b) Find the sum of the first 5 terms using positive values of the common ratio (r)

(3mks)

  1. E and F are quantities related by a law of the form E = KFn Where k and n are

constants. In an experiment , the following values of E and F were obtained .

 

E 2 4 6 8
F 16.1 127.8 431.9 1024

 

Use graphical method to determine the value of k and n (Graph paper provided)      (8mks)

 

  1. In the domain –2 £ x £ 4 draw the graph of y = 3x2 + 1 –2x .Use  your graph to solve the equation.  6x2 4x + 4 = 0 (graph paper provided)                                                                 (8mks)
  2. A solid sphere of radius 18cm is to be made from a melted copper wire of radius 0.4mm . Calculate the length of wire in metres required to make the sphere.                                       (5mks)

(b) If the density of the wire is 5g/cm3. Calculate the mass of the sphere in kg.        (3mks)

 

  1. A right cone with slant  height of 15cm and base radius 9cm has a smaller cone of height 6cm chopped off to form a frustum. Find the volume of the frustum formed                    (8mks)

 

 

 

 

 

 

 

 

9cm

 

  1. PQRS are vertices of a rectangle centre. Given that P(5,0) and Q and R lie on the line x+5 = 2y, determine

(a) The co-ordinates of Q,R,S,                                                                                                   (6mks)

(b) Find the equation of the diagonal SQ                                                                                     (2mks)

  1. A tap A takes 3 hours to fill a tank. Tap B takes 5 hours to fill the same tank. A drain tap C takes 4 hours to drain the tank. The three taps were turned on when the tank was empty for 1½ hours. Tap A is then closed. Find how long it takes to drain the tank.

(8mks)

 

 

 

 

 

 

 

 

MATHEMATICS IV

PART II

 

SECTION   I  (52MKS)

 

  1. Without using mathematical tables, evaluate                                                                    (3mks)

 

Ö 0.0784 x 0.27                                              (leave your answer in standard form)

0.1875

 

  1. A father is three times as old as his son. In ten years time , the son will be half as old as the father . How

old are they now?                                                                                                                                      (3mks)

 

  1. A,B,C,D, is a parallelogram diagram. ADE is an equilateral triangle. AB and CD are 3cm apart.

AB = 5cm. Calculate the perimeter of the trapezium ABCE                                               (3mks)

 

E                            D                                    C

A                                   B

  1. Given that a = -2, b = 3 and c = -1, Find the value of   a3 – b – 2c2                                    (2mks)

2b2 – 3a2c

 

  1. The exchange rate in January 2000 was US $ 1 = Ksh 75.60. and UK £1 = Ksh 115.80.    A tourist  came to Kenya with US $ 5000 and out of it spent ksh.189,000. He changed   the balance in UK £ . How many pounds did he receive?                                                                                                   (4mks)

 

  1. ABC is a cross – section of a metal bar of uniform cross section 3m long. AB = 8cm and  AC = 5cm.

Angle BAC = 600 . Calculate the total surface area of the bar in M2.                                     (4mks)

 

  1. The bearing of a school chapel C, from administration block A, is 2500 and 200m  apart.

School flag F is 150m away from C and on a bearing of 0200. Calculate the distance and

bearing of A from F.                                                                                                               (5mks)

  1. A box has 9 black balls and some white balls identical except in colour. The probability of picking a white ball is 2/3

(i) Find the number of red balls                                                                                       (2mks)

(ii) If  2  balls are chosen at random without replacement, find the probability that they are of different colour.                                                                                                                          (2mks)

  1. Under an enlargement of linear scale factor 7, the area of a circle becomes 441.p

Determine the radius of the original circle.                                                              (3mks)

  1. A circle has radius 14cm to the nearest cm . Determine the limits of its area.                     ( 3mks)
  2. Expand (1 + 2x)5 up to the term with x3. Hence evaluate 2.045 to the nearest 3 s.f. (4mks)
  3. The nth term of a  G.P is given by  5 x 2 n-2

(i) Write  down the first 3 terms of the G.P                                                                (1mk)

(ii) Calculate the sum of the first 5 terms                                                                            (2mks)

  1. 3 bells ring at intervals of 12min, 18min and 30min respectively. If they rang together at 11.55am, when will they ring together again.                                                         (3mks)
  2. On a map scale 1:20,000 a rectangular piece of land measures 5cm by 8cm. Calculate its actual area in hectares.                                                                                                                                      (3mks)
  3. It costs Maina shs. 13 to buy 3 pencils and 2 rubbers; while Mutiso spent shs.9 to buy one pencil and 2 rubbers. Calculate the cost of a pencil and one rubber                      (3mks)

 

  1. Three angles of a pentagon are 1100, 1000 and 1300. The other two are 2x and 3x respectively. Find their values .                                                              (2mks)

 

SECTION II (48MKS)

 

  1. Members of a youth club decided to contribute shs 180,000 to start a company. Two members withdrew their membership and each of the remaining member had to pay shs. 24,000 more to meet the same expense. How many members remained? (8mks)
  2. A box contains 5 blue and 8 white balls all similar . 3 balls are picked at once. What is the probability that

(a)  The three are white                                                                                         (2mks)

(b)  At least two are blue                                                                                                    (3mks)

(c) Two are white and one is blue                                                                                         (3mks)

 

  1. A rectangular tennis court is 10.5m long and 6m wide. Square tiles of 30cm are fitted on the floor.

(a) Calculate the number of tiles needed.                                                                             (2mks)

(b) Tiles needed for 15 such rooms are packed in cartons containing 20 tiles. How many cartons are

there in total?                                                                                                                 (2mks)

(c)  Each carton costs shs. 800. He spends shs. 100 to transport  each 5 cartons. How  much would one

sell each carton to make 20% profit ?                                                                             (4mks)

  1. The following was Kenya`s income tax table in 1988.

Income in K£ P.a             Rate (Ksh) £

1          –   2100                  2

2101    –   4200                  3

4201     –  6303                  5

6301     –  8400                  7

 

(a) Maina earns £ 1800 P.a. How much tax does he pay?                                         (2mks)

(b) Okoth is housed by his employer and therefore 15% is added to salary to make  taxable income. He

pays nominal rent of Sh.100 p.m His total tax relief is Shs.450. If he earns K£3600 P.a, how much

tax does he pay?                                                                                              (6mks)

  1. In the given figure, OA = a , OB =b,  OP: PA =3:2,  OQ:QB = 3:2

Q

B
R

O                                                                            A

(a) Write in terms of a and b vector PQ                                                                                       (2mks)

(b) Given that AR = hAB where h is a scalar, write OR in terms h, a. and b                    (2mks)

(c) PR  =  K PQ Where K is a scalar, write OR in terms  of k, a and b                           (1mk)

(d) Calculate the value of k and h                                                                                               (3mks)

 

  1. A transformation P = and maps A(1,3) B(4,1) and C(3,3) onto A1B1C1. Find the

 

 

co-ordinates of A1B1C1 and plot ABC and A1B1C1 on the given grid.

Transformation Q maps A1B1Conto A11 (-6,2) B11(-2,3) and C11(-6,6). Find the matrix Q and plot

A11B11C11on the same grid. Describe Q fully.                                                           (8mks)

 

  1. By use of a ruler and pair of compasses only, construct triangle ABC in which AB = 6cm,

BC = 3.5cm and AC = 4.5cm. Escribe circle  centre 0 on BC to touch AB and

AC produced at P and Q respectively. Calculate the area of the circle.                       (8mks)

  1. The following were marks scored by 40 students in an examination

330       334      354     348     337     349     343    335    344    355

392       341      358     375     353     369     353    355    352    362

340       384      316     386     361     323     362    350    390    334

338       355      326     379     349     328     347    321    354    367

 

(i) Make a frequency table with intervals of 10 with the lowest class starting at 31          (2mks)

(ii) State the modal and median class                                                                         (2mks)

(iii) Calculate the mean mark using an assumed mean of 355.5                                        (4mks)

 

 

MATHEMATICS IV

PART 1

MARKING SCHEME

 

1.  

Ö –  7.939

12.3

 

=      No             log

7.939                       0.8998

12.3              1.0899

T.8099   1/3 = 3 + 2.8099                                T.9363                   3

 

=  -0.8635

B1

 

 

 

 

B

 

M1

 

A1

4

 

 Subtraction

 

 

 

 

Logs

 

Divide by 3

 

Ans

2. 5x – 3 (3x –7 )    =  3(x – 2 )

5x – 9x + 21    =   3x – 6

-7x             = -27

x              =  36/7

 

M1

M1

 

A1

3

Multiplication

Removal ( )

 

Ans

3. 3x +5y + x =  180

9x   =  180

x    =   20

y   =    60

M1

A1

B1

3

Eqn

X

B

 

 

4.  

.                               r   =       3v      1/3

4P

 

.                              r   =        S       ½

4P

 

\ 3V      1/3              =            ½

4P                                 4P

 

3V                         =       S       3/2

4P                                 4P

 

V             =       4P      S     3/2

3            4P

 

 

 

B1

 

 

 

 

 

 

 

M1

 

 

 

A1

3

 

 

 

Value r

 

 

 

 

 

 

 

Equation

 

 

 

Expression

5.

 

 

 

 

6.

Grad  line          = ¼

y – 2        = ¼

x – 5

y            =  ¼ x + ¾

k             =      ¾

P in Alloy         = 4/10  x 800

= 320g

100 x 320

20

=  3.2 kg

 

M 1

 

A1

A 1

3

 

B1

 

M1

 

A 1

 

Equation

 

Equation

K

 

 

P in alloy

 

Expression

 

Ans

 

 

 

 

7.

 

 

 

 

B (a,b) ,            C (x ,y)

.a – 2          =    5

.b – 8               -2

.a  = 8     b = 6      B(8, 6 )

x – 8          =   3

y – 6               4

x = 11,  y = 10 c(11,10)

 

 

 

 

 

B1

 

M1

 

 

A1

3

 

 

 

 

B conduct

 

Formular

 

 

C

8.  

 

 

 

 

 

80 – x

 

 

 

 

 

.h = x tan 70

h = (80 – x ) tan 60

\   x tan 70 = 80 tan 60-x tan 60

2.7475x + 1.732x = 138.6

4.4796 x       =   138.6

.h     =    138.6 x tan 60

4.4796

 

= 53.59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

M1

 

 

 

M1

 

A1

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression for  h both

Equation

 

 

 

Expression for h

 

Ans

9.                 2pr    =  90  x 2p x 50

360

r    =  12.5

h     =  Ö2500 –  156.25

=   Ö2343.75

=   48.41 cm

 

M1

P

A1

M1

 

A1

4

Equation

 

.r

expression for h

 

ans

 

 

10.

 

100 n      =   302.323

     n      =      3.023   

99n       =   299.3

n      =    2993

990

=    323/990

 

M1

 

 

A1

4

 

 

Equation

 

 

Ans

 

11. AB        =     3-1

5-9

=     2

-4

BC         =     4

-8

AB         = ½   BC

\ AB // BC

But B is common

\ A,B,C are collinear.

 

 

 

 

B1

 

 

 

 

 

B1

 

 

B1

3

 

 

A B &  BC

 

 

 

 

 

Both

 

 

Both

 

12.       4% of 200,000  = 8000/=

balance                   = 4200/=

6% of  x                 = 4200/=

x                 = 4200 x 100

6

=  70,000

sales                 =  sh. 270,000

B1

 

 

M1

A1

B1

4

 

 

Both

 

 

Expression

Extra sales

Ans

 

 

 

 

 

 

13 .

 

 

 

 

 

Time          =   22/7 x 3.5/2x 3.5/2 x 200   hrs

22/7x 140x140x 140x 3600

 

8960

3600

= 2 hrs 29min

 

 

 

 

 

M1

M1

 

M1

 

A1

4

 

 

 

 

 

 

Vol tank

Vol tank

 

Div x 3600

 

Tank

 

 

14.

 

 

 

 

 

 

 

    Ö3                      =     Ö3           Ö7 + Ö2

Ö7Ö2                         Ö2Ö2         Ö7+ Ö2

 

= Ö3 Ö7 + Ö2

5

 

= Ö21 + Ö6

5

M1

 

M1

 

A1

3

Multi

 

Expression

 

 

 

Ans

15.           3 £ x 2                   x2 £ 35

±1.732 £x                 x £ ± 5.916

1.732 £ x           £ 5.916

integral x : 2, 3, 4, 5

 

B1

B1

B1

B1

4

Lower limit

Upper limit

Range

Integral values

 

16.  No of days   =  8/6 x 5/8  x 12

=   10 days

M1

A1

2

Expression

days

17. (i)  ÐCED      =  ÐECD   = 30

Ð CDE     =  180 – 60

=  120

Ð CBE    =  180-120

=60

(ii) Ð AEC  = 90+30

= 120

Ð EAB  = 180-(120+45)

= 150

(iii) ÐBEO  = 90-45

= 45

B1

B1

B1

B1

 

B1

 

B1

B1

 

B1

8

 

 

 

 

 

 

 

ÐA EB = 450

 

ÐBEO

18.   .ar + ar2    =  9/4

3r + 3r2   =  9/4

12r2  + 12r – 9 = 0

4r2  + 3r – 3   = 0

4r2 + 6r – 2r –3 = 0

(2r – 1) (2r + 3)  = 0

r  = ½  or r   = -11/2

 

Ss      = 3(1- (1/2 )5)

1 – ½

 

= 3 (1-12/3 2)

½

= 6 ( 31/32)

= 6 31/32

 

B1

B1

 

B1

 

M1

A1

 

M1

 

 

 

M1

 

 

A1

8

 

 
19.

LOG  E.    0.3010   0.6021     0.7782     0.9031

LOG  F      1.2068   2.1065     2.6354     3.0103

 

Log E =n log F  + Log K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.n  = gradient    = 2        2.4 – 1.4   =  12  =  3

Log k.             =  0.3       0.7 – 0.3       4

.k              = 1.995

¾ 2

‹         E     =  2F 3

B1

B1

 

 

S1

 

 

P1

 

 

L1

 

 

M1

A1

 

B1

8

 

Log E

Log F

 

 

Scale

 

 

Plotting

 

 

Line

 

 

Gradient

 

 

K

 

 

 

20  

.x       -2     -1     0    1     2    3      4

.y      17      6      1    6     9  22     41

 

.y  =  3x 2  – 2x + 1    –

0       =  3x 2 – 3x – 2

y   =  x     +  3

 

 

 

 

 

 

 

B2

 

B1

 

B1

 

S1

P1

C1

 

L1

 

B1

 

8

 

 

 

All values

 

At least  5

 

Line

 

Scale

Plotting

Smooth curve

 

Line drawn

 

Value of r

 

 

21. .h          = ¾ p x 18 x 18x 18

p x 0.04 x 0.04

= 24 x 18x 18x 18

0.04   x 0.04 x 100

 

=  48,600m

 

density  = 4/3 x 22/7 x 18 x 18x 18x 15 kg

1000

= 122.2kg

M1

M1

M1

M1

 

A1

 

M1

M1

A1

8

N of wire

¸ to length in cm

¸ for length

conversing to metres

 

length

 

expression for density

conversion to kg

ans

 

 

22.  

H = Ö152 – 92

= Ö144

= 12

 

X/6  = 9/12

X    = 4.5

Volume   = 1/3 x 22/7x (81 x 12 –20.25×6 )

 

= 22/21  (972 – 121 -5)

 

=   891  cm3

 

 

M1

 

 

A1

 

M1

A1

M1

M1

M1

 

A1

8

Method

 

 

 

 

Method

Radius

Small vd

Large vol

Subtraction of vol.

 

Ans

23. R(-a , b) , Q (c,d), S(x , y) ,P (5,0)

PR is  diagonal

(a)    Mid point  PR  (0,0)

a + 5    = 0

2

.a         =   -5

b- 0     =   0

2
b = 0

R (-5,0)

Grad  PQ   = -2

Grad RS   = -2

.d – 0   =  -2

c –5

.d – 0      = ½

c+5

.d+ 2c     = 10

2d – c     = 5×2         –

4d – 2c   = 10

5d         = 20

d         = 4

c         = 3

Q (3, 4)

x + 3  ,    y+4   =  (0,0)

2           2

x  =  -3 , y = -4   \ s(-3 -4)

 

(b) y – 4   =   8

x – 3        6

3y  = 8x – 12

 

 

 

 

 

 

 

B1

 

 

 

M1

 

 

 

 

M1

 

 

 

 

A1

 

M1

A1

 

M1

 

A1

8

 

 

 

 

 

 

 

Ans .

 

 

 

Expression both correct

 

 

 

Equation

 

 

 

 

Ans

 

 

 

 

Expression

 

Equation

 

       

MATHEMATICS IV

PART II

MARKING SCHEME

 

 

1.                784 X 27        =

187500

Ö 784 x 9           =    4 x 7x 3

62500                      250

=       42

125

=       0.336

 

 

 

M1

 

M1

 

 

A1

 

 

 

Factors for

Fraction or equivalent

 

C.A.O

    3  
2.      Father 3x ,  r son  = x

2(x +10)        = 3x + 10

2x +20       =  3x + 10

x        = 10

father            = 30

M1

 

 

A1

B1

 

Expression

 

 

 

 

 

 

    3  
3. 3   = sin   60

AE

AE  = 3

Sin 60

= 3.464

perimeter  = 5×2 + 3.464 x 3

= 10+10.393

= 20.39

M1

 

 

 

A1

 

 

B1

Side of a triangle

 

 

 

 

 

 

Perimeter

    3  
4.    .a3 – b-2c2  =  (-2)3 – 3 –2(-1)2

2b2 – 3a2c      2(3)2 –3(-2)2(-1)

= -8 –3-2

18 + 12

= -13

30

M1

 

 

M1

 

A1

Substitution

 

 

Signs

 

C.A.O

    3  
5.        Ksh  189,000          =   $ 189,000

75.6

= $ 2500

balance                    = $ 2500

=  Kshs. 189,000

Kshs. 189,000          =             189,000

115.8

Uk    ₤1632

M1

 

A1

 

M1

A1

 

A1

4

 

Conversion

 

 

 

Conversion

 

6. Area of 2 triangles  =   2 (½ x 8x 5 sin 60)

=   40 sin 60

=   40x 0.8660

= 34.64 cm2

Area of rectangle    = 300 x 8 + 300 x 5 +300 x BC

BC              = Ö64 +25 – 2 x 40cos 60

= Ö89 – 80 x 0.5

= Ö89 – 40

= Ö49

= 7

Total   S.A.              = 300 (8+5+7) + 34.64 cm2

= 6000 + 34.64

= 6034.64 cm2

M1

 

 

 

 

M1

 

 

 

 

M1

 

A1

Areas of D

 

 

 

 

B.C. expression

 

 

 

 

Area

 

    4  
7.    AF2    = 32+42+-2+12x cos 50

= 25 – 24 x 0.6428

= 25-15.43

= 9.57

AF      =  3.094 x 50

AF      =  154.7m

Sin Q  =  200 sin 50o

154.7

= 0.9904

Q   = 82.040

Bearing = 117.96

M1

 

 

 

 

A1

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

Bearing

    5  
8. (i)  No. of white  = w

w       = 2

w+9         3

3w       = 2w + 18

w      =  18

(ii)  p(different colour )  = p(WB N  BW)

= 2   x   9   + 918

3      25     27    25

= 12/25

M1

 

 

 

 

A1

M1

 

A1

 
    4  
9. A.sf                =  1

49

smaller area       = 1 x 441 p

49

=  9p

pr2          = 9p

r2         =  9

r           = 3

 

 

 

M1

 

M1

 

 

A1

 

 
    3  
10.  Largest area         = 22 x (14.5)2

7

=  660.8 cm 2

smallest area          =  22/7 x (13.5)2

= 572.8

572.8    £ A  £ 660.81

M1

 

 

M1

 

A1

 
    3  
11. (1 +2 x)5  =  1 + 5 (2x) + 10 (2x)2 + 10 (2x)3

=  1 + 10x   + 40x2  + 80x3

2.0455    =   1+2 (0.52)5

= 1+10 (0.52)+ 40(0.52)2+80(0.52)3

= 1+5.2 + 10.82 + 11.25

= 28.27

M1

A1

 

M1

 

A1

 
    4  
12.          Tn           =  5x 2n –2

(i)               T1 , T2, T3 = 2.5, 5, 10

(ii)                      S5      =  2.5(25-1)

2-1

= 2.5 (31)

= 77.5

 

B1

M1

 

 

A1

 

All terms

 

    3  
13. 12         = 22 x 3

18         = 2 x 32

30         = 2x3x5

Lcm         = 22 x 32x 5 = 180 min

=  3hrs

time they ring together =11.55 +3 = 2.55 p.m

M1

 

 

 

A1

B1

 
    3  
14.  Map area      = 40cm 2

Actual area   =  200x200x40m2

= 200x200x40ha

100×100

= 320ha

M1

M1

 

 

A1

Area in m2

Area in ha

 

 

CAO

    3  
15.     3p + 2r    = 13

p + 2r    =   9  –

2p           =   4

p     = sh 2

r     = 3.50

M1

 

 

A1

B1

 
    3  
16. 110 + 100+130+2x +3x = 540

5x  = 200

x  = 400

2x , 3x     = 80 and 1200 res

M1

 

A A1

2

 
17. Contribution / person    = 180,000

X

New contribution    = 180,000

x – 2

180,000   – 180,000  = 24,000

x –2               x

180,000x – 180,000x +360,000 = 24,000(x-2)x

24,000x2  –  48,000x – 360,000 =0

x2  – 2x – 15 = 0

x2 – 5x + 3x – 15 = 0

x (x – 5)+ 3 (x – 5) = 0

(x + 3 )(x – 5)  = 0

x     = -3

or     = 5

remaining members            = 5-2

= 3

B1

 

B1

 

M1

M1

 

 

A1

M1

 

 

A1

 

B1

 

‘C’

 

 

 

eqn

mult

 

 

eqn

factor

 

 

both ans

 

remaining members

    8  
18. (a) P (3 white)         =  8   x  7  x   28

13      12     11    143

(b) P(at least 2 blue)=p(WBBorBBWorBWB)orBBB

= 8  x   5  x   4   +  5  x   4  x  8

13     12     11      13     12    11

+ 5  x   8  x   4 +   8 x   7 x   6

13     12     11    13     12    11

= 204

429

= 68

143

(c) p(2 white and one blue )= p(WWB or WBW or BWW)

= 8  x  7  x  5  +  8  x  57  +  587

13     12    11   13     12   11   13    12   11

= 3 x 8 x 7 x 5

13 x 12 x 11

 

=  70

143

M1

A1

 

 

M1

 

M1

 

 

 

A1

 

 

 

M1

M1

 

 

 

A1

 

 
    8  
19. (a) recourt area    =  10.5 x 6  m2

title  area       =    0.3 x 0.3 m2

No of tiles     =    10.5 x 6

0.3 x 0.3

=  700

(b) No of cartons = 700 x 15

20

= 52.5

 

(c) Cost of 525 cartons  =   525 x 100 + 800 x 525

+ transport                        5

=  10,500+420,000

=   430,500

sale price                  =  120 x 4.30,500

100

=  sh    516,600

s.p of a carton            =  516,600

525

= sh. 984

 

 

M1

A1

 

M1

 

A1

 

 

 

B1

 

M1

 

 

M1

 

A1

 

 

 
    8  
20. (a) Maina`s tax dues       = 1800 x 10

100

=        180

(b) Taxable income        = 3600 x 115 – n rent

100

= 36 x 115 – 100 x 12

20

= 4140 – 60

=         4080

Tax dues                         = 10    x 2100  + 15  x 1980

100                 100

= 210 + 297

=        507

Tax  relief                      =        270-

Tax  paid                        =        237

M1

 

A1

 

 

M1

 

 

A1

M1

M1

 

A1

 

B1

 

 

 

 

 

 

 

 

 

 

1st slab

2nd slab

    8  
21.  (a)            PQ                 =  –3/5 a   +  3/1b

=  31/23/5 a

(b)             OR                 =   h a + h b

=   a – ha + hb

=  (1-h) a + h b

(c)              OR                =  3/5 a   + k (31/2 b – 3/5a)

=  (3/53/5k)a +3k b

(d)                      1 – h     =  3/53/5k    (i)

3k    =  h                   (ii)

Sub (i)              1 – 3k    =  3/53/5k

5- 15k    =  3-3k

12k    =  2

k    =   1/6

h     =  ½

 

 

B1

 

M1

A1

M1

A1

 

 

M1

 

 

A1

B1

 
     

8

 
 

22.

 

P(ABC) =     0  – 1      1  4  3      =  -3  -1  -3

1    0      3  1  3            1   4   3

A1 (-3,1)B1 (-1,4)C1(-3,3)

Q(A1B1C1) =  a  b    -3 –1 -3    =        -6 –2 –6

c d       1   4  3                2   8   6

 

=> -3a + b =  -6                -3c + d = 2

-a + 4b   =  -2 x 3         -c + 4d = 8 x 3

– 3a  + 12b = -6              – 3c + 12d = 24

11b  = 0                     -11d  = -22

b = 0                           d = 2

a = 2                           d = 2

c  = 0

Q =    2     0

0       2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

A1

 

 

M1

 

 

M1

 

 

 

 

 

A1

 

 

 

B1

 

 

 

 

B1

 

 

 

B1

 

 

A1 B1 C1

 

 

 

 

 

 

 

 

 

 

 

L Q

 

 

 

A1 B1 C1 drawn

 

 

 

 

All BII CII

Ploted

 

 

 

 

Destruction

 

 

 

    8  
23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24.

R     = 2.2CM ± 0.1

Area = 22 x  2.2 x 2-2

7

= 15.21cm2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ef =40                        efd = -80

(ii) model class    = 351- 360

modern class  = 341 – 350

(iii) mean             = 355.5  – 80

40

=  355.5 – 2

=  353.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

B1

 

B1

 

B1

 

B1

 

B1

 

M1

 

 

 

1

1

 

 

8

 

B1

B1

 

M1

 

 

A1

 

B1

 

B1

B1

B1

 

 
    A1  
    8  

 

 

 

MATHEMATICS V

PART I

 

SECTION 1 (52 MARKS)

 

 

 

  1. Use logarithms to evaluate 6 Cos 40   0.25
    63.4                                                                                                                                                                                                       (4mks)
  2. Solve for x in the equation (x + 3) 2 – 5 (x + 3) = 0 (2mks)
  3. In the triangle ABC, AB = C cm. AC = bcm. ÐBAD = 30o and ÐACD = 25o. Express BC in terms of b and c.                                                                                                     (3mks)
  4. Find the equation of the normal to the curve y = 5 + 3x – x3 when x = 2 in the form
    ay + bx = c                                                                                                             (4mks)
  5. Quantity P is partly constant and partly varies inversely as the square of q. q= 10 and p = 5 ½  when q =20. Write down the law relating p and q hence find p when qs is 5.            (4mks)
  6. Solve the simultaneous equation below in the domain 0  £ x £  360 and O£  y £ 360
    2 Sin x + Cos y = 3
    3 Sin x – 2 Cos y = 1                                                                (4mks)
  7. Express as single factor 2     –     x + 2         +       1
    x + 2    x2 + 3x + 2         x + 1                                       (3mks)
  8. By use of binomial theorem, expand (2 – ½ x )5 up to the third term, hence evaluate (1.96)5
    correct to 4 sf.                                                                                                        (4mks)
  9. Points A(1,4) and B (3,0) form the diameter of a circle. Determine the equation of the circle and write it in the form ay2 + bx2 + cy + dy = p where a, b, c, d and p are constants.                                                                                                                              (4mks)
  10. The third term of a GP is 2 and the sixth term is 16. Find the sum of the first 5 terms of the GP. (4mks)
  11. Make T the subject of the formulae 1       –  3m   +  2
    T2         R         N                        (3mks)
  12. Vectors, a =   2     b =   2   and   c –   6
    2              0                   4
  13. By expressing a in terms of b and c show that the three vectors are linearly dependent.                                                                                                                              (3mks)
    A cylindrical tank of base radius 2.1 m and height is a quarter full. Water starts flowing into this tank at 8.30 a.m at the rate of 0.5 litres per second. When will the tank fill up? (3mks)
  14. A piece of wood of volume 90cm3 weighs 54g. Calculate the mass in kilograms of 1.2 m3 of the wood.      (2mks)
  15. The value of a plot is now Sh 200,000. It has been appreciating at 10% p.a. Find its value 4 years ago.
    (3mks)
  16. 12 men working 8 hours a day take 10 days to pack 25 cartons. For how many hours should 8 men be

working in a day to pack 20 cartons in 18 days?                                                     (2mks)

SECTION II (48MARKS)

  1. The tax slab given below was applicable in Kenya in 1990.
    Income in p.a.                           rate in sh
    1  – 1980                                  2
    1981 – 3960                              3
    3961 – 5940                              5
    5941 – 7920                              7
    Maina earns Sh. 8100 per month and a house allowance of Sh. 2400. He is entitled to a tax relief of Sh.

800 p.m. He pays service charge of Sh 150 and contributes Sh 730 to welfare. Calculate Mwangis net

salary per month.                                                                                                    (8mks)

  1. OAB is a triangle with OA = a , OB = b. R is a point of AB. 2AR = RB. P is on OB such that
    3OP = 2PB. OR and AP intersect at Y, OY = m OR and AY = nAP. Where m and n are scalars.    Express in terms of a and b.
    (i) OR                                                                                                                    (1mk)
    (ii)AP                                                                                                                    (1mk)

    (b) Find the ratio in which  Y divides AP                                                                (6mks)

  2. The table below gives related values of x and y for the equation y = axn where a and n are constants
X 0.5 1 2 3   10
Y 2 8 32   200 800

By plotting a suitable straight line graph on the graph provided, determine the values of a and n.

20.       Chalk box x has 2 red and 3 blue chalk pieces. Box Y has same number of red and blue

pieces. A teacher picks 2 pieces from each box. What is the probability that
(a)        They are of  the same colour.                                                                            (4mks)
(b)        At least one is blue                                                                                           (2mks)
(c)        At most 2 are red                                                                                              (2mks)

21.  Point P(50oN, 10oW) are on the earth’s surface. A plane flies from P due east on a parallel of

latitude for 6 hours at 300 knots to port Q.
(a) Determine the position of Q to the nearest degree.                                                    (3mks)
(b)  If the time at Q when the plane lands is 11.20am what time is it in P.                      (2mks)
(c) The plane leaves Q at the same speed and flies due north for 9 hours along a longitude to

airport R. Determine the position of R.                                                                       (3mks)
22.       Using a ruler a pair of compasses only, construct :
(a)        Triangle ABC in which AB = 6cm, AC = 4cm and Ð ABC = 37.5o.                                (3mks)
(b)        Construct a circle which passes through C and has line AB as tangent to the circle at A.             (3mks)
(c)        One side of AB opposite to C, construct the locus of point P such that  ÐAPB = 90o.              (2mks)
23.       A particle moves in a straight line and its distance is given by S = 10t2 – t3 + 8t where S is

distance in metres at time t in seconds.
Calculate:
(i) Maximum velocity of the motion.                                                                             (4mks)
(ii) The acceleration when t = 3 sec.                                                                              (2mks)
(iii) The time when acceleration is zero.                                                                                   (2mks)

 

 

 

  1. A rectangle ABCD has vertices A(1,1) B(3,1), C(3,2) and D(1,2). Under transformation

matrix M =   2  2   ABCD is mapped onto A1B1C1D1

1   3
under transformation M =   -1  0    A1B1C1D1 is mapped onto  A11B11C11D11. Draw on the given grid
0 –2

(a)       ABCD, A1B1C1D1 and A11B11C11D11                                                                  (4mks)
(b)        If area of ABCD is 8 square units, find area of A11B11C11D11.                              (3mks)
(c)        What single transformation matrix maps A11B11C11D11 onto A1B1C1D1               (1mk)

MATHEMATICS V

PART II

 

SECTION 1 (52 Marks)

 

  1. Evaluate without using mathematical tables (2.744 x 15 5/8)1/3                              (3mks)
  2. If 4 £ x £ 10 and 6 £ y £5, calculate the difference between highest and least
    (i) xy                                                                                                                    (2mks)
    (ii)  y/x                                                                                                                     (2mks)
  3. A 0.21 m pendulum bob swings in such a way that it is 4cm higher at the top of the swing than at the bottom. Find the length of the arc it forms.       (4mks)
  4. Matrix 1        2x   has on inverse, determine x                                                     (3mks)
    x +3      x2
  5. The school globe has radius of 28cm. An insect crawls along a latitude towards the east from A(50o, 155oE) to a point B 8cm away. Determine the position of B to the nearest degree.                                                                                                                                                 (4mks)
  6. The diagonals of triangle ABCD intersect at M. AM = BM and CM = DM. Prove that triangles ABM and CDM are Similar.       (3mks)
  7. Given that tan x = 5/12, find the value of 1  –   sinx
                                                                         Sin x + 2Cos x,   for 0 £ x £ 90           (3mks)

 

  1. Estimate by MID ORDINATE rule the area bounded by the curve y = x2 + 2, the x axis and the lines x = O and x = 5 taking intervals of 1 unit in the x. (3mks)
  2. MTX is tangent to the circle at T. AT is parallel to BC. Ð MTC = 55o and Ð XTA = 62o. Calculate Ð (3mks)
  3. Clothing index for the years 1994 to 1998 is given below.
Year 1994 1995 1996 1997 1998
Index 125 150 175 185 200

Calculate clothing index using 1995 as base year.                                                          (4mks)

  1. A2 digit number is such that the tens digit exceeds the unit by two . If the digits are reversed, the number formed is smaller than the original by 18. Find the original number. (4mks)
  2. Without using logarithm tables, evaluate log5 (2x-1) –2 + log5 4 = log5 20             (3mks)
  3. Mumia’s sugar costs Sh 52 per kg while imported sugar costs Sh. 40 per kg. In what ratio should I mix the sugar, so that a kilogram sold at Sh. 49.50 gives a profit of 10%. (4mks)
  4. The interior angles of a regular polygon are each 172o. Find the number of sides y lie polygon.                                                                                                                            (2mks)
  5. Evaluate 2x   =       2    +        3
    341       9.222                                                                           (2mks)
  6. A water current of 20 knots is flowing towards 060o. A ship captain from port A intends to go to port

B   at a final speed of 40 knots. If to achieve his own aim, he has to steer his ship at a course of 350o.

Find the bearing of A from B.                                                                                (3mks)

SECTION II  (48 MARKS)

  1. 3 taps, A, B and C can each fill a tank in 50 hrs, 25 hours and 20 hours respectively. The three taps are turned on at 7.30 a.m when the tank is empty for 6 hrs then C is turned off. Tap A is turned off after four hours and 10 minutes, later. When will tap B fill the tank? (8mks)
  2. In the domain –5 £ x £ 4, draw the graph of y = x2 + x – 8. On the same axis, draw the graph of y + 2x = -2. Write down the values of x where the two graphs intersect. Write down an equation in x whose roots are the points of intersection of the above graphs. Use your graph to solve. 2x2 + 3x – 6 = 0.                                                                                            (8mks)
  3. The average weight of school girls was tabulated as below:
Weight in Kg 30 – 34 35 – 39 40 – 44 45 – 49 50 – 54 55-59 60-64
No. of Girls 4 10 8 11 8 6 3

(a) State the modal class.                                                                                           (1mk)
(b) Using an assumed mean of 47,
(i) Estimate the mean weight                                                                                (3mks)
(ii) Calculate the standard deviation.                                                                      (4mks)

 

 

 

 

 

 

 

 

 

 

  1. The table below shows values of y = a Cos (x – 15) and y = b sin (x + 30)
X 0 15 30 45 60 75 90 105 120 135 150
a Cos(x-5) 0.97       0.71 0.5       -0.5 -0.71
b sin(x+3) 1.00       2.00       1.00   0.00

(a) Determine the values of a and b                                                                               (2mks)
(b) Complete the table                                                                                                  (2mks)
(c) On the same axes draw the graphs of y = across(x – 15) and y = b sin(x + 30)            (3mks)
(d) Use your graph to solve ½ cos (x – 15) = sin(x + 30)                                                 (1mk)

21.    The diagram below is a clothing workshop. Ð ECJ = 30o AD, BC, HE, GF are vertical

walls. ABHG is horizontal floor. AB = 50m, BH = 20m,  AD=3m

 

 

 

(a) Calculate DE                                                                                                           (3mks)
(b) The angle line BF makes with plane ABHG                                                              (2mks)
(c) If one person requires minimum 6m3 of air, how many people can fit in the workshop         (3mks)

  1. To transport 100 people and 3500 kg to a wedding a company has type A vehicles which take          10 people and 200kg each and type B which take 6 people and 300kg each. They must not use more

than 16 vehicles all together.
(a)     Write down 3 inequalities in A and B which are the number of vehicles used and plot them

in a graph.                                                                                                           (3mks)
(b)     What is the smallest number of vehicles he could use.                                          (2mks)

(c)     Hire charge for type A is Sh.1000 while hire for type B is Sh.1200 per vehicle. Find the cheapest

hire charge for the whole function                                                                        (3mks)

A circle centre A has radius 8cm and circle centre B has radius 3cm. The two centres are

12cm apart. A thin  tight string is tied all round the circles to form interior common tangent. The tangents CD and EF intersect at X.

(a) Calculate AX                                                                                                           (2mks)
(b) Calculate the length of the string which goes all round the circles and forms the tangent.
(6mks)

 

  1. Airport A is 600km away form airport B and on a bearing of 330o. Wind is blowing at a speed of

40km/h from 200o. A pilot navigates his plane at an air speed of 200km/h from B to A.
(a)     Calculate the actual speed of the plane.                                                                (3mks)
(b)     What course does the pilot take to reach B?                                                          (3mks)
(c)     How long does the whole journey take?                                                                (2mks)

 

MATHEMATICS V

PART I

MARKING SCHEME

 

1 SOLUTION MKS AWARDING
  No         Log

13.6        1.1335   +

Cos 40    1.8842

1.0177   –

63.4       1.8021

1. 2156

(4 + 3.2156) 1/4

1.8039

Antilog    0.6366

 

B1

 

M1

 

 

M1

 

A1

 

Log

 

+

 

 

divide by 4

 

C.A.O

    4  
2. (x + 3) (x + 3 – 5) = 0

(x +3)b (x – 2) = 0

x = -3 or x = 2

M1

 

A1

 

Factors

 

Both answers

3 BD = C Sin 30  = 0.05

CD = b Cos 25

= 0.9063b

‹ BC = 0.9063b + 0.5 C

B1

 

B1

B1

 

BD in ratio from

 

CD in ratio form

Addition

    3  
4  Dy  = 3 – 3x2
dx
x = 2, grad = 1
9
Point (2,3)
y – 3  = 1
x – 2     9

9y – 27  = x – 2
9y – x   =  25

B1

 

B1

 

M1

 

 

A1

 

Grad equ

 

Grad of normal

 

Eqn

 

 

Eqn

 

    4  
5   700 = 100 + n
2200 = 400 + n

1500 = 300m

m = 5

n = 200

P = 5 + 200
q2
When q = 5 P = 13

M1

 

 

A1

 

 

B1

B2

Equan

 

 

Both ans

 

 

Eqn (law)

Ans (P)

    4  
 

6

 

4 Sin x + 2 cos y = 6

3 Sin x – 2 Cos y = 1
7 sin x                  = 7

Sin x            = 1

X                = 90

Cos y          = 1

Y        = 0o

 

M1

M1

 

 

A1

 

B1

 

Elim

Sub

 

 

 

 

 

7 2(x +1) – 1(x + 2) + x + 2

(x+2) (x +1)
= 2x +2 – x – 2 + x = 2

(x +2) (x + 1)

=     2x + 2

(x + 2)  (x + 1)

=     2
x + 2

M1

M1

 

 

 

A1

Use of ccm

Substitution

 

 

 

Ans

8 (-2 – ½ x)5  = 25  – 5 (2)4 ( ½ x) + 10(2)3( ½ x)2

=  32 – 40x + 20x2

= 32 – 4 (0.08) + 20 (0.08)2

= 32 – 0.32 + 0.128
= 3

M1

A1

 

M1

A1

 

 

 

 

 

    4  
9. Circle centre C = (3 +1,   0 + 4)

2                 2

C( 2, 2)

R =Ö (2 – 0)2 + (2 – 3)2

=Ö 5

(y – 2)2 + (x – 2)2 = Ö5

y2 + x2 – 4y – 4x =  8 + Ö5

B1

 

B1

 

M1

 

A1

Centre

 

Radius

 

 

 

 

    4  
10  ar2 =2,  ar5 = 16

a  = 2  \ 2 r5 = 16

r2       r2

2r3 = 16

r3 = 8

r = 2, a = ½

 

S5= ½ (1 – ( ½ )5)

½

= 1 – 1/32

= 31/32

M1

 

 

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

Both

 

Sub

 

 

CAO

    4  
11 NR – 3MT2  = 2RT2

T2(2R + 3M) = NR

T2   =   NR

2R + 3m

T =  ! Ö  NR
2R + 3m

M1

 

M1

 

A1

X mult

 

72

 

ans

    3  
12  2  = m   2   + n    6

2            0           4

2 = 2m + 6n

2 = 0 + 4n

n = ½

m = – ½

\a = – ½ b + ½ c

\a b c are linearly dep

M1

 

 

 

 

A1

 

B1

 
    3  
13 Volume = 22 x 2.1 x 2.1 x 2 x ¾ m3

7

Time = 11 x 0.3 x 2.1 x 3 x 1,000,000

500 x 3600

= 11.55

= 11.33 hrs

time to fill = 8.03 pm

M1

 

 

M1

 

 

 

A1

 
    3  
14 Mass = 54   x  1.2 x 1,000,000

90              1000

= 720kg

M1

 

A1

 
    2  
15 V3 = P

P(0.9)3     = 200,000

P = 200,000

0.93

= 200,000

0.729

= Sh 274,348

M1

 

M1

 

 

 

A3

 
    3  
16 No of hours = 8 x 12 x10 x 20

8 x 18 x 25

= 19200

3600

= 5hrs, 20 min

M1

 

 

 

A1

 
    2  
17  Taxable income = 8100 + 2400

= sh. 10,500

=   ₤6300

Tax dues      = Sh 1980 x 2 + 1980 x 3 + 1980 x 5 + 3670 x 7

12

= 22320

12

= Sh 1860

net tax = 1860 – 800 p.m.

= Sh 1060

Total deduction = 1060 + 150 + 730

= 1940

Net salary = 10,500 – 1940

= Sh 8560 p.m.

B1

 

 

M1

M1

 

A1

 

B1

 

B1

 

M1

A1

Tax inc

 

 

2

2

 

 

 

net tax

 

total dedu.

    8  
18 OR = 2/3 a + 1/3b or (1/3 (2a + b)

AP = 2/5 b – a

OY = m OR = A + n (2/5b – a)

2/5m b + ma = (1 – n)a + 2/5 n b

2/5m = 2/5n
m = n

\m = 1 – m

2m = 1

m  = ½ = n

½ AP = Ay

AY:AP = 1:1

B1

B1

 

B1

M1

M1

A1

A1

 

 

B1

 

 

 

EXP, OY

Eqn

M = n

Sub

CAO

 

 

Ratio

    8  
 

19

 

 

 

 

Log y = n log x + log a

Log a = 0.9031

A = 8

Grad = 1.75 – 0.5

0.4 + 0.2

= 1.25
0.6

= 2.08

n = 2

\y = 8x2

x = 3  y = 8 x 32   = 72

y = 200           x = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

B1

 

B1

B1

S1

P1

L1

 

 

 

 

Log x

Log y

 

 

 

A

 

N

Missing x and y

Scale

Points

Line

    8  
 

 

 

20

 

 

 

P (same colour) = P (XRRrr orXBB or YXX or YBB)

= ½ (2/5 x ¼ + 3/5 x 2/4)  x 2

2  +  6
20     20

=    8
20

2/5

(b) P(at least 1B) = 1 – P(non blue)

= 1 – P (XRR or YRR)

= 1 – ½ (2/5 x ¼) x 2

= 1 – 1/10

= 9/10

(c) P(at most 2 Red) = 1 – P (BB)

= 1 – ½ (3/5 x 2/4)2

= 1 – 6/20

= 14/20 or 7/10

 

 

 

M1

M1

 

M1

 

A1

 

 

M1

 

A1

M1

 

 

A1

 

 

 

Any 2

Any 2

 

Fraction

 

 

    8  
21 (a) PQ  = 1800nm

q     =     1800

60 x 0.6428

= 46.67

= 47o

Q (50oN, 37oE)

 

(b) Time diff = 47 x 4
60

= 3.08

Time at P = 9.12am

(c) QR = 2700 nm

x o   = 2700

60

= 45o

R (85oN, 133oW)

M1

 

 

 

A1

 

 

M1

 

A1

 

M1

 

 

A1

B1

 
    8  
 

 

22

   

 

 

 

B1

B1

 

B1

B1

B1

B1

B1

B1

 

 

 

 

 

Bisector of 150

Bisector 75

 

AB  AC

^ at A

Bisector AC

Circle

Ð AB

Locus P with A  B excluded

    8  
24                           A1B1 C1D1

2  2  1 3 3 1   =  4  8 10 6

1  3  1 1 2 2       4  6  9  7

 

A11 B11 C11  D11

-1   0     4  8 10  6       =   -4  –8   -10   -6

0 –2     4  6  9   7            -8   -12  -18  -14

 

NM =   -1  0        2  2

0 –2       1  3

 

=  -2  -2

-2   -6

 

 

(b)      det  = Asf  =  12 – 4    = 8

Area A11 B11 C11 D11  = 8 x 8

= 64  U2

(c) Single matrix = Inv N
= ½    -2 –  0

0       –1

 

=     -1     0

0       – ½

 

 

B1

 

 

B1

 

 

 

 

 

 

 

 

 

 

B1

M1

A1

 

 

 

 

B1

 

 

Product

 

 

Product

 

 

 

 

 

 

 

 

 

 

Det

 

 

 

 

 

 

Inverse

    6  
23  

Ds  = 20t  – 3t2 + 8 =0

Dt     3t2 – 20t – 8 = 0

T =  20 !  Ö400 + 4 x 3 x 8

6

t = 7.045 sec

max vel          = 148.9 – 140.9 – 8

= 0.9 m/s


d2 s
  = 6t – 20

dt2

when t = 3   a = -2m/s2

6t – 20 = 0

6t  = 20

t = 3 2/3 sec

 

 

M1

 

A1

M1

A1

M1

 

A1

M1

 

A1

 
    8  
       

 

 

 

 

 

 

 

 

MATHEMATICS V

PART II

MARKING SCHEME

 

No Solution Mks Awarding
1  2744 x 125   1/3

1000            8

 

2744  1/3  x   53     1/3

1000            23

 

23 x 73  1/3  x   5

103                         2

 

2 x 75   = 3.5

10      2

 

 

 

M1

 

 

 

 

M1

A1

 

 

 

Factor

 

 

 

 

Cube root

 

    3  
2 (i) Highest – 10 x 7.5 = 75

Lowest  – 6 x 4 =  24

51

(ii) Highest = 7.5 = 1.875

4

Lowest = 6   = 0.600

10   1.275

M1

A1

 

M1

 

A1

Highest

 

 

Fraction

 

 

    4  
3 Cos q  =  17  = 0.8095

21

 

q = Cos 0.8095

= 36.03o

 

Arc length = 72. 06 x 2 x 22 x 21

360                       7

= 26.422cm

M1

 

 

A1

 

 

M1

 

A1

 

 

 

q

    4  
4  x2 – 2x(x +3) = 0

x2 – 2x2 – 6x = 0

-x2 – 6x = 0

either x = 0

or  x = 6

M1

 

M1

 

A1

Equ

 

Factor

 

Both A

    3  
 

 

5

 

8  = x  x 2 x 22 x 28 Cos 60o

360            7

 

8 =  x    x 44 x 28 x 0.5

360         7

x =   8 x 360 x 7
        44 x 28 x 0.5

= 32.73o

= 33o

 

 

M1

 

 

 

 

M1

 

A1

B1

 

 

 

 

 

 

 

x exp

 

 

 

6

 

 

 

ÐDMC = Ð AMB vert. Opp = q

ÐMAB  = Ð MDC = 180 – q BASE Ls of an isosc. <

2
Ð MBA = Ð MAC   180 – q base angles of isos <

2

<’s AMC and < CDM are equiangle

 

\ Similar proved

 

 

 

 

B1

 

 

 

 

 

B1

 

B1

 
    3  
7 Tan x = 5/12

h = Ö b2 + 122

= Ö25 + 144

= Ö169

= 13

 

1 – Sinx               =       1 – 5

sin x + 2 Cos x      5/13 + 2 x 12/13

 

12/13      = 12 x 13  =  12

29/13          13   29      29

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

M1

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypo

Sub

 

    3  
8 Y = x 2 + 2

 

 

 

 

 

Area = h (y1, = y2 +……..yn)

= 1(2.225 + 4.25 + 8.25 +14.25 + 22.25)

= 51.25 sq units

 

 

 

B1

 

 

M1

 

A1

 

 

 

Ordinals

    3  
 

9

ÐCBA = 117o

Ð ACD = 55

Ð BAC = 180 – (117 + 55) = 8o

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

B1

 

3

 
10  

 

 

 

B1

B1

B1

B1

1994

1996

1997

1998

    4  
11. Xy = 35

y = 35/x

9x – 9y = -18

Sub x2 + 2x – 35 = 0

x2 + 7x – 5x – 35 = 0

x (x + 7) – 5(x + 7) = 0

(x – 5) (x + 7) = 0

x  = -7

x = +5

y = 7

Smaller No.

= 57

= 75

B1

 

M1

 

 

 

 

A1

 

 

 

B1

 

 
    3  
12 Log5 (2x – 1 )4  = log552

20

4(2x – 1)  = 52

20

2x – 1 = 25

5

2x – 1 = 125

2x = 126

x = 63

M1

 

M1

 

 

 

 

 

A1

 
    3  
13 C.P = 100 x 49.50

110

= 45/-

52x + 40y = 45

x + y

45x + 45y  = 52x + 40

-7x  = -54

x/y  = 5/7

x : y = 5 : 7

 

 

B1

M1

 

 

M1

 

A1

 
    4  
14  

2n – 4 it angle = 172

n

(2n – 4) x 90 = 172n

n

90 (2n – 4) x 90 = 172

n

180 n – 360 = 172n

 

180n – 172n = 360

8n = 360

n = 45

 

M1

 

A1

 

M1

 
    2  
15 2 x = 2.    1    +    3.    1

6.341                  9.22

2x = 2 x 0. 1578 + 3 x 0.1085

= 0.3154 + 0.3254

= 0.6408

x = 0.3204

 

 

B1

 

 

A1

 

 

Tables

    2  
16 Bearing 140o

Sin q = 20 Sin 110

40

= 0.4698

= 228.02

Bearing of A from B = 198.42

 

M1

 

 

A1

B1

 
    3  
17 Points that each tap fills in one hour

 

A =  1   B  = 1       C – 1
          50         25            20

In one hour all taps can fill = 1  +  1   +  1   =  11

50    25      20     100

In 6hrs all can fill =  11  x 6 = 33 parts

100                 50

taps A and B can fill =  = 1  +  1  = 3 part in 1 hr

50    25    50

In 4 1 hrs, A and B =  25 x 3  +  1

6                           6     50     4

Parts remaining for B to fill = 1 – 33  +  = 1  – 91   = 9 parts

50         4           100    100

Time  taken =  9  x  25  hrs = 2 ¼ hrs

100          1

7.30 am

6.     hrs

13.30

  4.10

5.40pm

  2.15

  7.55 pm

 

 

 

M1

 

 

 

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

M1

 

A1

 

 
 

 

18

 

 

 

 

 

 

 

 

 

x2 + x – 8 = -2 – 2x

y = x2 + 3x – 6

Points of intersection (-4, 1.4)

y = x2 + x – 8 = 2x2 + 3x – 6

x2 + 2x + 2

y = x2 + x – 8 x 2

2y = 2x2 + 2x – 16

0 = 2x2 + 3x – 6

2y = -x  – 10

y = – 2.6

Ny = 1.2

 

8

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

 

 

 

 

 

Eqn

Point of inter

 

 

 

 

 

Line eqn

 

Both

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)    Modal class = 45 – 49

(i)               Mean = 47 + -55

50

= 47 – 1.1

= 45.9

 

(ii) Standard deviation = Ö 3575 –  –55 2
50         50

=  Ö71.5   – 1.21

=Ö 70.29

= 8.3839

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fd

fd2

    8  
20  

 

 

 

 

 

 

 

 

(a)    a =   1
b = 2

½ cos (x – 15) = Sin (x + 30)

has no solution in the domain

 

 

 

 

 

 

 

 

B1

B1

B1

 

B1

 

 

 

 

 

 

 

 

All

All

A & b

 

 

    8  
21 (a)       O Cos 30 = 20

X

X =  20

0.866

= 23.09

 

DE = Ö 502   + 23.092

= Ö 2500 + 533.36

= Ö 3033.36

= 55.076m

 

(b)       GB =  Ö 202  + 502

= 53.85

Tan q = 14.55
53.85

=  0.27019

q    = 15.12o

 

 

 

 

B1

 

M1

 

 

 

A1

 

 

M1

 

 

A1

 
  8  
  (c)       Volume of air = 50 x 20 x 3 + ½ x 20 x 11.55 x 50

= 3000 + 5775

= 8775

No. of people  =   8775
                               6

= 1462.5

j 1462

 

M1

 

M1

 

 

A1

 
    8  
22 (a)    A + B [ 16

5A + 3B ³ 50

2A + 3B [ 35

 

 

(b)   14 vehicles

 

(c)    A – 6 vehicles

B –  8

Cost = 6 x 1000 + 8 x 1200

= 6000 + 9600

= 15,600/=

 

 

B1

 

 

B1

 

B1

 

M1

 

A1

 

 

 

In equation 3

 

 

Vehicles

    8  

23

 

 

 

 

 

 

 

 

 

 

 

 

 

x        =      8

12 – x           3

 

= 8.727

FBX =    3    =  0.9166   = 23.57
3.273

 

3FBX = 47.13

 

Reflex  Ð FBD = 312.87

 

Reflex arc FD = 312.87   x 22  x 6
360           7

 

= 16.39cm

Reflex Arc CE = 312.87 x 22 x 16
360         7

 

=  43.7cm

 

FE (tangent) =  Ö144 – 121

= Ö 23

= 4.796cm

2 FE            =  9.592

 

Total length = 9.592 + 4.796 + 43.7 + 16.39

= 74.48 cm2

 

 

 

 

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

M1

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

 

M1

A1

 
    8  

24

 

 

 

 

 

 

 

 

 

 

 

 

(b)         200      =    40

Sin 50       Sin q

 

Sin q =  40Sin 50
                200
= 0.7660
5
=0.1532

q         = 8.81o

Ð ACB = 180 – (50 + 8.81)o

= 121.19o

    x             =   200
Sin 121.19     Sin 50

 

= 200 x Sin 121.19
Sin 50

= 200 x 0.855645
0.7660

= 223.36Km/h

 

(b)  Course = 330o – 8.81o

= 321.19o

 

(c) Time  =    600
321.19o

 

= 2.686 hrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

 

 

 

 

A1

 

 

 

M1

 

 

M1

 

 

A1

 

B1

 

 

 

M1

 

A1

 

 

8

 

 

 

 

Nyeri County Best National, Extra County Secondary Schools For 2024 form One Selection, Admissions

Nyeri County is the home of some of the best and top performing National, Extra County and County Secondary schools in Kenya. Selection and ranking of these best schools has been done based on performance at KCSE examinations and school facilities.

In this post, we have collected for you a list of all the schools in the County. This site also provides complete information on all individual schools here. Get specific and individual schools’ KCSE Results Analysis, Contacts, Location, Admissions, History, Fees, Portal Login, Website and KNEC Code details here: Schools’ Portal.

This is the latest updated list of all the best, top National, Extra County and County schools in the County at the KCSE Exams:

2022 KCSE PERFORMANCE OF THE SCHOOLS

Position Nationally Name of School Region County Mean Score Mean Grade Type
36 Kagumo High Central Nyeri 9.58 B+{plus} Boys
106 Bishop Gatimu Ngandu Girls High Central Nyeri 8.7014 B{plain} Girls
203 NYERI HIGH Central Nyeri 7.81 B-{minus) Boys
278 CHINGA BOYS Central Nyeri 7.213 C+{plus} Boys
294 Othaya Boys High Central Nyeri 7.1445 C+{plus} Boys
298 Kanjuri High School Central Nyeri 7.1289 C+{plus} Boys
346 SOUTH TETU GIRLS Central Nyeri 6.599 C+{plus} Girls
470 GIAKANJA BOYS Central Nyeri 5.58 C (plain) Boys

2021 KCSE PERFORMANCE OF THE SCHOOLS

Pos. School KCSE  Mean County Type
25 Kagumo High 8.99  Nyeri Boys
26 Bishop Gatimu Ngandu 8.962  Nyeri Girls
71 St Mary’s Boys Nyeri 8.1  Nyeri Boys
80 Mahiga Girls 8  Nyeri Girls
133 Nyeri High 7.4  Nyeri Boys

 

The schools have the best facilities and perform very well at the KCSE examinations.

Consider joining these schools to get the best services, education and performance at the KCSE examinations.

Get a list of all the schools in the County below:

14300006 MOI HIGH MBIRURI National Boys
14300011 SIAKAGO GIRLS HIGH SCHOOL National Girls
14303101 KANGARU SCHOOL Extra County Boys
14303102 ST. MARYS KIANGIMA SECONDARY SCHOOL Extra County Girls
14303104 KANGARU GIRLS SCHOOL Extra County Girls
14303105 KIRIMARI SECONDARY SCHOOL Extra County Boys
14303107 ITABUA SECONDARY SCHOOL Sub County Mixed
14303108 GATUNDURI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14303110 EMBU COUNTY MIXED SECONDARY SCHOOL Sub County Mixed
14303111 KAMIU DAY SECONDARY SCHOOL Sub County Mixed
14303112 GATONDO SECONDARY SCHOOL Sub County Mixed
14303116 NTHAMBO DAY SECONDARY SCHOOL Sub County Mixed
14303117 KIMANGARU SECONDARY SCHOOL Sub County Mixed
14303118 DEB KANGARU SECONDARY SCHOOL Sub County Mixed
14303119 ST. MICHAEL MUNICIPALITY MIXED DAY SECONDARY SCHOO Sub County Mixed
14303120 ST. PETER’S GATITURI MIXED SECONDARY SCHOOL Sub County Mixed
14303121 URBAN INTERGRATED SECONDARY SCHOOL Sub County Mixed
14303201 ST PAUL’S HIGH SCHOOL KEVOTE Extra County Boys
14303202 ST.JOSEPH’S SECONDARY SCHOOL-MTETU County Mixed
14303203 ST TERESA’S GIRLS’ – KITHIMU Extra County Girls
14303205 KITHEGI MIXED SECONDARY SCHOOL Sub County Mixed
14303206 ST CHRISTOPHER MIXED DAY SECONDARY SCHOOL Sub County Mixed
14303207 ST. LUKE’S DAY SECONDARY SCHOOL-KARURINA Sub County Mixed
14303208 ST’FRANCIS NGOIRE SECONDARY SCHOOL Sub County Mixed
14303209 ST BENEDICT’S KITHIMU DAY SECONDARY SCHOOL Sub County Mixed
14303210 ST.MICHAEL KEVOTE MIXED DAY SECONDARY SCHOOL Sub County Mixed
14303211 RUKIRA DAY SECONDARY SCHOOL Sub County Mixed
14312101 SIAKAGO BOYS HIGH SCHOOL Extra County Boys
14312104 GANGARA SECONDARY SCHOOL Extra County Mixed
14312105 KIAMBERE SCHOOL COMPLEX Extra County Mixed
14312106 ACK RIANDU SECONDARY SCHOOL County Mixed
14312107 GITIBURE SECONDARY SCHOOL Sub County Mixed
14312108 SIAKAGO MIXED DAY SECONDARY SCHOOL Sub County Mixed
14312109 ITIIRA SECONDARY SCHOOL Sub County Mixed
14312111 KIVUE DAY MIXED SECONDARY SCHOOL Sub County Mixed
14312112 ST JOHN THE BAPTIST – KIRIE SECONDARY SCHOOL Sub County Mixed
14312113 ACK KAMBARU DAY MIXED SECONDARY SCHOOL Sub County Mixed
14312114 CIERIA MIXED SECONDARY SCHOOL Sub County Mixed
14312115 KUNE MIXED DAY SECONDARY SCHOOL Sub County Mixed
14312116 S.A GIKUYARI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14312117 ALL SAINTS KARAMBARI SECONDARY SCHOOL Sub County Mixed
14312118 ST. PETER’S MBARWARI SECONDARY SCHOOL Sub County Mixed
14312119 DEB MUCHONOKE SECONDARY SCHOOL Sub County Mixed
14312120 DEB KABACHI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14312121 NDUTORI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14312122 ACK MARY MAGDALENE HIGH SCHOOL FOR THE DEAF National Mixed
14312123 S.A MICHEGETHIU SECONDARY SCHOOL Sub County Mixed
14312301 KANYUAMBORA SECONDARY SCHOOL Extra County Boys
14312303 KIGWAMBITI SECONDARY SCHOOL County Mixed
14312304 KARANGARE SECONDARY SCHOOL County Mixed
14312305 KATHIGAGACERU SECONDARY SCHOOL Sub County Mixed
14312306 A.C.K ST.BARNABAS-KAVENGERO Sub County Mixed
14312307 GITII A.C.K. SECONDARY SCHOOL County Mixed
14312308 KAMARANDI SECONDARY SCHOOL County Mixed
14312309 ST. LUKES SECONDARY SCHOOL – KAMWAA Sub County Mixed
14312310 ST.RITA SECONDARY SCHOOL – NGUNYUMU Sub County Mixed
14312311 ST.JOHN XXIII GWAKAITHI SECONDARY SCHOOL Sub County Mixed
14312312 ST.MICHAEL SECONDARY SCHOOL KYENIRE County Mixed
14312313 ST. TIMOTHY’S KIANJERU SECONDARY SCHOOL Sub County Mixed
14312314 ST. MATHEW KATHANGUTARI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14312315 DEB KARUARI SECONDARY SCHOOL Sub County Mixed
14312316 S.A MUTHANTHARA SECONDARY SCHOOL Sub County Mixed
14312317 ACK KAMUTU SECONDARY SCHOOL Sub County Mixed
14312318 ST. ANDREWS NGOCE SECONDARY SCHOOL Sub County Mixed
14312319 ST. ANDREW’S KOGARI SECONDARY SCHOOL Sub County Mixed
14312320 A C K EMMANUEL CIANTHIA SECONDARY SCHOOL Sub County Mixed
14312321 THE ARCH ANGELS’ KANYUERI HIGH SCHOOL County Mixed
14312322 KIRIGO SECONDARY SCHOOL Sub County Mixed
14312324 ST. JOHN’S KARIGIRI SECONDARY SCHOOL Sub County Mixed
14312325 ST. PETERS SECONDARY SCHOOL-MBARAGA Sub County Mixed
14312326 ACK ST. LUKE’S CIANGERA DAY SECONDARY SCHOOL Sub County Mixed
14333102 ST. CATHERINE NTHAGAIYA GIRLS SECONDARY SCHOOL Extra County Girls
14333103 THIGINGI GIRLS SECONDARY SCHOOL County Girls
14333104 ST. FRANCIS KANJA SECONDARY SCHOOL County Mixed
14333105 GICHICHE SECONDARY SCHOOL County Mixed
14333106 GITARE MIXED SECONDARY SCHOOL County Mixed
14333107 ST MARK’S ENA SECONDARY SCHOOL Sub County Mixed
14333108 S A GIKUURI SECONDARY SCHOOL Sub County Mixed
14333109 MACUMO DAY SECONDARY SCHOOL Sub County Mixed
14333110 MUGUI SECONDARY SCHOOL Sub County Mixed
14333111 ST. MARYS KIGAA MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333112 ST JOHN SECONDARY SCHOOL-KATHANDE Sub County Mixed
14333113 UGWERI DAY SECONDARY SCHOOL Sub County Mixed
14333114 ACK. KAGAARI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333115 MURAGARI SECONDARY SCHOOL Sub County Mixed
14333116 KITHUNGUTHIA MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333117 ST. THOMAS AQUINAS DAY SECONDARY SCHOOL Sub County Mixed
14333118 ACK NDUMARI DAY SECONDARY SCHOOL Sub County Mixed
14333119 ST JOHN FISHERS SECONDARY SCHOOL MBUI NJERU Sub County Mixed
14333120 S.A NDUURI SECONDARY SCHOOL Sub County Mixed
14333121 NICA KANDURI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333201 KYENI GIRLS’ HIGH SCHOOL Extra County Girls
14333202 KEGONGE BOYS HIGH SCHOOL Extra County Boys
14333203 ST AGNES KIAGANARI GIRLS SECONDARY SCHOOL Extra County Girls
14333204 S.A KYENI GIRLS SECONDARY SCHOOL County Girls
14333205 ST. MARY GORETTI GIRLS’ SECONDARY SCHOOL County Girls
14333206 ST JOHN KATHUNGURI SECONDARY SCHOOL County Mixed
14333207 ST. GETRUDE SECONDARY SCHOOL-KINTHITHE Sub County Mixed
14333208 KIANGUNGI SECONDARY SCHOOL County Mixed
14333209 CIAMANDA MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333210 MUFU SECONDARY SCHOOL Sub County Mixed
14333211 ST JUDE KARURUMO SECONDARY SCHOOL Sub County Mixed
14333212 ST BARNABAS KATHARI SECONDARY SCHOOL Sub County Mixed
14333213 S.A MUKURIA SECONDARY SCHOOL Sub County Mixed
14333214 E.A.P.C KARIRU MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333215 ST ANTHONY KIVURIA DAY SECONDARY SCHOOL Sub County Mixed
14333216 A.C.K NYAGARI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333217 GATUMBI BAPTIST MIXED DAY SECONDARY SCHOOL Sub County Mixed
14333218 ST. PAUL KIAMBOA SECONDARY SCHOOL Sub County Mixed
14333219 KASAFARI DAY SECONDARY SCHOOL Sub County Mixed
14333221 A.C.K KATHANJURI MIXED SECONDARY SCHOOL Sub County Mixed
14333222 D.E.O GAKWEGORI DAY SECONDARY SCHOOL Sub County Mixed
14333223 NICA MUGANJUKI DAY SECONDARY SCHOOL Sub County Mixed
14333225 N.I.C.A RUKURIRI DAY SECONDARY SCHOOL Sub County Mixed
14341101 MAYORI SECONDARY SCHOOL Extra County Mixed
14341103 KIAMBERE MIXED SECONDARY SCHOOL Sub County Mixed
14341104 MARIARI GIRLS SECONDARY SCHOOL Extra County Girls
14341105 ST THOMAS IGUMORI Sub County Mixed
14341106 MACHANG’A MIXED SECONDARY SCHOOL Sub County Mixed
14341107 KERWA MIXED SECONDARY SCHOOL Sub County Mixed
14341108 MUTUOBARE SECONDARY SCHOOL Sub County Mixed
14341109 KABUGURI SECONDARY SCHOOL Sub County Mixed
14341110 NGIORI INTERGRATED SECONDARY SCHOOL Sub County Mixed
14341111 GACABARI SECONDARY SCHOOL Sub County Mixed
14341112 ST.JOSEPH’S MIXED DAY SECONDARY SCHOOL IRIAMURAI Sub County Mixed
14341113 ST. PAUL KARURA SECONDARY SCHOOL Sub County Mixed
14341114 ST. BARNABAS SECONDARY SCHOOL GATIRARI Sub County Mixed
14341115 RUGOGWE MIXED DAY SECONDARY SCHOOL Sub County Mixed
14341116 ST. AUGUSTINE SECONDARY SCHOOL, MARIARI Sub County Mixed
14341118 ST. MARY’S NTHARAWE MIXED SECONDARY SCHOOL Sub County Mixed
14341201 NYANGWA BOYS’ HIGH SCHOOL Extra County Boys
14341202 NGENGE SECONDARY SCHOOL County Mixed
14341203 KIAMURINGA SECONDARY SCHOOL County Mixed
14341204 ST.CLARE GIRL’S SECONDARY SCHOOL-KANGETA County Girls
14341205 YODER KARWIGI MIXED SECONDARY SCHOOL Sub County Mixed
14341206 KIRIMA MIXED SECONDARY SCHOOL Sub County Mixed
14341207 GIKIIRO SECONDARY SCHOOL Sub County Mixed
14341208 MBITA SECONDARY SCHOOL Sub County Mixed
14341209 ST. MARY’S GATAKA MIXED SECONDARY SCHOOL Sub County Mixed
14341211 MUNYORI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14341212 KANGUNGI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14341213 MUTUS MIXED DAY SECONDARY SCHOOL Sub County Mixed
14341214 KAMUNYANGE SECONDARY SCHOOL Sub County Mixed
14341215 ACK RIANJERU MIXED SECONDARY SCHOOL Sub County Mixed
14341216 DEB KABURURI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14341218 ST. MARY NYANGWA GIRLS SECONDARY SCHOOL Sub County Girls
14341301 MBONDONI SECONDARY SCHOOL County Mixed
14341302 MAKIMA SECONDARY SCHOOL Sub County Mixed
14341303 KANYONGA SECONDARY SCHOOL Sub County Mixed
14341304 MASHAMBA SECONDARY SCHOOL Sub County Mixed
14341305 ST. JOSEPH SECONDARY SCHOOL, KITOLOLONI Sub County Mixed
14341306 ST CHARLES LWANGA MIXED SECONDARY SCHOOL-MWANYANI Sub County Mixed
14341307 A.I.C NDUNE MIXED SECONDARY SCHOOL Sub County Mixed
14341401 KARABA BOYS SECONDARY SCHOOL County Boys
14341402 STEPHEN KISILU SECONDARY SCHOOL RIAKANAU County Mixed
14341403 GATEGI GIRLS SECONDARY SCHOOL County Girls
14341404 JOSEPH ALLAMANO – WACHORO SECONDARY Extra County Boys
14341405 CONSOLATA GIRLS SECONDARY SCHOOL- GITARAKA County Girls
14341406 MBONZUKI SECONDARY SCHOOL Sub County Mixed
14341407 IRIA ITUNE SECONDARY SCHOOL Sub County Mixed
14341409 A C K MALIKINI SECONDARY SCHOOL Sub County Mixed
14341410 WANGO AIC SECONDARY SCHOOL Sub County Mixed
14341411 S.A GATEGI SECONDARY SCHOOL Sub County Mixed
14341412 KIKUMINI MIXED SECONDARY SCHOOL Sub County Mixed
14341413 MAVIANI SECONDARY SCHOOL Sub County Mixed
14341415 ST. MATHEW’S KAMWELI SECONDARY SCHOOL Sub County Mixed
14341416 A.I.C NTHINGINI SECONDARY SCHOOL Sub County Mixed
14355101 KING DAVID BOYS HIGH SCHOOL, KAMAMA Extra County Boys
14355102 KIRIARI GIRLS HIGH SCHOOL Extra County Girls
14355103 GITURI SECONDARY SCHOOL Sub County Mixed
14355104 ST.MARTHA DAY MIXED SECONDARY SCHOOL Sub County Mixed
14355105 KITHUNGURIRI SECONDARY SCHOOL Sub County Mixed
14355106 KENGA MIXED DAY SECONDARY SCHOOL Sub County Mixed
14355107 D.E.B KAIRURI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14355108 ALL SAINTS KIGARI DAY SECONDARY SCHOOL Sub County Mixed
14355109 ACK ST. MARY’S SECONDARY SCHOOL-MUKANGU Sub County Mixed
14355110 KAMVIU SECONDARY SCHOOL Sub County Mixed
14355111 KIRIARI DAY SECONDARY SCHOOL Sub County Mixed
14355112 KAVUTIRI BOYS SECONDARY SCHOOL Extra County Boys
14355113 ST JOHN’S KIANJUKI SECONDARY SCHOOL County Girls
14355114 KIANJOKOMA MIXED DAY SECONDARY SCHOOL. Sub County Mixed
14355115 DEB KAVUTIRI DAY SECONDARY SCHOOL Sub County Mixed
14355116 S.A MANYATTA MIXED DAY SECONDARY SCHOOL Sub County Boys
14355131 KIRIGI DAY SECONDARY SCHOOL Sub County Mixed
14355201 NGUVIU BOYS HIGH SCHOOL Extra County Boys
14355202 NGUVIU GIRLS SECONDARY SCHOOL Extra County Girls
14355203 ST PETER’S KATHAKWA SECONDARY SCHOOL County Mixed
14355204 KAGUMORI SECONDARY SCHOOL Sub County Mixed
14355205 MUVANDORI MIXED DAY SECONDARY SCHOOL Sub County Mixed
14355206 ST. ALPHONSE MIXED DAY SECONDARY SCHOOL Sub County Mixed
14355207 ST. JOSEPH THE WORKER DAY SECONDARY SCHOOL Sub County Mixed
14355208 ST. BENEDICTS SECONDARY SCHOOL-KARAU Sub County Mixed
14355209 DIVINE MERCY RUGUMU MIXED DAY SECONDARY SCHOOL Sub County Mixed

Kiawambogo Secondary School’s CBE Subjects, Pathways, Contacts, Location {Full Details}

Kiawambogo Secondary School is a public Mixed Sub-County Level Day and Boarding School that is located at Kangema Subcounty in Murang’a County of the Central Region, Kenya. The School’s Official Phone Number Contact is: (+254)0725729400

Key Details about the school.

Country where found: Kenya.

Region: Central.

County: Kiambu.

Subcounty: Kiambaa.

School Type/ Ownership: A Public School.

Nature os School/ CBE Level: Senior School (SS).

Category: Regular School

School’s Official Name: Kiawambogo Secondary School 

Sex: Mixed School.

School Cluster/ Level: Sub-County School whose Classification is C4.

Accomodation Type: Day and Boarding School.

Knec Code:  10229203

School’s Official Phone Number:  0725729400

Total Number of Subjects Combinations Offered at the School: 6

Exact Physical Location and Directions to Kiawambogo Secondary School 

It is a Mixed Boarding, Sub County level Secondary school, located in Kangema Sub-County, Muranga County, in Kenya.

Subject Combinations Offered at Kiawambogo Secondary School

View all available subject combinations at this school

STEM

4
APPLIED SCIENCESCode: ST2007
Business Studies,Computer Studies,Physics
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2047
Agriculture,Business Studies,Computer Studies
3 SubjectsSTEM
APPLIED SCIENCESCode: ST2041
Advanced Mathematics,Biology,Home Science
3 SubjectsSTEM
PURE SCIENCESCode: ST1020
Advanced Mathematics,Chemistry,Physics
3 SubjectsSTEM

SOCIAL SCIENCES

2
HUMANITIES & BUSINESS STUDIESCode: SS2069
Christian Religious Education,Fasihi ya Kiswahili,History & Citizenship
3 SubjectsSOCIAL SCIENCES
HUMANITIES & BUSINESS STUDIESCode: SS2047
Christian Religious Education,Geography,Literature in English
3 SubjectsSOCIAL SCIENCES

📍 How to get more Information about the School

For more information about admission requirements, facilities, and application procedures, contact the school directly. Use the official phone number indicated above to get information about the school’s fees, uniform, meals and performance.

How to Select Grade 10 Subjects and schools

To select Grade 10 schools and subjects under the Competency-Based Curriculum (CBC) in Kenya, Grade 9 learners should first choose a career pathway (STEM, Social Sciences, or Arts & Sports Science). Then, they’ll select three subject combinations within that pathway and finally, choose four schools for each combination, totaling 12 schools. To select preferred Grade 10 Schools and Subject Combinations, use the Ministry of Education portal selection.education.go.ke.

1. How you can Choose a Career Pathway:

  • Identify your interests and potential career aspirations.
  • Select one of the three pathways: STEM, Social Sciences, or Arts & Sports Science.
  • Confirm your choice to proceed with the pathway.

2. Select Subject Combinations:

  • The portal will provide you with a list of subject combinations available within your chosen pathway.
  • Choose three subject combinations that align with your interests and strengths.

3. Select Preferred Senior Schools:

  • For each subject combination, select four schools from the available clusters.
  • This ensures a diverse range of options and equal representation from different categories of schools.
  • A total of 12 schools will be selected: 4 for the first subject combination, 4 for the second, and 4 for the third.

LIST OF ALL SENIOR SCHOOLS PER COUNTY.

West Pokot County Senior Schools.

Wajir County Senior Schools

Vihiga County Senior Schools

Uasin Gishu County Senior Schools

Turkana County Senior Schools

Trans-Nzoia County Senior Schools

Tharaka Nithi County Senior Schools

Tana River County Senior Schools

Taita Taveta County Senior Schools

Siaya County Senior Schools

Samburu County Senior Schools

Nyeri County Senior Schools

Nyandarua County Senior Schools

Nyamira County Senior Schools

Narok County Senior Schools

Nandi County Senior Schools

Nakuru County Senior Schools

Nairobi County Senior Schools

Murang’a County Senior Schools

Mombasa County Senior Schools

Migori County Senior Schools

Meru County Senior Schools

Marsabit County Senior Schools

LMandera County Senior Schools

Makueni County Senior Schools

Machakos County Senior Schools

Lamu County Senior Schools

Laikipia County Senior Schools

Kwale County Senior Schools

Kitui County Senior Schools

Kisumu County Senior Schools

Kisii County Senior Schools

Kirinyaga County Senior Schools

Kilifi County Senior Schools

Kiambu County Senior Schools

Kericho County Senior Schools

Kakamega County Senior Schools

Kajiado County Senior Schools

Isiolo County Senior Schools

Homa Bay County Senior Schools

Garissa County Senior Schools

Embu County Senior Schools

Elgeyo-Marakwet County Senior Schools

Busia County Senior Schools

Bungoma County  Senior Schools

Baringo County Senior Schools

List of all Senior Schools in Bomet County

Nyamira County best, top secondary schools; Indepth analysis

Senior School Subjects and Pathways selection Form.
Senior School Subjects and Pathways selection Form.

Senior School Selection Form educationnewshub.co.ke

Employment opportunities for teachers; Apply today

Are you a trained teacher who is looking for a lucrative job opportunity? Well apply for the open vacancies at Windle International Kenya (Education and Society NGO).

Here are specifications for the available opportunities;

Position Title: SECONDARY SCHOOL TEACHERS
Location: Kakuma Refugee Camp & Kalobeyei Settlement
Contract term: Full-time, 3-month contract with possibility for extension
Ref: SST/19/2020

About the job opportunities

Windle International Kenya (WIK) is a humanitarian education organization providing education to refugees and needy Kenyans. WIK was founded in 1977 with the belief that good education was essential if Africa was to meet the challenges it faced. We are working with communities in Dadaab, Fafi, Wajir South, Turkana West, Dadaab Refugee Camp, Kakuma Refugee Camp and Kalobeyei Settlement on education projects.

Windle Internation – Kenya is seeking suitable candidates to fill the position of Secondary School Teachers based in Kakuma Refugee Camp & Kalobeyei Settlement.
The Secondary School Teachers will be responsible for the effective implementation of the prescribed secondary education curriculum. The following subject combinations are required:

SUBJECT COMBINATIONS

  • Mathematics & Biology
  • Biology & Chemistry
  • Mathematics & Chemistry

See also;

QUALIFICATIONS

Interested candidates must meet the following requirements:

  • A degree in Education
  • Minimum one-year experience teaching in a secondary school
  • Registered with the Teachers Service Commission
  • Mastery of office software (MS Word, Excel, and Power Point)
  • Proven performance as a secondary school teacher with outstanding results
  • Able and willing to live, work and travel in a fast-paced and insecure environment adhering to strict security guidelines.
How to apply.

Interested and suitably qualified candidates should submit their cover letter resume and certificates to applications@windle.org quoting reference number SST/19/2020.

Deadline for applications is Monday 5th October 2020.

Please note that only shortlisted candidates will be contacted. Canvassing will lead to automatic disqualification.

Windle International – Kenya selection processes reflect our commitment to equal opportunity regardless of one’s gender, disability, religion or ethnic affiliation. We work in schools and are committed to safeguard children from abuse.

KCSE 2020-2021 results analysis for Kisii County Schools

Riokindo Boys High School emerged the best school in Kisii County, in the 2020 Kenya Certificate of Secondary Education (KCSE) examinations. The school recorded a mean score of 9.325 (which is a B plain).

Kiage Tumaini took position two with a mean score of 9.318, while Kisii School finished third after recording a mean score of 9.019.

Also see; KCSE 2020 Nyanza region results analysis- Siaya County emerged best (See full ranking)

On the flip side, 39 candidates were unlucky after their results were cancelled for being involved in examination malpractices. Moteribe secondary was the biggest casualty after results foe 21 candidates were cancelled.

KISII COUNTY 2020 KCSE RESULTS ANALYSIS 

SUB COUNTY SCHOOL ENTRY
S/NO B G T AB A A- B+ B B- C+ C C- D+ D D- E X Y U P W MSS 2020 MSS 2019 DEV
1 KENYENYA RIOKINDO BOYS 268 0 17 99 111 36 5 0 0 0 0 0 0 0 0 0 0 0 9.325 7.362934363 1.585
2 KITUTU CENTRAL KIAGE TUMAINI SEC. 26 0 26 0 0 6 11 5 0 0 0 0 0 0 0 4 0 0 0 0 9.318 8.600 0.718
3 KISII CENTRAL KISII SCHOOL 463 463 12 97 98 91 73 49 27 13 3 0 0 0 0 0 0 0 0 9.019 8.3806 0.6388
4 KISII CENTRAL POPE BENEDICTS 57 57 0 4 11 12 13 12 5 0 0 0 0 0 0 0 0 0 0 8.421 8.8475 -0.4264
5 NYAMACHE RIAMBASE D.E.B 232 228 460 0 2 34 148 174 85 17 0 0 0 0 0 10 0 0 0 0 8.224 6.861 1.363
6 MASABA SOUTH ST CHARLES LWANGA ICHUNI GIRLS 0 360 360 0 20 47 93 78 66 39 15 1 1 0 0 0 0 0 8.15 7.6585 0.4915
7 KISII CENTRAL KERERI GIRLS 431 431 0 6 44 85 116 126 43 10 1 0 0 0 0 0 0 0 0 7.872 6.8668 1.0056
8 KITUTU CENTRAL NYABURURU GIRLS NATIONAL 0 413 413 1 8 52 73 90 92 69 23 5 0 0 0 0 0 0 0 0 7.800 7.514 0.286
9 KENYENYA NYABIOTO 341 0 1 17 76 112 85 46 4 0 0 0 0 0 0 0 0 0 7.777 6.252964427 1.622
10 KENYENYA RIOKINDO GIRLS 128 0 1 11 30 31 31 19 5 0 0 0 0 0 0 0 0 0 7.773 7.355263158 1.160
11 KITUTU CENTRAL CARDINAL OTUNGA HIGH 291 0 291 1 11 28 57 51 69 50 19 4 0 0 0 1 0 0 0 0 7.690 7.230 0.460
12 KENYENYA METEMBE 32 0 1 5 6 4 5 6 4 1 0 0 0 1 0 0 0 0 7.563 5.04 0.265
13 KENYENYA KERONGORORI 233 0 0 20 50 60 41 38 16 7 1 0 0 0 0 0 0 0 7.536 5.54787234 0.432
14 KENYENYA NYAKOIBA SEC 177 0 1 7 26 57 53 20 12 1 0 0 0 4 0 0 0 0 7.492 4.6492891 2.843
15 NYAMACHE ST. JOHNS OROGARE 48 48 96 0 0 0 14 33 24 15 8 2 0 0 0 0 0 0 0 0 7.250 7.105 0.145
16 KENYENYA MESABAKWA 82 0 0 8 15 15 13 17 11 2 1 0 0 1 0 0 0 0 7.244 4.276595745 1.961
17 NYAMACHE NYACHOGOCHOGO 62 54 116 0 0 3 23 24 25 17 17 7 0 0 0 1 0 0 0 0 7.060 4.920 2.140
18 KENYENYA IGORERA 73 0 0 1 17 14 14 7 11 7 2 0 0 1 0 0 0 0 6.904 3.796875 1.854
19 NYAMACHE NYAMACHE SECONDARY 160 0 160 0 0 1 22 37 29 39 24 5 3 0 0 0 0 0 0 0 6.813 5.835 0.978
20 NYAMACHE GIONSERI S.D.A 0 87 87 0 1 0 11 19 18 17 14 6 1 0 0 0 0 0 0 0 6.747 6.164 0.583
21 NYAMACHE SUGUTA GIRLS 0 116 116 0 0 0 10 21 28 33 22 2 0 0 0 0 0 0 0 0 6.638 6.029 0.609
22 MASABA SOUTH MOBAMBA 237 157 394 3 0 1 6 16 45 69 95 117 42 3 0 0 3 0 0 6.61 0 0
23 GUCHA SOUTH NYABIGENA BOYS 337 0 337 2 0 0 8 17 48 75 98 68 19 2 0 0 2 0 0 0 0 6.5 5.152 1.35
24 KISII SOUTH IGONGA BOYS 122 0 122 0 0 4 7 16 30 31 23 10 1 0 0 0 0 0 0 0 6.434 5.877 0.557
25 NYAMACHE ENCHORO PEFA 55 37 92 0 0 0 2 18 28 19 17 5 3 0 0 0 0 0 0 0 6.370 5.477 0.893
26 MASABA SOUTH HEMA CHITAGO 213 202 415 0 2 2 8 39 102 110 110 40 2 0 0 0 0 0 6.31 6.2852 0.0248
27 ETAGO NDONYO 116 95 211 2 0 0 0 O3 26 38 94 44 0 0 0 0 2 0 0 1 0 6.228 3.283 2.994
28 KENYENYA RITEMBU 35 0 0 0 6 5 5 5 7 4 1 1 1 0 0 0 0 0 6.171 3.935483871 1.271
29 GUCHA SOUTH NDURU GIRLS 0 195 195 2 0 0 1 11 22 32 60 51 16 2 0 0 0 0 0 0 0 6.12 4.26 1.86
30 GUCHA SOUTH TABAKA HIGH 108 0 108 3 0 1 1 7 22 15 16 16 20 6 1 0 3 0 0 0 0 6.105 5.75 0.355
31 GUCHA ST ANGELA SENGERA 0 166 166 3 0 0 0 8 9 37 56 38 13 2 0 0 3 0 0 0 0 6.0184 5.905 0.1134
32 KENYENYA MAGENGE SDA 75 0 0 1 2 10 15 14 17 15 1 0 0 0 0 0 0 0 5.933 4.698630137 0.088
33 NYAMACHE NYABISASE 257 321 578 0 1 9 18 45 109 128 181 68 18 1 0 2 0 0 0 0 5.860 #DIV/0!
34 NYAMACHE MAJI MAZURI 111 95 206 0 0 1 13 34 45 36 21 20 21 14 1 4 0 0 0 0 5.859 4.787 1.073
35 MASABA SOUTH AMASEGE 192 109 201 2 0 0 0 6 27 36 40 46 40 5 1 0 0 0 5.82 5.7600 0.06
36 MASABA SOUTH SUGUTA 24 14 38 0 0 1 2 5 4 8 5 11 2 0 0 0 0 5.76 3.5946 2.16
37 KENYENYA MOCHORWA 82 0 0 0 2 10 18 10 21 17 4 0 0 0 0 0 0 0 5.720 4.527272727 -0.577
38 SAMETA ST. MARYS NYAMAGWA 0 230 230 1 0 0 1 5 12 25 81 77 25 3 0 0 1 0 0 0 0 5.703 4.88 0.823
39 KITUTU CENTRAL SR.MICHAELA GIRLS 0 128 128 0 0 0 1 8 18 40 45 11 3 0 0 2 0 0 0 0 5.690 5.712 -0.022
40 SAMETA ST. JOHNS NYAMAGWA 267 0 267 0 0 0 4 5 16 35 78 79 40 10 0 0 0 0 0 0 0 5.66 4.932 0.728
41 SAMETA SAMETA BOYS HIGH 234 0 234 0 0 1 6 13 15 28 44 58 45 18 4 0 0 0 0 0 0 5.58 5.3147 0.265
42 GUCHA TENDERE 83 0 83 0 0 0 0 2 4 17 18 20 18 4 0 0 0 0 0 0 0 5.55 5.549 0.001
43 KISII SOUTH ITIERIO BOYS HIGH 116 0 116 0 1 2 4 6 19 24 19 26 12 3 0 1 0 0 0 0 5.4569 5.1481 0.3088
44 KISII SOUTH ELCK ITIERIO GIRLS 0 160 160 0 0 4 8 13 15 29 38 34 13 6 0 1 0 0 0 0 5.45 5.4 0.05
45 MASABA SOUTH GESABAKWA 23 26 49 2 0 0 0 1 6 7 4 13 12 4 0 0 2 0 0 5.43 6.6800 -1.25
46 SAMETA BISHOP MUGENDI 185 154 339 5 0 1 0 3 16 57 84 80 70 17 6 0 5 0 0 0 0 5.425 6.315 -0.89
47 KENYENYA MAGENA BOYS 95 0 0 0 3 8 12 23 20 18 7 3 1 3 0 0 0 0 5.400 3.682926829 -0.169
48 NYAMACHE ST MATHEWS CHITAGO 22 13 35 0 0 0 0 1 9 7 8 7 2 1 0 0 0 0 0 0 5.400 4.950 0.450
49 MARANI Itibo Girls 0 225 225 0 0 0 5 9 23 64 66 34 19 4 0 1 0 0 0 0 5.3258929 5.1570000 0.1688929
50 MASABA SOUTH AMABUKO 182 152 334 1 0 1 0 7 21 40 72 89 66 29 6 0 1 0 0 5.32 6.4380 -1.118
51 ETAGO AYORA 67 87 154 2 0 0 0 8 18 16 18 20 38 21 5 0 2 0 0 8 0 5.316 4.256 1.06
52 MARANI Nyakeiri Boys 116 0 116 0 0 0 1 16 18 24 11 19 11 10 3 3 0 0 0 0 5.2566372 4.4570000 0.7996372
53 GUCHA NYATARO 19 14 33 0 0 0 0 0 1 4 9 9 8 2 0 0 0 0 0 0 0 5.2424 5 0.24
54 SAMETA ST. DOMINIC RUSINGA 30 22 52 0 0 0 0 2 5 4 5 18 12 4 2 0 0 0 0 0 0 5.192 3.607 1.585
55 NYAMACHE ITUMBE D.O.K 31 32 63 0 0 1 1 3 6 11 20 13 8 0 0 0 0 0 0 0 5.190 3.569 1.622
56 NYAMACHE ST JAMES GIONSARIA 24 20 44 0 0 0 1 2 5 7 13 13 3 0 0 0 0 0 0 0 5.182 4.022 1.160
57 KITUTU CENTRAL ST.PATRICKS MOSOCHO SEC. 73 67 140 0 0 2 6 5 15 24 36 31 13 7 0 1 0 0 0 0 5.180 4.915 0.265
58 MASABA SOUTH METEMBE 112 97 209 8 0 0 0 2 14 25 50 42 44 28 4 0 8 0 0 5.18 4.7484 0.4316
59 MASABA SOUTH NYAMAGESA DEB 37 26 63 1 0 0 0 1 3 9 9 17 20 3 1 0 1 0 0 5.16 3.1724 1.9876
60 SAMETA BOITANGARE FAM 49 39 88 0 0 0 0 3 4 11 13 21 27 9 0 0 0 0 0 0 0 5.159 3.198 1.961
61 KENYENYA NYAKORERE 42 0 0 0 0 6 5 5 9 8 7 2 0 1 0 0 0 0 5.119 3.264705882 0.674
62 NYAMACHE EMENWA 140 121 261 0 0 0 1 8 24 48 95 75 10 0 0 3 0 0 0 0 5.111 3.840 1.271
63 NYAMACHE ST. THERESA’S NYANGUSU 0 85 85 0 0 1 0 5 10 16 16 27 6 4 0 0 0 0 0 0 5.059 4.971 0.088
64 NYAMACHE NAIKURU P.A.G 107 73 180 0 0 0 0 20 18 23 44 43 23 9 0 1 0 0 0 0 5.017 5.593 -0.577
65 MARANI Itibo Boys 115 0 115 0 0 0 1 4 20 27 17 17 12 14 0 3 0 0 0 0 5.0000000 5.1690000 -0.1690000
66 MASABA SOUTH GETARE GIRLS 11 25 36 0 0 0 0 1 3 6 15 6 2 1 0 0 0 0 5.00 4.3261 0.6739
67 SAMETA NYABONGE SEC. 27 34 61 2 0 0 0 1 4 5 2 20 21 5 1 0 2 0 0 0 0 4.96 2.37 2.59
68 KISII SOUTH BITARE SDA SEC 10 13 23 0 0 0 0 2 1 2 8 9 1 0 0 0 0 0 0 0 4.957 3.778 1.192
69 KISII SOUTH GESERO SEC 104 108 212 0 0 2 1 5 22 43 59 40 28 12 0 0 0 0 0 0 4.929 5.027 -0.098
70 KISII CENTRAL NYANCHWA BOYS HIGH SCHOOL 72 72 0 0 1 2 4 3 12 14 24 8 3 0 1 0 0 0 0 4.915 4.8333 0.0822
71 KISII SOUTH SUNEKA SEC 58 126 184 0 0 2 4 9 14 34 41 40 30 9 1 0 0 0 0 0 4.913 5.331 -0.418
72 KISII CENTRAL NYAGUTA 42 40 82 0 0 1 1 4 6 14 19 23 8 6 0 0 0 0 0 0 4.878 3.3694 1.5086
73 MASABA SOUTH NYANTURAGO 103 80 183 1 0 2 1 3 6 19 23 37 51 36 4 0 1 0 0 4.85 4.4483 0.402
74 MARANI Rioma sec 42 59 101 0 0 0 4 5 10 10 21 30 17 4 0 0 0 0 0 0 4.8514851 4.0000000 0.8514851
75 KENYENYA EBEREGE 46 0 0 0 0 6 3 3 9 16 9 0 0 0 0 0 0 0 4.848 3.65 2.590
76 KENYENYA NYABIORE GIRLS 111 0 0 0 2 4 8 19 25 35 16 2 0 2 0 0 0 0 4.838 4.360824742 1.179
77 GUCHA ITARE 24 18 42 3 0 0 0 0 2 3 4 14 12 3 0 0 3 0 0 1 0 4.821 2.7677 2.0533
78 NYAMACHE ST. CHARLES KABEO 45 33 78 0 0 0 0 4 6 11 23 19 11 4 0 1 0 0 0 0 4.769 3.328 1.441
79 KISII SOUTH RIANYABARO COE SEC 15 2 17 0 0 0 1 1 0 3 4 4 2 2 0 0 0 0 0 0 4.765 4.85 -0.085
80 GUCHA SOUTH KIABIGORIA 53 54 107 1 0 0 1 3 7 10 11 18 25 24 7 0 1 0 0 0 0 4.76 3.62 1.14
81 GUCHA GAKERO ELCK 37 46 83 1 0 1 0 0 0 3 12 17 22 15 10 2 1 0 0 0 0 4.758 3.904 0.854
82 MASABA SOUTH ST MARK MOKOROGOINWA 76 66 142 1 0 0 0 2 9 15 25 24 23 26 17 1 3 0 0 4.72 5.5192 -0.7992
83 MASABA SOUTH SASATI 51 38 89 1 0 0 0 0 3 5 19 19 25 15 3 0 1 0 0 4.71 4.3480 0.362
84 KENYENYA ETONO 23 0 0 0 2 0 0 4 5 7 3 2 0 0 0 0 0 0 4.696 2.195121951 -0.098
85 KISII CENTRAL NYAMAGWA SDA MIXED 47 67 114 0 0 0 2 6 4 20 24 31 14 11 0 3 0 0 0 0 4.661 4.9623 -0.3016
86 NYAMACHE RIGENA PAG 80 58 138 0 0 0 2 5 4 19 32 58 14 4 0 3 0 0 0 0 4.652 4.052 0.600
87 KISII CENTRAL NYOSIA 60 63 123 0 0 0 4 5 11 16 21 27 32 7 0 0 0 0 0 0 4.650 4.6832 -0.0328
88 KENYENYA MAGENA GIRLS 105 0 0 0 1 3 9 20 23 18 20 11 0 0 0 0 0 0 4.619 4.428571429 0.082
89 NYAMACHE ST. PAUL NYACHEKI 22 22 44 0 0 0 0 1 1 9 13 10 8 2 0 0 0 0 0 0 4.591 4.269 0.322
90 KISII SOUTH NYANGOGE GIRLS SEC 0 133 133 0 0 0 2 3 11 22 27 28 32 7 1 1 0 0 0 0 4.5789 4.33 0.459
91 ETAGO NYASASA 21 21 42 0 0 0 1 0 0 6 7 6 8 8 6 0 0 0 0 0 0 4.571 5.019 -0.448
92 NYAMACHE NYABITE AC 25 17 42 0 0 0 1 2 2 4 13 7 9 4 0 0 0 0 0 0 4.548 5.026 -0.478
93 KISII CENTRAL ST.PAUL AMASAGO SECONDARY 80 80 0 0 0 1 4 6 12 16 13 20 8 0 0 0 0 0 0 4.538 4.6296 -0.0921
94 KISII CENTRAL NYANCHWA GIRLS  HIGH SCHOOL 115 115 0 0 0 0 4 5 22 26 23 28 6 0 1 0 0 0 0 4.535 4.4362 0.0989
95 KENYENYA NYAIBATE COG 43 0 0 0 0 0 4 7 7 16 8 1 0 0 0 0 0 0 4.535 3 -0.418
96 ETAGO BOGICHONCHO 12 5 17 0 0 0 0 0 0 1 2 6 4 4 0 0 0 0 0 0 0 4.529 2.765 1.764
97 NYAMACHE NYABITE DOK 52 41 93 0 0 0 0 2 9 8 26 25 17 6 0 1 0 0 0 0 4.516 2.818 1.698
98 GUCHA SOUTH NDURU BOYS 153 0 153 2 0 0 0 2 4 13 19 30 38 32 12 1 2 0 0 0 0 4.49 4.29 0.2
99 NYAMACHE NYABIOSI SDA 24 25 49 0 0 0 0 2 4 5 8 20 6 4 0 0 0 0 0 0 4.490 4.595 -0.105
100 MARANI Tambacha COG 80 78 158 0 0 0 0 6 15 14 12 19 49 43 0 0 0 0 0 0 4.4583000 3.7736000 0.6847000
101 KITUTU CENTRAL NYATIEKO SEC. 47 44 91 0 0 0 0 3 5 15 11 31 23 3 0 0 0 0 0 0 4.428 3.967 0.461
102 KISII SOUTH EKERUBO SEC 92 87 179 0 1 1 1 6 16 30 17 39 38 30 0 0 0 0 0 0 4.385 3.9 0.485
103 MARANI Kenyoro Sec 153 116 269 0 0 0 2 9 14 25 63 78 58 20 0 0 0 0 0 0 4.3828996 4.1455000 0.2373996
104 NYAMACHE NYAMAKOROBO FAM 11 10 21 0 0 0 0 0 0 4 5 7 5 0 0 0 0 0 0 0 4.381 2.081 2.300
105 KISII CENTRAL RIONDONG’A HIGH SCHOOL 60 79 139 0 0 0 2 3 10 16 33 27 29 19 0 0 0 0 0 0 4.360 4.0275 0.3322
106 GUCHA NYAMONYO 23 22 45 1 0 0 0 0 2 6 6 6 8 5 9 2 1 0 0 0 0 4.34 4.01 0.33
107 GUCHA SOUTH OMOBIRI 51 47 98 0 0 0 0 1 0 4 6 34 33 13 6 0 0 0 0 0 0 4.34 3.15 1.19
108 KISII SOUTH BOGIAKUMU SEC 45 47 92 0 0 0 0 1 6 12 20 26 16 11 0 1 0 0 0 0 4.32 4.23 0.09
109 MASABA SOUTH MESABISABI 52 45 97 3 0 0 0 0 4 10 15 14 14 15 5 3 0 0 4.32 4.7627 -0.4427
110 MASABA SOUTH NYAMAGESA COG 35 23 58 0 0 0 0 1 2 7 12 24 7 5 0 0 0 0 4.31 3.2051 1.059
111 MARANI Engoto sec 20 19 39 0 0 0 0 1 5 5 3 12 7 5 1 0 0 0 0 0 4.3076923 3.1333000 1.1743923
112 MASABA SOUTH ST.PETERS CHIRONGE 47 33 80 1 0 0 0 2 3 4 4 16 24 19 8 0 1 0 0 4.29 3.8659 0.4241
113 KENYENYA KEBERESI 169 0 0 0 2 8 11 11 25 54 44 13 1 0 0 0 0 0 4.290 3.698412698 1.509
114 KENYENYA NYAMESOCHO 84 0 0 0 0 2 5 5 19 29 20 4 0 1 0 0 0 0 4.286 5.045454545 0.403
115 KISII CENTRAL ST.AUGUSTINE OTAMBA 39 39 0 0 0 1 1 1 3 13 6 9 4 1 0 0 0 0 0 4.282 3.4500 0.8321
116 KISII SOUTH NYAMOKENYE SEC 99 94 193 0 0 1 6 12 9 22 34 28 37 43 2 0 0 0 0 0 4.28 5.126 -0.85
117 KISII CENTRAL IRONDI 29 23 52 0 0 0 1 0 2 5 11 19 9 5 0 0 0 0 0 0 4.250 4.2195 0.0305
118 NYAMACHE NYANGUSU MIXED SEC 26 27 53 0 0 0 0 2 4 8 9 8 12 10 0 2 0 0 0 0 4.245 3.455 0.791
119 KISII SOUTH MOGUMO SEC 27 26 53 0 0 2 1 1 2 6 4 14 16 7 0 1 0 0 0 0 4.245 3.58 0.67
120 MARANI Eramba Sec 51 58 109 0 0 1 0 7 10 9 15 19 26 21 1 1 0 0 0 0 4.2385321 3.9857000 0.2528321
121 KISII CENTRAL ST.PETERS KERERA MIXED 66 72 138 0 0 0 2 2 8 20 22 35 27 21 1 0 0 0 0 0 4.232 3.6556 0.5763
122 GUCHA SOUTH RAMOYA HILL 0 44 44 0 0 0 0 0 0 2 8 10 9 8 7 0 0 0 0 0 0 4.22 3.65 0.57
123 NYAMACHE BORANGI PAG 40 42 82 0 0 0 2 2 7 6 12 17 26 10 0 0 0 0 0 0 4.207 4.050 0.157
124 KENYENYA MOKUBO 211 0 0 0 5 4 9 25 36 54 46 31 1 2 0 0 0 0 4.204 3.387453875 0.851
125 GUCHA SOUTH NYAGICHENCHE 154 130 284 1 0 0 2 1 7 28 39 36 45 59 48 13 1 4 0 0 0 4.16 5.15 -0.99
126 KITUTU CENTRAL DARAJA MBILI SEC. 91 82 173 0 0 2 0 5 14 18 24 26 46 30 2 5 0 0 1 0 4.148 4.389 -0.241
127 GUCHA MACHONGO 85 66 151 0 0 0 0 0 4 1 9 18 49 45 24 1 0 0 0 0 0 4.13 3.45 0.68
128 KISII SOUTH BOGITAA  SEC 41 29 70 0 0 0 0 2 7 6 9 14 21 11 0 0 0 0 0 0 4.1 3.871 0.229
129 GUCHA SENGERA PARISH 0 56 56 1 0 0 0 0 1 5 6 4 16 18 6 0 1 0 0 0 0 4.09 3.69 0.4
130 NYAMACHE ISENA MISSION GIRLS 0 51 51 0 0 0 0 2 4 3 9 10 15 8 0 0 0 0 0 0 4.078 3.830 0.248
131 KITUTU CENTRAL ST CLARE KIOGE GIRLS 0 128 128 0 0 0 0 1 10 10 23 38 27 17 1 0 0 0 1 0 4.078 4.045 0.033
132 MASABA SOUTH MASIMBA 116 94 210 0 0 0 0 6 12 23 39 40 50 38 2 0 0 0 4.06 4.2000 -0.14
133 NYAMACHE IKENYE PAG 22 33 54 0 0 0 0 2 3 8 5 14 11 9 2 2 0 0 0 0 4.056 3.964 0.091
134 KENYENYA IBENCHO 56 0 0 0 0 0 1 10 12 14 9 8 1 2 0 0 0 0 4.054 2.941176471 1.198
135 KITUTU CENTRAL RIOTERO SDA SEC. 61 39 100 0 0 0 0 3 4 13 13 20 32 13 1 0 0 1 0 0 4.050 4.569 -0.519
136 NYAMACHE ST THOMAS TURWA 44 39 83 0 0 0 0 3 4 8 6 25 31 6 0 0 0 0 0 0 4.036 3.722 0.315
137 GUCHA NYANSARA 14 15 29 0 0 0 0 0 0 2 8 2 5 3 7 2 0 0 0 0 0 4.03 4.125 -0.095
138 ETAGO NYAKEYO 31 28 59 0 0 0 0 0 0 1 7 12 15 18 5 0 0 0 0 0 0 4.02 3.52 0.5
139 KENYENYA MOTEIRIBE 328 0 0 1 3 7 19 31 57 81 81 27 0 2 0 21 0 0 4.018 5.652173913 0.477
140 MARANI Nyagesenda sec 43 33 76 0 0 0 2 1 3 6 14 16 20 14 0 0 0 0 0 0 4.0131579 3.9767000 0.0364579
141 KISII CENTRAL IRUNGU 47 22 69 0 0 0 2 2 4 8 8 6 20 17 0 2 0 0 0 0 4.000 4.0857 -0.0857
142 KISII CENTRAL BIRONGO SDA 27 13 40 0 0 0 1 3 0 3 4 9 12 8 0 0 0 0 0 0 3.975 3.5122 0.4628
143 GUCHA SOUTH RIOSIRI 44 30 74 0 0 0 0 2 0 6 11 8 12 14 17 4 0 0 0 0 0 3.97 3.26 0.71
144 KISII CENTRAL NYAURA DEB 43 36 79 0 0 1 0 3 2 6 11 21 20 15 0 0 0 0 0 0 3.962 3.9649 -0.0029
145 KISII SOUTH MWATA SEC 20 21 41 0 0 0 1 0 2 3 2 15 14 4 0 0 0 0 0 0 3.93 3.45 0.48
146 MARANI Kiareni sec 43 50 93 0 0 0 0 2 6 7 18 14 25 20 0 1 0 0 0 0 3.9239130 4.5063000 -0.5823870
147 KITUTU CENTRAL ONGICHA SEC 55 56 111 0 0 0 0 3 8 12 15 12 35 23 1 2 0 0 0 0 3.917 3.703 0.214
148 GUCHA KINENI PEFA 21 14 35 0 0 0 0 0 0 0 4 8 7 13 3 0 0 0 0 0 0 3.914 2.379 1.535
149 MARANI St.Marys Ngenyi Girls 0 44 44 0 0 0 0 0 1 8 7 7 14 5 2 0 0 0 0 0 3.9090909 3.6800000 0.2290909
150 KITUTU CENTRAL ST.LUKES KANUNDA SEC. 67 72 139 0 0 1 1 2 5 16 15 33 35 28 1 2 0 0 0 0 3.905 3.811 0.094
151 KITUTU CENTRAL ST.CATHERINE IRANDA SEC. 39 60 99 0 0 0 1 1 6 4 16 31 27 12 1 0 0 0 0 0 3.900 4.951 -1.051
152 GUCHA BOMBABA 30 34 64 0 0 0 0 2 1 4 7 7 7 20 13 3 0 0 0 0 0 3.88 2 1.88
153 GUCHA MAROBA 11 14 25 0 0 0 0 0 0 1 3 3 8 5 5 0 0 0 0 0 0 3.88 4.579 -0.699
154 KENYENYA KEBABE 62 0 0 0 0 2 2 3 9 22 13 10 0 0 0 0 1 0 3.871 3 2.053
155 GUCHA SOUTH KIORORI 22 19 41 0 0 0 0 0 1 2 6 5 10 2 15 0 0 0 0 0 0 3.87 3.64 1.023
156 GUCHA SOUTH MARONGO PAG 18 11 29 0 0 0 0 0 0 0 2 6 9 8 3 0 1 0 0 0 0 3.857 2.5 1.35
157 MASABA SOUTH RIURI 25 14 39 0 0 0 1 1 4 4 3 6 4 14 2 0 0 0 3.85 2.7692 1.0808
158 KENYENYA OMOBERA SDA G 39 0 0 0 0 0 3 3 2 15 10 5 0 1 0 0 0 1 3.821 3.04109589 1.441
159 NYAMACHE KIOBEGI MIXED 61 53 114 0 0 0 0 0 4 4 19 43 28 16 0 0 0 0 0 0 3.816 2.625 1.191
160 SAMETA SAMETA PAG 31 27 58 0 0 0 0 0 1 0 4 10 18 17 8 0 0 0 0 0 0 3.81 3.315 0.7
161 KISII SOUTH NYABIMWA SDA SEC 22 14 36 0 0 0 0 1 0 2 8 6 15 4 0 0 0 0 0 0 3.8056 3.168 0.637
162 KITUTU CENTRAL KIOGO SDA SEC. 32 27 59 0 0 0 0 0 0 6 13 14 11 13 0 2 0 0 0 0 3.790 4.000 -0.210
163 GUCHA SOUTH GOTICHAKI 28 19 47 0 0 0 0 0 0 3 4 3 16 12 9 0 0 0 0 0 0 3.79 2.8 0.99
164 KISII CENTRAL SCMN-KEGATI SECONDARY 124 167 291 0 0 0 1 5 10 35 39 65 62 79 4 1 0 0 0 0 3.773 4.1229 -0.3496
165 NYAMACHE ROGONGO 32 14 46 0 1 0 0 0 3 3 4 10 13 12 0 0 0 0 0 0 3.761 3.246 0.515
166 KENYENYA MAIGA FP 83 0 0 0 1 1 2 6 9 21 32 9 2 0 0 0 0 0 3.759 3.11627907 -0.085
167 NYAMACHE SIMITI SDA 20 9 29 0 0 0 0 0 2 2 5 4 10 6 0 0 0 0 0 0 3.759 2.609 1.150
168 KENYENYA MOKOMONI 75 0 0 0 0 2 5 3 9 17 23 14 2 2 0 0 0 0 3.747 4.324324324 1.140
169 KISII CENTRAL BORARACHO MIXED 40 35 75 0 1 1 1 1 2 4 6 15 27 14 2 1 0 0 0 0 3.743 2.7500 0.9932
170 MASABA SOUTH MUSA NYANDUSI GESICHO 74 49 123 5 0 0 1 0 0 5 7 19 35 29 24 3 5 0 0 3.74 3.5077 0.2323
171 KISII SOUTH OMWARI SEC 106 90 196 0 0 1 1 4 7 17 26 35 57 40 8 0 0 0 0 0 3.729 3.741 -0.012
172 KISII CENTRAL GIANCHERE FAM 117 90 207 0 0 0 0 2 14 23 22 35 56 46 9 0 0 0 0 0 3.725 4.0298 -0.3052
173 KENYENYA NYANGETI 27 0 0 0 0 1 1 2 6 2 5 10 0 0 0 0 0 0 3.704 2.854166667 0.854
174 GUCHA NYAMORONGA 15 8 23 0 0 0 0 0 0 2 4 2 4 2 6 3 0 0 0 0 0 3.7 2.125 1.575
175 KENYENYA ENDERETI MIXED 46 0 0 0 0 0 1 4 1 19 16 5 0 1 0 0 0 0 3.696 2.470588235 -0.799
176 NYAMACHE EBIOSI PAG 14 9 23 0 0 0 1 0 0 3 2 5 4 8 0 0 0 0 0 0 3.696 3.143 0.553
177 GUCHA SOUTH NYABIGENA GIRLS 37 59 96 0 0 0 0 0 2 4 9 12 13 34 21 1 2 0 0 0 0 3.69 2.73 0.96
178 KENYENYA KENYENYA SEC 70 0 0 0 0 1 3 5 11 15 18 14 2 2 0 0 0 1 3.686 3.769230769 0.362
179 NYAMACHE ST . JOSEPH SUGUBO 32 22 54 0 0 0 0 0 5 7 2 13 11 11 5 0 0 0 0 0 3.685 2.717 0.968
180 KISII SOUTH KIABUSURA SEC 42 37 79 0 0 0 0 1 3 9 9 14 20 22 1 0 0 0 0 0 3.658 2.9878 0.671
181 MARANI Nyankanda  sec 30 27 57 0 0 0 0 3 4 3 0 13 16 17 0 0 0 0 0 0 3.6428571 2.9722000 0.6706571
182 KISII SOUTH ISAMWERA SEC 33 56 89 0 0 0 1 2 4 6 10 17 21 26 2 0 0 0 0 0 3.64 3.577 0.043
183 ETAGO MAROO ESINDE 33 42 75 0 0 0 0 0 0 5 7 10 9 14 28 2 0 0 0 0 0 3.61 2.68 0.93
184 MARANI Nyasore Sec 44 43 87 0 0 0 0 3 6 4 11 13 19 27 4 0 0 0 0 0 3.5862069 3.1647000 0.4215069
185 NYAMACHE NYACHEKI ACADEMY 17 7 24 0 0 0 0 0 0 0 2 12 8 2 0 0 0 0 3 0 3.583 2.231 1.353
186 GUCHA SOUTH NYAMONARIA 32 26 58 0 0 0 0 0 1 1 1 9 15 19 12 0 0 0 0 0 0 3.57 3.05 0.52
187 NYAMACHE NYAMUYA ELCK 30 21 51 0 0 0 0 1 2 3 6 12 12 13 2 0 0 0 0 0 3.569 2.444 1.124
188 ETAGO MOTICHO GIRLS 0 20 20 0 0 0 0 0 0 0 1 2 4 10 3 0 0 0 0 0 0 3.567 2.450 1.117
189 ETAGO KIENDEGE 34 21 55 0 0 0 0 0 0 0 7 6 11 15 14 0 2 0 0 0 0 3.567 2.941 0.625
190 KENYENYA KENYORO PAG 23 0 0 0 0 0 0 2 5 3 7 6 0 0 0 0 0 0 3.565 3 2.501
191 MARANI Nyakoora Sec 38 33 71 0 0 0 0 2 2 2 5 19 27 14 0 0 0 0 0 0 3.5492958 2.4285000 1.1207958
192 SAMETA NYAMONEMA SEC. 16 19 35 0 0 0 0 0 0 0 0 6 12 12 5 0 0 0 0 0 0 3.543 2.81 0.652
193 NYAMACHE NYABISIA 14 12 26 0 0 0 0 0 0 2 7 4 5 6 2 0 0 0 0 0 3.538 2.552 0.987
194 KENYENYA NYABINYINYI 32 0 0 0 0 0 0 1 4 10 13 4 0 0 0 0 0 0 3.531 3.823529412 -0.302
195 MARANI Masakwe SEC 10 12 22 0 0 0 0 0 2 0 5 2 3 9 0 1 0 0 0 0 3.5238095 2.7273000 0.7965095
196 KISII CENTRAL NYANKORORO SDA MIXED 12 11 23 0 0 0 0 2 1 0 3 2 7 6 2 0 0 0 0 0 3.522 2.7857 0.7360
197 GUCHA GAKERO SDA 31 37 68 1 0 0 0 1 2 2 4 5 14 18 20 1 1 0 0 0 0 3.515 3.94 -0.425
198 MASABA SOUTH SOSERA 29 24 53 0 0 0 0 0 1 3 8 11 17 13 0 0 0 0 3.51 2.8167 0.6933
199 MARANI Gamba Sec 37 32 69 0 0 0 1 3 3 1 9 9 17 24 2 0 0 0 0 0 3.5072464 3.5538000 -0.0465536
200 MASABA SOUTH KIAMOKAMA FAM 13 11 24 0 0 0 0 0 1 2 1 7 6 7 0 0 0 0 3.50 2.9130 0.587
201 MASABA SOUTH BOGECHE 15 18 33 0 0 0 0 1 0 1 7 8 4 10 2 0 0 0 3.48 3.5161 -0.0361
202 ETAGO RIAGUMO 25 23 49 1 0 0 0 0 0 1 3 7 10 14 12 1 1 0 0 0 0 3.4792 3.2 0.2792
203 MARANI Nyagoto SEC 24 24 48 0 0 0 0 3 0 1 7 5 6 13 3 0 0 0 0 0 3.4736842 3.6304000 -0.1567158
204 KITUTU CENTRAL KEORE SEC. 24 33 57 0 0 0 0 0 3 5 8 10 9 18 4 0 0 0 0 0 3.470 4.059 -0.589
205 MASABA SOUTH MOREMANI 42 37 79 0 0 0 0 3 3 3 8 13 24 22 3 0 0 0 3.47 3.2394 0.2306
206 KITUTU CENTRAL ST.PHILIPS MATIEKO SEC. 19 14 33 0 0 0 0 0 2 2 4 6 6 10 2 1 0 0 0 0 3.468 2.935 0.533
207 NYAMACHE ST. JOSEPH NYACHENGE 12 16 28 0 0 0 0 0 1 1 4 5 11 5 1 0 0 0 0 0 3.464 2.333 1.131
208 ETAGO MUMA 26 13 39 0 0 0 0 0 0 1 0 6 8 12 10 1 0 0 0 0 0 3.46 1.89 1.57
209 KISII CENTRAL MASONGO 52 35 87 0 0 0 0 1 4 7 10 11 26 23 5 0 0 0 0 0 3.460 3.3210 0.1388
210 MASABA SOUTH ST.JAMES ICHUNI MIXED 36 54 80 1 0 0 0 1 0 2 7 13 11 23 27 3 0 0 0 3.44 0
211 MARANI Marani Girls 0 41 41 0 0 0 1 1 0 0 9 4 7 15 1 0 0 0 0 0 3.4210526 3.5357000 0.0740561
212 GUCHA NYAGENKE 40 24 64 0 0 0 0 0 0 2 6 9 7 19 17 4 0 0 0 0 0 3.406 3.089 0.317
213 KENYENYA GESABAKWA 25 0 0 0 0 1 1 4 1 2 4 9 3 0 0 0 0 0 3.400 3.357142857 0.600
214 ETAGO ST LINUS ETAGO 0 18 18 1 0 0 0 0 0 0 1 2 6 4 4 1 0 0 0 0 0 3.389 3.000 0.389
215 MASABA SOUTH GETERI PAG 31 39 70 0 0 0 0 1 1 6 13 7 14 23 5 0 0 0 3.39 2.5000 0.89
216 KISII CENTRAL ST.STEPHEN NYAMWARE 50 30 80 0 0 0 0 0 4 10 10 7 11 29 7 1 0 0 0 0 3.385 3.0556 0.3290
217 KITUTU CENTRAL ST. AMBROSE NYAORE SEC. 19 18 37 0 0 0 0 0 0 3 5 5 14 10 0 0 0 0 0 0 3.380 3.020 0.360
218 ETAGO KIAGWARE 24 13 37 0 0 0 0 0 0 0 1 3 14 11 7 1 0 0 0 0 0 3.378 2.362 1.016
219 KITUTU CENTRAL Q. OF APOSTLE KANYIMBO 53 61 114 0 0 0 0 0 5 9 12 20 25 37 6 0 0 0 0 0 3.368 3.940 -0.572
220 ETAGO MARIWA 43 35 78 2 0 0 0 0 2 3 4 4 16 23 19 4 2 0 0 0 0 3.361 3.041 0.320
221 MASABA SOUTH MOSISA 66 97 163 4 0 0 0 1 1 4 6 17 31 48 50 1 4 0 0 3.36 3.7716 -0.4116
222 NYAMACHE IGOMA MIXED 15 6 21 0 0 0 0 0 0 1 4 4 5 6 1 1 0 0 0 0 3.333 3.364 -0.030
223 GUCHA SOUTH NYAKORERE PAG 14 16 30 0 0 0 0 0 0 1 2 5 4 7 7 4 0 0 0 0 0 3.33 3.4 -0.07
224 MASABA SOUTH BOGONTA 71 87 158 7 0 0 0 0 1 4 14 18 25 32 56 3 7 0 0 3.33 3.2302 0.098
225 NYAMACHE NYOERA 26 12 38 0 0 0 0 0 0 1 4 11 12 10 0 1 0 0 0 0 3.316 3.963 -0.647
226 KISII SOUTH IRUMA SEC 47 59 106 0 0 0 0 1 8 3 12 12 31 28 11 0 0 0 0 0 3.3018 3.807 -0.5051
227 KISII SOUTH MATONGO SEC 38 36 74 0 1 0 0 1 1 3 7 16 16 24 5 0 0 0 0 0 3.297 3.84 -0.6
228 NYAMACHE KEGOCHI 18 9 27 0 0 0 0 0 1 3 0 5 9 8 1 0 0 0 0 0 3.296 2.593 0.704
229 NYAMACHE ISENA  PAG MIXED 15 9 24 0 0 0 0 0 0 2 3 4 6 9 0 0 0 0 0 0 3.292 2.750 0.542
230 GUCHA SOUTH AMAIKO 98 97 195 1 0 0 0 0 3 5 13 17 17 42 69 9 1 1 0 0 0 3.29 3.23 0.06
231 MASABA SOUTH NYANKONONI 23 24 47 0 0 0 0 0 1 3 4 0 0 15 2 0 0 0 3.28 3.5490 -0.269
232 NYAMACHE MOGONGA P.A.G 51 48 99 0 0 0 0 0 0 1 11 30 32 22 3 7 0 0 0 0 3.273 2.940 0.333
233 KISII CENTRAL NYANSIRA 19 14 33 0 0 0 0 1 0 2 3 6 10 8 3 0 0 0 0 0 3.273 3.8148 -0.5421
234 MARANI Geturi sec 70 67 137 0 0 0 0 5 5 10 12 20 17 49 17 2 0 0 0 0 3.2666667 2.9720000 0.2946667
235 KENYENYA MOSENSEMA 50 0 0 0 0 0 2 3 4 11 12 14 3 0 0 0 0 1 3.260 3.339622642 -0.033
236 NYAMACHE BORANGI S.D.A 33 21 54 0 0 0 0 0 2 2 5 11 13 21 0 1 0 0 0 0 3.259 3.553 -0.294
237 KENYENYA ICHUNI 66 0 0 0 0 0 3 3 6 11 18 23 2 1 0 0 0 0 3.258 2.977777778 0.190
238 KISII SOUTH RIAMONTINGA SEC 21 24 45 0 0 0 0 2 0 3 5 6 8 19 2 0 0 0 0 0 3.224 2.963 0.261
239 KISII CENTRAL BORUMA SECONDARY 13 10 23 0 0 0 0 1 1 1 0 4 5 11 0 0 0 0 0 0 3.217 2.7241 0.4933
240 SAMETA RIOBARA PAG 8 7 15 1 0 0 0 0 0 1 0 1 4 2 5 1 1 0 0 0 0 3.214 2.292 0.922
241 GUCHA KEBERE 11 9 20 1 0 0 0 0 0 1 3 0 2 3 9 1 0 0 0 0 0 3.21 3.167 0.043
242 MARANI Nyakoome Friends 28 29 57 0 0 0 0 1 3 1 7 7 11 24 3 0 0 0 0 0 3.1929825 3.0256000 0.1673825
243 GUCHA SOUTH NYAKEMBENE 24 23 47 0 0 0 0 0 0 1 4 4 8 9 18 3 0 0 0 0 0 3.19 3.38 0.189
244 ETAGO NYAIMERA 60 43 103 0 0 0 0 0 0 3 2 7 18 44 23 4 0 1 1 0 0 3.188 2.656 0.532
245 NYAMACHE ST. GABRIEL RIYABO 12 15 27 0 0 0 0 0 2 0 3 2 9 11 0 1 0 0 0 0 3.185 3.323 -0.137
246 ETAGO ST.PETERS NYANGWETA 31 15 46 0 0 0 0 0 1 0 1 5 5 20 13 1 0 0 0 0 0 3.174 2.689 0.485
247 SAMETA GESURE SDA. SEC. 17 13 30 1 0 0 0 0 0 0 1 3 6 9 10 0 1 0 0 0 0 3.172 2.905 0.267
248 ETAGO ST FABIAN MAKARA 25 11 36 0 0 0 0 0 0 0 0 3 9 15 9 0 0 0 0 0 0 3.167 2.097 1.072
249 KISII CENTRAL ST.FRANCIS  KABOSI 12 8 20 0 0 0 0 0 0 1 0 5 9 3 1 1 0 0 0 0 3.158 2.2857 0.8722
250 MARANI Mesaria Sec 19 22 41 0 0 0 0 0 2 1 6 6 6 15 4 1 0 0 0 0 3.1500000 3.6129000 -0.4629000
251 MASABA SOUTH CHIBWOBI 19 25 44 0 0 0 0 0 0 2 4 5 12 18 3 0 0 0 3.15 2.7407 0.4093
252 GUCHA SOUTH NYAMUE 22 25 47 0 0 0 0 0 0 1 3 5 8 6 24 0 0 0 0 0 0 3.149 3.05 0.09
253 KENYENYA MOBIRONA 42 0 0 0 0 0 0 3 3 8 11 17 0 0 0 0 0 0 3.143 2.790697674 0.322
254 KENYENYA GEKONGO II 28 0 0 0 0 0 1 0 2 6 9 10 0 0 0 0 0 0 3.143 2.53125 0.249
255 MARANI Nyagonyi sec 47 31 78 0 0 0 0 0 3 6 7 10 21 19 12 0 0 0 0 0 3.1410256 3.1351000 0.0059256
256 GUCHA GETUKI 38 48 86 0 0 0 0 0 1 0 4 15 11 21 24 9 1 0 0 0 0 3.14 3.347 -0.207
257 SAMETA NYAGUKU SEC. 21 37 58 0 0 0 0 0 1 3 1 3 4 21 24 1 0 0 0 0 0 3.138 1.585 1.075
258 KISII CENTRAL MATUNWA 19 11 30 0 0 0 0 1 0 1 2 5 11 7 3 0 0 0 0 0 3.133 2.7297 0.4036
259 KISII SOUTH NYASAGATI SEC 44 33 77 0 0 0 1 0 2 5 3 11 24 26 5 0 0 0 0 0 3.13 2.63 0.5
260 ETAGO IKOBA 32 23 55 0 0 0 0 0 1 0 0 4 10 19 16 3 0 0 0 0 0 3.127 2.5 0.627
261 KISII CENTRAL RIABAMANYI 11 13 24 0 0 0 0 0 0 2 3 3 6 8 2 0 0 0 0 0 3.125 2.5625 0.5625
262 MARANI Nyansakia PAG Sec 30 20 50 0 0 0 0 0 1 3 7 9 4 19 6 1 0 0 0 0 3.1020408 3.2368000 -0.1347592
263 MARANI Entanda Sec 89 82 171 0 0 0 2 2 5 13 13 16 22 85 12 0 0 0 0 1 3.0823529 3.7087000 -0.6263471
264 NYAMACHE MOCHENGO PAG 54 44 98 0 0 0 0 3 1 6 8 12 20 39 9 3 0 0 0 0 3.082 3.780 -0.699
265 ETAGO NYANGWETA SDA 46 47 93 0 0 0 0 0 1 0 9 2 18 22 35 6 0 0 0 0 0 3.078 2.862 0.216
266 KENYENYA SENGERA SDA 79 0 0 0 0 0 1 2 7 16 23 26 3 3 0 0 0 0 3.063 3.050847458 -0.448
267 MASABA SOUTH MOREREMI 22 9 31 0 0 0 0 0 1 3 3 3 4 14 3 0 0 0 3.06 1.6818 1.4682
268 KISII SOUTH EKERORE  SEC 9 8 17 0 0 0 0 0 0 1 1 3 6 5 1 0 0 0 0 0 3.058 2.95 0.109
269 MASABA SOUTH ST.CECILIA RAMASHA 19 13 32 2 0 0 0 0 2 0 4 0 2 5 12 5 2 0 3.05 2.5313 0.5187
270 SAMETA NYAGANCHA SEC. 12 10 22 0 0 0 0 0 0 0 1 1 8 3 6 3 0 0 0 0 0 3.045 3.429 -0.384
271 KISII CENTRAL NYANGURU COG 18 17 35 0 0 0 0 1 0 1 3 6 5 15 2 2 0 0 0 0 3.030 2.4333 0.5970
272 ETAGO NYAMONDO 34 15 49 2 0 0 0 1 0 0 3 6 6 6 18 7 1 0 1 0 0 3.020 2.330 0.690
273 KISII CENTRAL KIRWA MIXED 13 24 37 0 0 0 0 1 1 2 2 5 6 16 4 0 0 0 0 0 3.000 2.6667 0.3333
274 MASABA SOUTH RIABIGUTU PAG 20 23 43 0 0 0 0 1 0 2 3 5 11 19 2 0 0 0 2.98 2.4524 0.5276
275 KISII CENTRAL NYATARO COG 21 25 46 0 0 0 0 0 1 2 1 6 17 17 1 1 0 0 0 0 2.978 2.7436 0.2342
276 KISII CENTRAL GIANCHERE SPECIAL 17 10 27 0 0 0 0 1 0 1 0 1 13 8 1 2 0 0 0 0 2.960 1.5000 1.4600
277 KISII SOUTH NYAMERAKO SEC 23 14 37 0 0 0 0 0 1 1 4 5 8 14 4 0 0 0 0 0 2.946 2.381 0.565
278 KISII CENTRAL KIAMABUNDU SECONDARY 21 32 53 0 0 0 0 0 0 3 6 5 13 23 3 0 0 0 0 0 2.943 3.3922 -0.4488
279 KITUTU CENTRAL MOSOCHO SEC. 52 50 102 0 0 0 0 3 8 5 4 5 12 42 20 3 0 0 0 0 2.929 2.750 0.179
280 KISII CENTRAL IBENO C.O.G 28 26 54 0 0 0 0 1 2 2 5 3 14 18 9 0 0 0 0 0 2.926 3.0923 -0.1664
281 GUCHA SOUTH NYACHENGE 22 32 54 0 0 0 0 1 0 1 3 2 4 12 30 1 0 0 0 0 0 2.907 2.43 0.477
282 KISII CENTRAL AMARIBA 31 55 86 0 0 0 0 0 4 6 2 7 19 41 6 1 0 0 0 0 2.906 3.6790 -0.7731
283 KITUTU CENTRAL BOGEKA SEC. 23 34 57 0 0 0 1 0 0 2 3 11 11 27 2 0 0 0 0 0 2.900 3.278 -0.378
284 KITUTU CENTRAL GETEMBE SEC. 53 36 89 0 0 0 0 2 2 2 8 6 19 46 3 1 0 0 0 0 2.900 3.371 -0.471
285 GUCHA NYABURUMBASI 27 24 51 0 0 0 0 1 0 0 1 5 13 23 7 1 0 0 0 0 0 2.885 2.386 0.499
286 KITUTU CENTRAL KIONG’ONGI SEC. 24 12 36 0 0 0 0 0 0 3 1 7 8 10 6 0 0 0 1 0 2.880 2.531 0.349
287 ETAGO MONIANKU 40 51 91 0 0 0 0 0 0 0 3 6 15 23 41 3 0 0 0 0 0 2.8791 2.675 0.2041
288 KENYENYA ST AUGUSTINE MAGENCHE 21 0 0 0 0 1 0 1 1 2 5 7 4 0 0 0 0 0 2.857 1.869565217 -0.478
289 NYAMACHE EBIGOGO 20 18 38 0 0 0 0 0 0 1 2 6 12 15 2 0 0 0 0 0 2.842 2.350 0.492
290 KENYENYA EMESA 97 0 0 0 0 0 2 2 5 12 26 48 2 1 0 0 0 0 2.835 3.404145078 -0.092
291 SAMETA GEKONGO SEC. 9 9 18 1 0 0 0 0 0 0 0 2 4 4 6 1 1 0 0 0 0 2.83 2.043 0.787
292 KISII CENTRAL NYAMEMISO 22 13 35 0 0 0 0 0 0 0 5 4 8 16 2 0 0 0 0 0 2.829 2.5000 0.3286
293 KENYENYA RANDANI COG 51 0 0 0 0 0 0 1 1 8 21 18 2 0 0 0 0 0 2.824 2.674418605 0.099
294 KISII SOUTH MOSANDO SEC 27 27 54 0 0 0 0 1 1 1 2 5 14 27 2 1 0 0 0 0 2.81 3.29 -0.48
295 NYAMACHE S.H.J EKEONGA 11 10 21 0 0 0 0 0 0 1 0 2 10 7 1 0 0 0 0 0 2.810 2.343 0.467
296 KISII CENTRAL KEOKE  FAM 24 13 37 0 0 0 1 0 0 1 4 4 2 21 4 0 0 0 0 0 2.784 3.0000 -0.2162
297 KISII CENTRAL ST.ALOYSIUS 26 18 44 0 0 0 0 0 0 0 1 7 10 15 1 8 0 0 2 0 2.765 2.0492 0.7155
298 MASABA SOUTH ST.LUKES EKWARE 29 13 42 0 0 0 0 0 1 1 1 5 11 21 2 0 0 0 2.74 2.7410 0.03
299 GUCHA SOUTH TABAKA TOWNSHIP 17 4 21 0 0 0 0 0 0 0 0 2 5 2 12 1 0 0 0 0 0 2.71 2.17 0.5
300 KITUTU CENTRAL RAGANGA SEC. 10 12 22 0 0 0 0 1 0 0 2 2 2 9 4 2 0 0 0 0 2.700 2.300 0.400
301 NYAMACHE KIONDUSO PAG 34 26 60 0 0 0 0 0 2 0 4 6 14 28 6 0 0 0 0 0 2.700 2.493 0.207
302 KISII CENTRAL OUR LADY OF VICTORY NYABIOSI 50 26 76 0 0 0 0 0 2 2 7 4 15 32 11 3 0 0 0 0 2.699 2.6818 0.0168
303 KISII CENTRAL ST.VINCENT NYANKO 27 15 42 0 0 0 0 0 0 1 4 4 8 22 3 0 0 0 0 0 2.690 2.0862 0.6043
304 NYAMACHE MOSORA S.D.A 50 30 80 0 0 0 0 0 0 0 6 12 17 40 5 0 0 0 0 0 2.675 3.569 -0.894
305 MASABA SOUTH NYAMESOCHO 20 29 49 0 0 0 0 0 2 0 2 5 8 26 3 0 0 0 2.67 2.5111 0.159
306 GUCHA ELIMONYA 15 9 24 0 0 0 0 0 0 0 0 3 2 6 10 3 0 0 0 0 0 2.667 2.25 0.417
307 KISII CENTRAL NYANCHWA ADVENTIST 7 11 18 0 0 0 0 0 0 0 0 4 5 8 1 0 0 0 0 0 2.667 2.2381 0.4286
308 MARANI Motonto sec 36 27 63 0 0 0 0 0 3 3 4 5 10 20 18 0 0 0 0 0 2.6507937 2.2203000 0.4304937
309 KISII SOUTH SUGUNANA SEC 29 34 63 0 0 0 0 0 1 2 5 8 6 31 10 0 0 0 0 0 2.63 2.64 -0.1
310 KISII SOUTH NYANGENA SEC 11 13 24 0 0 0 0 0 0 2 0 6 3 8 6 0 0 0 0 0 2.625 2.426 0.199
311 SAMETA KENYORO SEC. 11 12 23 0 0 0 0 0 0 0 0 2 2 6 11 2 0 0 0 0 0 2.609 2.8148 -0.206
312 GUCHA MATAGARO 12 13 25 0 0 0 0 0 0 0 0 2 3 4 15 1 0 0 0 0 0 2.6 2.429 0.171
313 MASABA SOUTH MOGWEKO 11 6 17 0 0 0 0 0 0 0 1 2 5 7 2 0 0 0 2.59 2.7391 -0.1491
314 KISII SOUTH BOTORO SEC 94 90 184 0 0 0 0 0 2 4 7 19 47 81 24 1 0 0 0 0 2.587 3.045 -0.458
315 GUCHA SOUTH GIASABERA 31 20 51 1 0 0 0 0 1 0 3 1 8 5 19 13 1 0 0 0 0 2.58 2.32 0.254
316 NYAMACHE GETAI SDA 12 21 33 0 0 0 0 0 0 0 3 5 6 13 6 1 0 0 0 0 2.576 2.286 0.290
317 GUCHA BUYONGE 21 20 41 0 0 0 0 0 0 0 1 1 3 12 22 2 0 0 0 0 0 2.561 2.386 0.175
318 KISII CENTRAL TARACHA 30 14 44 0 0 0 0 0 0 2 1 4 9 24 4 0 0 0 0 0 2.545 2.9167 -0.3712
319 SAMETA ST. PETERS RIANYACHU8BA 12 13 25 1 0 0 0 0 0 0 0 2 3 3 14 2 1 0 0 0 0 2.542 2.296 0.246
320 ETAGO NYABINE DEB 35 28 63 3 0 0 0 0 0 0 4 3 6 9 29 12 3 0 0 0 0 2.539 2.06 0.47
321 KITUTU CENTRAL NYAGISAI SEC. 11 16 27 0 0 0 0 0 0 0 1 5 4 14 3 0 0 0 0 0 2.519 2.692 -0.174
322 KITUTU CENTRAL NYAKOE STARLIGHT 17 14 31 0 0 0 0 0 2 0 1 0 5 16 4 2 0 0 1 0 2.517 1.308 1.209
323 KITUTU CENTRAL NYAKEOGIRO SEC. 36 32 68 0 0 0 0 0 0 2 4 8 11 31 12 0 0 0 0 0 2.515 3.500 -0.985
324 MARANI Ikuruma sec 36 18 54 0 0 0 0 0 0 1 0 5 10 16 5 17 0 0 0 0 2.5135135 2.1250000 0.3885135
325 MASABA SOUTH EMEROKA 22 21 43 0 0 0 0 0 1 0 0 7 1 24 4 0 0 0 2.51 2.6897 -0.1797
326 SAMETA ST. PANCRAS KIONGONGI 23 44 67 0 0 0 0 0 1 0 1 3 8 12 29 13 0 0 0 0 0 2.5075 2.1 0.4075
327 KITUTU CENTRAL NYAMATUTA SEC. 16 20 36 0 0 0 0 0 0 1 0 7 6 18 4 0 0 0 0 0 2.500 3.067 -0.567
328 MASABA SOUTH MATIBO GIRLS 11 4 15 0 0 0 0 0 0 0 1 2 4 4 4 0 0 0 2.50 2.5909 -0.0909
329 KISII SOUTH BONYAORO SEC 9 15 24 0 0 0 0 0 0 1 1 1 5 12 3 1 0 0 0 0 2.4783 2.1612 0.3171
330 MARANI Nyakeyo  COG Sec 14 22 36 0 0 0 0 0 1 1 1 2 6 20 5 0 0 0 0 0 2.4722222 2.4894000 -0.0171778
331 KITUTU CENTRAL MOTHER OF MERCY 9 12 21 0 0 0 0 0 0 0 2 5 1 8 5 0 0 0 0 0 2.460 2.315 0.145
332 KENYENYA NYAMIOBO 22 0 0 0 0 0 0 0 1 1 5 15 0 1 0 0 0 0 2.455 2.3 1.535
333 KISII SOUTH GENGA SEC 23 28 51 0 0 0 0 0 0 1 1 6 7 33 3 0 0 0 0 0 2.451 3.377 -0.926
334 GUCHA SOUTH NYANGO 23 20 43 0 0 0 0 0 0 0 0 4 2 7 26 4 0 0 0 0 0 2.44 2.67 -0.23
335 SAMETA GETENGA SEC. 20 13 33 1 0 0 0 0 0 0 1 1 1 6 22 1 1 0 0 0 0 2.438 2.9286 -0.491
336 MARANI Mosocho PAG  Sec 23 19 42 0 0 0 0 0 1 0 2 4 7 20 8 0 0 0 0 0 2.4285714 2.4510000 -0.0224286
337 ETAGO NCHORO SDA 19 20 39 0 0 0 0 0 0 0 2 2 2 4 22 6 0 0 1 0 0 2.421 2.434 -0.013
338 KENYENYA IYENGA 29 0 0 0 0 0 0 1 2 1 5 15 5 0 0 0 0 0 2.414 2.195652174 1.764
339 KISII CENTRAL ST.ALEXANDER NYAMECHEO 19 25 44 0 0 0 0 0 0 1 2 5 4 24 7 1 0 0 0 0 2.395 2.6170 -0.2217
340 SAMETA KENYERERE SEC 12 9 21 0 0 0 0 0 0 0 1 1 1 4 9 5 0 0 0 0 0 2.381 3.05 -0.66
341 MASABA SOUTH MUKASA MATIBO 22 27 49 0 0 0 0 0 0 0 2 6 7 27 7 0 0 0 2.37 2.8000 -0.43
342 KISII CENTRAL BORONYI 9 13 22 0 0 0 0 0 0 0 0 0 9 12 1 0 0 0 0 0 2.364 2.1875 0.1761
343 MASABA SOUTH GEKONGE 14 14 28 1 0 0 0 0 0 1 0 1 1 2 2 13 1 0 0 2.35 2.8181 -0.468
344 ETAGO MESOCHO 30 21 51 2 0 0 0 0 0 0 2 3 2 9 20 13 2 0 0 0 0 2.347 2.500 -0.153
345 MARANI Metembe sec 27 28 55 0 0 0 0 0 1 0 3 5 12 16 18 0 0 0 0 0 2.3272727 2.6786000 -0.3513273
346 MASABA SOUTH IKORONGO 21 5 26 0 0 0 0 0 0 1 3 4 12 6 0 0 0 0 2.32 2.3214 -0.0014
347 KENYENYA RIYABU 51 0 0 0 0 0 0 2 2 7 20 3 1 0 0 0 0 0 2.294 2.160714286 1.698
348 MARANI Sensi sec 19 12 31 0 0 0 0 0 0 0 0 4 5 18 4 0 0 0 0 0 2.2903226 3.3243000 -1.0339774
349 GUCHA SOUTH IBRAHIM OCHOI 16 14 30 0 0 0 0 0 0 0 1 3 1 2 14 9 0 0 0 0 0 2.27 1.88 0.382
350 SAMETA NYAGIKI SDA SEC 18 15 33 0 0 0 0 0 0 1 0 0 3 6 14 9 0 0 0 0 0 2.24 2.304 -0.06
351 NYAMACHE NYABOTERERE 22 20 42 0 0 0 0 0 1 1 2 0 5 20 13 0 0 0 0 0 2.167 2.571 -0.405
352 KISII CENTRAL GUSII HIGHLIGHT HIGH  SCHOOL 25 9 34 0 0 0 0 0 0 0 0 2 3 26 3 0 0 0 0 0 2.118 2.0476 0.0700
353 GUCHA NYANSAKIA 22 12 34 0 0 0 0 0 0 0 1 0 2 7 13 11 0 0 0 0 0 2.117 2.096 0.021
354 ETAGO ST ALPHONCE NYABINE 14 20 34 0 0 0 0 0 0 0 0 2 3 10 17 2 0 0 0 0 0 2.059 1.810 0.250
355 ETAGO NYATWONI 50 25 75 0 0 0 0 0 0 0 0 2 5 11 34 23 0 0 0 0 0 2.053 2.095 -0.042
356 MARANI Nyabworoba Sec 10 13 23 0 0 0 0 0 0 0 1 0 3 14 5 0 0 0 0 0 2.0434783 2.9032000 -0.8597217
357 KISII SOUTH NYABIEYO SEC 8 12 20 0 0 0 0 0 0 0 0 0 3 14 3 0 0 0 0 0 2 2.17 -0.17
358 KENYENYA RIANYANCHABERA 30 0 0 0 0 0 0 0 0 0 4 20 6 0 0 0 0 0 1.933 2.88 0.200
359 MASABA SOUTH KEGOGI 10 5 15 0 0 0 0 0 0 0 1 0 2 8 7 0 0 0 1.89 2.1000 -0.21
360 SAMETA RIANCHORE  SEC. 9 9 18 0 0 0 0 0 0 0 0 0 0 4 8 6 0 0 0 0 0 1.88 1.71 0.17
361 KISII SOUTH KERINA SEC 7 6 13 0 0 0 0 0 0 0 0 0 1 8 4 6 0 1 0 0 1.7692 2.136 -0.3668
362 MARANI Nyota sec 5 3 8 0 0 0 0 0 0 0 0 0 0 5 3 0 0 0 0 0 1.6250000 1.6875000 -0.0625000
363 KISII SOUTH NYOTOIMA SUGUTA 18 9 27 0 0 0 0 0 0 0 0 0 1 12 14 0 0 0 0 0 1.519 2.03 -0.511
364 KISII SOUTH ITIBO SEC 47 22 69 0 0 0 0 2 2 4 6 13 15 21 6 0 0 0 0 0 1.507 1.778 -2.71
365 ETAGO KARUNGU 4 15 19 0 0 0 0 0 0 0 0 0 0 1 7 11 0 0 0 0 0 1.474 2.833 -1.36
366 MARANI Manyansi Sec 17 19 36 0 0 0 0 0 0 0 0 0 1 9 24 0 0 0 0 2 1.3235294 1.9130000 -0.5894706

SCHOOLS WITH CANCELLED KCSE RESULTS 2020

SUB COUNTY SCHOOL ENTRY A A- B+ B B- C+ C C- D+ D D- E X Y U P W MSS 2020 MSS 2019 DEV
B G T AB
MASABA SOUTH MOI GESUSU 473 0 473 1 1 8 42 76 81 79 108 55 13 6 1 0 1 4 0 0 0 7.25 7.317 Y
MASABA SOUTH IBACHO 109 140 249 0 0 0 2 14 20 27 64 80 35 5 0 2 2 0 0 0 4.80 6.0000 Y
MASABA SOUTH MASABO 37 16 53 3 0 0 0 0 3 5 13 9 6 10 5 1 3 6 0 0 0 4.75 5.1346 Y
GUCHA SOUTH AMAIKO 98 97 195 1 0 0 0 0 3 5 13 17 17 42 69 9 1 1 0 0 0 3.29 3.23 0.06
ETAGO NYAIMERA 60 43 103 0 0 0 0 0 0 3 2 7 18 44 23 4 0 1 1 0 0 3.188 2.656 0.532
GUCHA SOUTH NYAGICHENCHE 154 130 284 1 0 0 2 1 7 28 39 36 45 59 48 13 1 4 0 0 0 4.16 5.15 -0.99
KITUTU CENTRAL RIOTERO SDA SEC. 61 39 100 0 0 0 0 3 4 13 13 20 32 13 1 0 0 1 0 0 4.050 4.569 -0.519
KENYENYA MOTEIRIBE 328 0 0 1 3 7 19 31 57 81 81 27 0 2 21 0 0 0 4.018 5.652173913 -0.477

KCSE 2020 RESULTS PORTALS

The 2021 KCSE results portal.

KCSE 2020 RESULTS PER SCHOOL

KCSE 2020 TOP 100 SCHOOLS

KCSE 2020 BEST SCHOOLS PER COUNTY

KCSE 2020 TOP 100 BOYS

KCSE 2020 TOP 100 GIRLS

KCSE 2020 RESULTS VIA SMS

KCSE 2020 RESULTS FOR THE WHOLE SCHOOL

We have more KCSE 2020-2021 articles for you here;

KCSE 2020-2021 Top 100 Schools nationally

KCSE 2020-2021 Top 100 schools per county

QUICK KNEC LINKS.

KCSE/KCPE ONLINE RESULTS PORTAL

KCSE PORTAL

THE KNEC KCSE PORTAL

KNEC PORTAL LOGIN.

THE KNEC CBA PORTAL

KNEC SCHOOL EXAMS PORTAL

KNEC PORTAL FOR KCPE RESULTS

THE KCPE KNEC PORTAL FOR PRIMARY SCHOOLS.

KNEC EXAMINERS PORTAL

THE KNEC CONTRACTED PROFESSIONALS PORTAL

THE KNEC CBA PORTAL

KNEC EXAMINERS LOGIN PORTAL

KNEC PORTALS

THE KNEC LCBE PORTAL

QUICK LINKS TO OTHER IMPORTANT KNEC PORTALS

KCSE/KCPE ONLINE RESULTS PORTAL

KCSE PORTAL

THE KNEC KCSE PORTAL

KNEC PORTAL LOGIN.

THE KNEC CBA PORTAL

KNEC SCHOOL EXAMS PORTAL

KNEC PORTAL FOR KCPE RESULTS

THE KCPE KNEC PORTAL FOR PRIMARY SCHOOLS.

KNEC EXAMINERS PORTAL

THE KNEC CONTRACTED PROFESSIONALS PORTAL

THE KNEC CBA PORTAL

KNEC EXAMINERS LOGIN PORTAL

KNEC PORTALS

THE KNEC LCBE PORTAL

THE OFFICIAL KNEC WEBSITE

OTHER PORTALS

KCSE Portal
CP2 portal
CBA portal
Knec school exams portal
Knec examiners login portal
KCSE Results Portal
Knec Website (www.knec.ac.ke)
Knec LCBE portal

Kenyatta University kuccps admission letters portal login

KUPPET’s Misori officially joins ODM

The Secretary General to the Kenya Union of Post Primary Education Teachers, KUPPET, Akelo Misori has officially joinefd the Orange Democratic Movement, ODM. Misori visited Orange House yesterday and officially joined ODM as a Life Member. He was handed the certificate by Executive Director, Odour Ong’wen.

Misori is said to be eyeing a Gubernatorial seat in Nyanza. Misori now joins enter KUPPET officials who are actively involved in politics. These other KUPPET officials holding Political offices are:

  1. Omboko Milemba ( KUPPET National Chairman) who was elected Emuhaya Member of Parliament during the last General Elections.
  2. Ronald Tonui (KUPPET National Assistant Treasurer) who won the Bomet Central Constituency’s National Assembly seat.
  3. Catherine Wambilianga (KUPPET National Gender Secretary) was elected the Woman Representative of Bungoma County.

The Secretary General to the Kenya National Union of Teachers, Wilson Sossion, is also an active politician. Sossion is a nominated ODM member of Parliament.

Below, images of Misori, and ODM officials, when he paid a visit to Orange house yesterday; to receive his certificate.

How to get 2020 form one admission results through sms and download national schools admission letters online: Ultimate procedure

The selection exercise for the 2020 placement of form ones is complete. To know the secondary school your child has been selected to join, send the full index number to 22263. Learners will also be expected to download their letters through the Ministry of education’s online portal. The admission letter is important to both students and Parents/ Guardians. This is because it enables the two parties to prepare adequately for reporting to selected secondary school.

To download the admission letter to National Schools:

  1. Click on this link to access the download page from the Ministry of Education’s Website: Ministry of education download link for form one admssion letter.
  2. Then, Select the county and sub-county where your KCPE centre is located and key in your index number and Submit.
  3. Click on the link named “admission letter” at the bottom of the page for a copy of your admission letter.
  4. Use the printer icon to print or download icon to download to your computer.
  5. Get your primary school’s headteacher to endorse the letter and stamp it in the space provided.
  6. Finally, present it for admission together with a certified copy of birth certificate

Access the Official ministry of Education’s download page by using this link: https://www.education.go.ke/index.php/online-services/form-one-selection

For complete information on all schools in Kenya, including best private and public schools, please visit this link: Schools Portal; Complete guide to all schools in Kenya

But, what are some of the key highlights on the admission letters?

Here are some of the common details on the form one admission letters:

  • All the admission letters bear the Ministry of Education’s letter head; The letter contains the Education Ministry’s logo and head.
  • Name of the student, Index number and Sub County,
  • School admitted to (The Secondary school where the student has been placed),
  • Reporting date; Which is in January, 2020. The reporting date for 2019 was 7th to 11th January.
  • Former primary school’s details; the letter must be stamped by the head teacher, A disclaimer on the letter reads; “This letter will be authenticated on being duly certified by the primary school head complete with a certified copy of birth certificate and finally confirmed by the admitting principal. The letter is issued without any erasure  or alteration and cannot be changed through any form of endorsement whatsoever; utterance of false documents is an offence punishable by law.”
  • The 2020 fee guidelines from the Ministry (The letter gives fees directions thus; “The maximum fees payable per year is detailed in the attached schedule, do confirm the category of your school before making any payment.”)
  • Parents/ Guardians expected to go to schools where their kids have been placed to pick further joining instructions and requirements. (“Urgently get in touch with your new principal at the above school for admission requirements,” says the admission letter from the Ministry.)

Also read:

Other details that learners would get from the selected school include:

  • Uniform descriptions,
  • Boarding requirements; mattresses, blankets, e.t.c
  • Any books’ requirements and
  •  Other personal effects as may be prescribed by individual schools.

The Government has insisted on its resolve to ensure 100 percent transition from Primary to secondary schools. Consequently, all the 2019 KCPE candidates will get places at preferred secondary schools.

Here are links to the most important news portals:

KCSE 2022/2023 Best 200 Girls’ Secondary Schools in Kenya Per County

Top 200 Girls’ Secondary Schools in KCSE 2022/2023 Exams

Position Nationally Name of School Region County Mean Score Mean Grade Type Knec Code
4 ALLIANCE GIRLS Central Kiambu 10.52 A-{minus} Girls 44739101
5 ST Brigids Girls High KIMININI Rift Valley Tranz Nzoia 10.5 A-{minus} Girls 11200002
7 PANGANI GIRLS Nairobi Nairobi 10.49 B+{plus} Girls 20406020
9 ASUMBI GIRLS NYANZA Homa Bay 10.377 B+{plus} Girls 27500002
21 Moi Girls Eldoret Rift Valley Uasin Gishu 10.06 B+{plus} Girls
24 KAAGA GIRLS Eastern meru 9.96 B+{plus} Girls
25 Kenya High School Nairobi Nairobi 9.95 B+{plus} Girls
27 St Brigids Girls High Rift Valley Tranz Nzoia 9.92 B+{plus} Girls
34 Ogande Girls NYANZA Homa Bay 9.62 B+{plus} Girls
45 Bishop Linus Okok girls NYANZA Homa Bay 9.43 B{plain} Girls
47 CHEBORGE GIRLS Rift Valley Kericho 9.3754 B{plain} Girls
48 Korongoi Girls Rift Valley Kericho 9.36 B{plain} Girls
50 KIPSIGIS GIRLS HIGH SCHOOL Rift Valley Kericho 9.3154 B{plain} Girls
55 Sigoti Complex NYANZA Kisumu 9.27 B{plain} Girls
59 Mt Carmel girls Eastern Makueni 9.2353 B{plain} Girls
60 MaryHill Girls Central Kiambu 9.23 B{plain} Girls
64 Moi Tea Girls High School Rift Valley Kericho 9.21 B{plain} Girls
65 OSSEN GIRLS HIGH Rift Valley Baringo 9.2 B{plain} Girls
67 Tombe Girls Secondary NYANZA Nyamira 9.1765 B{plain} Girls
69 KATHIANI GIRLS HIGH Eastern Machakos 9.1235 B{plain} Girls
73 St Clare Girls Secondary Rift Valley Nakuru 9.1 B{plain} Girls
82 Kapsabet Girls Rift Valley Nandi 8.98 B{plain} Girls
83 Metkei Girls High Rift Valley Elgeyo Marakwet 8.96 B{plain} Girls
86 Mbooni Girls Eastern Makueni 8.911 B{plain} Girls
89 Ruth Kiptui Girls Kasok Rift Valley Baringo 8.87 B{plain} Girls
93 Nyamagwa girls NYANZA Kisii 8.823 B{plain} Girls
94 RUTH KIPTUI GIRLS Rift Valley Baringo 8.8 B{plain} Girls
96 DERTU SECONDARY SCHOOL North Eastern Garissa 8.8 B{plain} Girls
97 BUNYORE GIRLS WESTERN Vihiga 8.8 B{plain} Girls
102 KABARE GIRLS Central Kirinyaga 8.734 B{plain} Girls
103 MUGOIRI GIRLS Central Murang’a 8.731 B{plain} Girls
104 BUTERE GIRLS WESTERN Kakamega 8.727 B{plain} Girls
106 Bishop Gatimu Ngandu Girls High Central Nyeri 8.7014 B{plain} Girls
109 LUGULU GIRLS WESTERN Bungoma 8.655 B{plain} Girls
110 St Andrew Kaggwa Girls High NYANZA Nyamira 8.648 B{plain} Girls
112 NYABURURU GIRLS NYANZA Kisii 8.631 B{plain} Girls
116 Nyangajo Girls NYANZA Homa Bay 8.6 B{plain} Girls
119 AIC Sombe Girls Eastern Kitui 8.545 B{plain} Girls
125 Kisumu Girls NYANZA Kisumu 8.47 B-{minus) Girls
126 Karima Girls Central Nyandarua 8.463 B-{minus) Girls
127 MANGA GIRLS NYANZA Nyamira 8.4 B-{minus) Girls
128 Dudi Girls NYANZA Homa Bay 8.4 B-{minus) Girls
131 TABAGON GIRLS HIGH SCHOOL Rift Valley Baringo 8.4 B-{minus) Girls
136 Koru Girls NYANZA kisumu 8.3465 B-{minus) Girls
137 KIPKELION GIRLS Rift Valley Kericho 8.3335 B-{minus) Girls
147 BUSIADA GIRLS WESTERN Busia 8.247 B-{minus) Girls
152 Rang’ala Girls NYANZA Siaya 8.2264 B-{minus) Girls
153 RAN’GALA GIRLS NYANZA Siaya 8.226 B-{minus) Girls
154 St marys Igoji Central Tharaka Nithi 8.215 B-{minus) Girls
158 ST JOSEPHS GIRLS Rift Valley Tranz Nzoia 8.2 B-{minus) Girls
162 Ulanda Girls NYANZA Migori 8.17 B-{minus) Girls
165 Kyeni Girls Central Tharaka Nithi 8.1435 B-{minus) Girls
166 Our Lady of Lourdres Turbo Girls Rift Valley Uasin Gishu 8.14 B-{minus) Girls
169 MUTHALE GIRLS HIGH Eastern kitui 8.11 B-{minus) Girls
170 Chogoria Girls Central Tharaka Nithi 8.1037 B-{minus) Girls
176 KEBABE GIRLS NYANZA Nyamira 8.07 B-{minus) Girls
186 Gekano Girls NYANZA Nyamira 7.972 B-{minus) Girls
189 TENGECHA GIRLS Rift Valley Kericho 7.9595 B-{minus) Girls
190 St Bernabas Kombewa NYANZA Kisumu 7.93 B-{minus) Girls
192 Precious Blood Kilungu Eastern Makueni 7.92 B-{minus) Girls
199 Moi Siongiroi High Rift Valley Bomet 7.85 B-{minus) Girls
209 Kaplong Girls High School Rift Valley Bomet 7.792 B-{minus) Girls
210 SINYOLO GIRLS NYANZA kisumu 7.7753 B-{minus) Girls
212 RIOKINDO GIRLS NYANZA KISII 7.77 B-{minus) Girls
217 CARING HEARTS HIGH SCHOOL Eastern Machakos 7.76 B-{minus) Girls
218 RUTH KIPTUI GIRLS Rift Valley Baringo 7.732 B-{minus) Girls
222 CARDINAL OTUNGA GIRLS WESTERN Bungoma 7.70504 B-{minus) Girls
223 Lwak Girls NYANZA Siaya 7.7 B-{minus) Girls
225 Sironga Girls NYANZA Nyamira 7.69 B-{minus) Girls
231 Graceland Central Nyandarua 7.6 B-{minus) Girls
234 ST MARYS LWAK GIRLS NYANZA Siaya 7.577 B-{minus) Girls
235 Bura Girls High School, Mwatate Coast Taita Taveta 7.571 B-{minus) Girls
237 MITUA GIRLS WESTERN Bungoma 7.52 B-{minus) Girls
239 ACK Rae Girls NYANZA kisumu 7.5 B-{minus) Girls
243 St. Josephs Kibwezi Eastern Makueni 7.488 C+{plus} Girls
244 ST JOSEPHS KIBWEZI Eastern Makueni 7.488 C+{plus} Girls
246 SANTA MARIA GIRLS CHEPTULON Rift Valley Elgeyo Marakwet 7.4834 C+{plus} Girls
247 MISYANI GIRLS HIGH Eastern Machakos 7.4823 C+{plus} Girls
248 Kahuhia Girls Central Murang’a 7.48 C+{plus} Girls
253 RAE GIRLS NYANZA KISUMU 7.4 C+{plus} Girls
254 AIC LITEIN GIRLS Rift Valley Kericho 7.4 C+{plus} Girls
258 Matuga Girls High School Coast Kwale 7.36 C+{plus} Girls
259 NALONDO GIRLS WESTERN Bungoma 7.36 C+{plus} Girls
261 ST JOSEPHS CHEPTERIT GIRLS Rift Valley Nandi 7.3356 C+{plus} Girls
263 KOLANYA GIRLS WESTERN Busia 7.3247 C+{plus} Girls
265 Kereri Girls High NYANZA Kisii 7.312 C+{plus} Girls
267 SAMITISI GIRLS WESTERN Kakamega 7.301 C+{plus} Girls
269 KAPROPITA GIRLS HIGH Rift Valley Baringo 7.3 C+{plus} Girls
270 Mama Ngina Girls Coast Mombasa 7.297 C+{plus} Girls
273 Itierio Girls NYANZA Kisii 7.28 C+{plus} Girls
277 ST MARY’S MUMIAS WESTERN Kakamega 7.22 C+{plus} Girls
279 Mwaani Girls Eastern Makueni 7.209 C+{plus} Girls
280 Saseta Girls High Rift Valley Bomet 7.207 C+{plus} Girls
281 AHERO GIRLS NYANZA Kisumu 7.2 C+{plus} Girls
284 FRIENDS SCHOOL KEVEYE GIRLS WESTERN Vihiga 7.2 C+{plus} Girls
285 MUKUMU GIRLS WESTERN Kakamega 7.2 C+{plus} Girls
286 Kiabonyoru Girls NYANZA Nyamira 7.1982 C+{plus} Girls
288 ST ANNES BUNYALA WESTERN Busia 7.1915 C+{plus} Girls
292 Kisau Girls Eastern Makueni 7.165 C+{plus} Girls
293 Nkuene Girls Central Tharaka Nithi 7.1596 C+{plus} Girls
295 Machakos Girls Eastern Machakos 7.1406 C+{plus} Girls
296 AIC Gietai Girls NYANZA Nyamira 7.13 C+{plus} Girls
297 Kamahuha Girls Central Murang’a 7.13 C+{plus} Girls
299 Moi Kapsowar Girls Rift Valley Elgeyo Marakwet 7.1282 C+{plus} Girls
300 Gelegele girls Rift Valley Bomet 7.12 C+{plus} Girls
301 Makueni Girls Eastern Makueni 7.102 C+{plus} Girls
303 MOI GIRLS VOKOLI WESTERN Vihiga 7.1 C+{plus} Girls
305 Bahari Girls Coast Kilifi 7.0947 C+{plus} Girls
307 St Mathias Mulumba Girls NYANZA Nyamira 7.078 C+{plus} Girls
308 TARTAR GIRLS Rift Valley West Pokot 7.0742 C+{plus} Girls
310 Moi Girls Sindo NYANZA Homa Bay 7.063 C+{plus} Girls
320 OUR Lady of Assumption tawa Eastern Makueni 7.02 C+{plus} Girls
323 Ichuni girls NYANZA Kisii 7 C+{plus} Girls
326 MOI GIRLS MARSABIT North Eastern Marsabit 6.988 C+{plus} Girls
329 SAMBIRIR GIRLS Rift Valley Elgeyo Marakwet 6.97 C+{plus} Girls
330 Maua Girls High Eastern Meru 6.96 C+{plus} Girls
331 OYUGI OGANGO SECONDARY NYANZA Migori 6.9593 C+{plus} Girls
332 ST ANGELAS GIRLS SECONDARY Eastern Kitui 6.935 C+{plus} Girls
333 Mumbi Girls Central Murang’a 6.9 C+{plus} Girls
335 ALGANI GIRLS North Eastern ISIOLO 6.80357 C+{plus} Girls
336 Kiriani Girls Central Murang’a 6.8 C+{plus} Girls
338 BELGUT STAREHE GIRLS HIGH Rift Valley Kericho 6.742 C+{plus} Girls
346 SOUTH TETU GIRLS Central Nyeri 6.599 C+{plus} Girls
347 CHWELE SECONDARY WESTERN Bungoma 6.5966 C+{plus} Girls
348 CHEBUKAKA SECONDARY WESTERN Bungoma 6.5865 C+{plus} Girls
351 Nyakach Girls NYANZA KISUMU 6.5574 C+{plus} Girls
352 BISHOP NJENGA WESTERN Kakamega 6.554 C+{plus} Girls
353 SINGORE GIRLS Rift Valley Elgeyo Marakwet 6.54 C+{plus} Girls
356 EMALINDI GIRLS WESTERN Kakamega 6.516 C+{plus} Girls
358 NANGINA GIRLS WESTERN Busia 6.5054 C+{plus} Girls
366 NDARAWETA GIRLS Rift Valley Bomet 6.45 C (plain) Girls
368 NAMWANGA GIRLS WESTERN Bungoma 6.425 C (plain) Girls
369 Hill School Rift Valley Uasin Gishu 6.403 C (plain) Girls
370 LORNA LABOSO SECONDARY Rift Valley Bomet 6.4 C (plain) Girls
376 MOI GIRLS KAMUSINGA WESTERN Bungoma 6.338 C (plain) Girls
377 MOI KAMUSINGA WESTERN Bungoma 6.338 C (plain) Girls
380 ST MONICAS GIRLS Rift Valley Tranz Nzoia 6.3 C (plain) Girls
384 Apostolic Carmel Rift Valley Uasin Gishu 6.25 C (plain) Girls
387 ST PETERS GIRLS Rift Valley Baringo 6.227 C (plain) Girls
388 OMOBERA GIRLS NYANZA KISII 6.22 C (plain) Girls
393 Ruchu Girls Central Murang’a 6.2 C (plain) Girls
394 Kwale Girls High school Coast Kwale 6.1825 C (plain) Girls
401 SOSIOT GIRLS Rift Valley Kericho 6.1083 C (plain) Girls
404 St Catherine Girls Kesses Rift Valley Uasin Gishu 6.085 C (plain) Girls
413 PEMWANI GIRLS Rift Valley Baringo 6 C (plain) Girls
420 ST MONICA CHAKOL WESTERN Busia 5.927 C (plain) Girls
421 Gitugi Girls Central Murang’a 5.91 C (plain) Girls
423 Gatanga Girls Central Murang’a 5.9 C (plain) Girls
426 NAMIRAMA GIRLS WESTERN Kakamega 5.865 C (plain) Girls
428 CHELILIS GIRLS Rift Valley Kericho 5.8258 C (plain) Girls
434 MERCY GIRLS Rift Valley Baringo 5.8 C (plain) Girls
436 BURU GIRLS North Eastern MANDERA 5.77 C (plain) Girls
439 ST AGNES SHIBUYE WESTERN Kakamega 5.765 C (plain) Girls
448 SACRED HILL GIRLS Rift Valley Kericho 5.702 C (plain) Girls
449 MURRAY GIRLS Coast Taita Taveta 5.7 C (plain) Girls
450 CHEBUNYO GIRLS Rift Valley Bomet 5.7 C (plain) Girls
452 MUSOLI GIRLS HIGH SCHOOL WESTERN Kakamega 5.7 C (plain) Girls
460 MOGOTIO GIRLS HIGH SCHOOL Rift Valley Baringo 5.6284 C (plain) Girls
462 St. Catherine Eastern Machakos 5.613 C (plain) Girls
463 KABIANGA GIRLS Rift Valley Kericho 5.6036 C (plain) Girls
464 Mulala Girls Eastern Makueni 5.6 C (plain) Girls
466 MUDAVADI GIRLS SECONDARY WESTERN Vihiga 5.6 C (plain) Girls

KCSE Top Schools Final Mocks Downloads: Maseno, Mang’u, Kereri, Starehe, Alliance, Kapsabet, Maranda

KCSE Top Schools Final Mocks Downloads: Maseno, Mang’u, Kereri, Starehe, Alliance, Kapsabet, Maranda

BIOLOGY PP1 FINAL GAUGE PREDICTION (1).pdf
BUSINESS PP1 FINAL GAUGE PREDICTION (1).pdf
AGRICULTURE PP2 FINAL GAUGE PREDICTION (1).pdf
BUSINESS PP2 FINAL GAUGE PREDICTION (1).pdf
CRE PP1 FINAL GAUGE PREDICTION (1).pdf
BIOLOGY PP2 FINAL GAUGE PREDICTION (1).pdf
GEOGRAPHY PP2 FINAL GAUGE PREDICTION (1).pdf
CRE PP2 FINAL GAUGE PREDICTION (1).pdf
BIOLOGY PP3 FINAL GAUGE PREDICTION (1).pdf
CHEMISTRY PP3 FINAL GAUGE PREDICTION (1).pdf
ENGLISH PP2 FINAL GAUGE PREDICTION (1).pdf
ENGLISH PP3 FINAL GAUGE PREDICTION (1).pdf
ENGLISH PP1 FINAL GAUGE PREDICTION (1).pdf
COMPUTER PP2 FINAL GAUGE PREDICTION (1).pdf
COMPUTER PP1 FINAL GAUGE PREDICTION (1).pdf
MATH PP1 FINAL GAUGE PREDICTION QTNS (1).pdf
KISWAHILI PP2 FINAL GAUGE PREDICTION (1).pdf
HISTORY PP1 FINAL GAUGE PREDICTION (1).pdf
GEOGRAPHY PP1 FINAL GAUGE PREDICTION (1).pdf
KISWAHILI PP1 FINAL GAUGE PREDICTION (1).pdf
CHEMISTRY PP2 FINAL GAUGE PREDICTION (1).pdf
KISWAHILI PP3 FINAL GAUGE PREDICTION-1 (1).pdf
HISTORY PP2 FINAL GAUGE PREDICTION (1).pdf
KISWAHILI PP1 FINAL GAUGE PREDICTION.pdf
MATH PP2 FINAL GAUGE PREDICTION QTNS (1).pdf
BUSINESS PP1 FINAL GAUGE PREDICTION (2).pdf
PHYSICS PP1 FINAL GAUGE PREDICTION (1).pdf
AGRICULTURE PP1 FINAL GAUGE PREDICTION.pdf
KISWAHILI PP3 FINAL GAUGE PREDICTION-1.pdf
PHYSICS PP3 FINAL GAUGE PREDICTION (1).pdf
KISWAHILI PP2 FINAL GAUGE PREDICTION (2).pdf
GEOGRAPHY PP2 FINAL GAUGE PREDICTION.pdf
ENGLISH PP3 FINAL GAUGE PREDICTION (2).pdf
ENGLISH PP1 FINAL GAUGE PREDICTION.pdf
PHYSICS PP2 FINAL GAUGE PREDICTION (1).pdf
ENGLISH PP2 FINAL GAUGE PREDICTION.pdf
HISTORY PP1 FINAL GAUGE PREDICTION.pdf
GEOGRAPHY PP1 FINAL GAUGE PREDICTION.pdf
BUSINESS PP2 FINAL GAUGE PREDICTION (2).pdf
COMPUTER PP1 FINAL GAUGE PREDICTION.pdf
MOKASA 1 2023 MOCK (2).pdf
CHEMISTRY PP3 FINAL GAUGE PREDICTION (2).pdf
CRE PP2 FINAL GAUGE PREDICTION.pdf
CRE PP1 FINAL GAUGE PREDICTION.pdf
HISTORY PP2 FINAL GAUGE PREDICTION (2).pdf
MASENO 2023 KCSE MOCK (2).pdf
WAHUNDURA BOYS MOCK (2).pdf
SUNRISE ONE TERM A EXAMINATIONS 2023 (1).pdf
MECS CLUSTER JOINT EXAM 2023 (2).pdf
QUICK LIGHT MOCK 2023 TERM 1 (3).pdf
AGRICULTURE PP1 FINAL GAUGE PREDICTION (1).pdf
KAPSABET TRIAL 4 MOCK 2023 (2).pdf
KASSU FINAL JET 2023 (2).pdf
LUGARI CONSTITUENCY PREDICTION MOCK .pdf
KCSE 2023 PREDICTION EXAMS S3 (3).pdf
KCSE 2023 TOPGRADE PREDICTION S1-1.pdf
KCSE 2023 PASSWORD EXAMS S1.-2.pdf
KCSE 2023 PROJECTION EXAMS S1.-1.pdf
KCSE 2023 S-GRADE PREDICTION S1. (3).pdf
KCSE 2023 PREDICTION EXAMS S1.-1 (3).pdf
JOINT KCSE 2023 PREDICTION S1.pdf
KCSE 2023 REFLECTOR PREDICTION S1-1.pdf
KCSE 2023 PREDICTION EXAMS S2.-2.pdf
FKE_Press_Statement_on_the_State_of_Kenya’s_Busine_230918_205849.pdf
LUGARI CONSTITUENCY PREDICTION MOCK (2).pdf
MARANDA MOCK 2021 (2).pdf
KAKAMEGA DIOCESE JOINT 2023 PREDICTION (2).pdf
FORM 1 PROMOTION TEST EXAM.pdf
TIRIKI WEST CLUSTER EXAM (2).pdf
MANGU HIGH 2023 KCSE MOCK (2).pdf
AGRICULTURE PP2 FINAL GAUGE PREDICTION.pdf
BIOLOGY PP2 FINAL GAUGE PREDICTION.pdf
BIOLOGY PP3 FINAL GAUGE PREDICTION.pdf
KASSU FINAL JET 2023 (3).pdf
KAPSABET TRIAL 4 MOCK 2023 (3).pdf
QUICK LIGHT MOCK 2023 TERM 1 (4).pdf
MECS CLUSTER JOINT EXAM 2023 (3).pdf
PHYSICS PP2 FINAL GAUGE PREDICTION.pdf
PHYSICS PP3 FINAL GAUGE PREDICTION (2).pdf
CHEMISTRY PP1 FINAL GAUGE PREDICTION (2).pdf
PHYSICS PP1 FINAL GAUGE PREDICTION.pdf
CHEMISTRY PP2 FINAL GAUGE PREDICTION (2).pdf
MATH PP2 FINAL GAUGE PREDICTION QTNS (2).pdf
COMPUTER PP2 FINAL GAUGE PREDICTION.pdf
MATH PP1 FINAL GAUGE PREDICTION QTNS (2).pdf
BIOLOGY PP1 FINAL GAUGE PREDICTION.pdf
MOKASA 1 2023 MOCK (3).pdf
MASENO 2023 KCSE MOCK (3).pdf
WAHUNDURA BOYS MOCK (3).pdf
SUNRISE ONE TERM A EXAMINATIONS 2023 (2).pdf
FISHER MOCK 2023 KCSE PREDICTION (3).pdf
FORM 4 TERM 1 A LIGHT MOCK (3).pdf
KCSE 2023 PREDICTION EXAMS S3 (4).pdf
KCSE 2023 PREDICTION EXAMS S1.-1 (4).pdf
KCSE 2023 S-GRADE PREDICTION S1. (4).pdf
KCSE 2023 PROJECTION EXAMS S1.-1 (2).pdf
KCSE 2023 PASSWORD EXAMS S1.-2 (2).pdf
KCSE 2023 TOPGRADE PREDICTION S1-1 (2).pdf
KCSE 2023 PREDICTION EXAMS S2.-2 (2).pdf
KCSE 2023 REFLECTOR PREDICTION S1-1 (2).pdf
2023 FINAL KCSE PREDICTION.pdf
JOINT KCSE 2023 PREDICTION S1 (2).pdf
CHEMISTRY PP1 FINAL GAUGE PREDICTION (1).pdf

Top student KCSE Prediction Exams

TOP STUDENT PHYSICS PREDICTIONS (3).pdf
TOP STUDENT CRE PREDICTIONS (2).pdf
TOP STUDENT HISTORY PREDICTIONS (3).pdf
TOP STUDENT ENGLISH PP1 PREDICTIONS (2).pdf
TOP STUDENT CHEMISTRY PREDICTIONS (2).pdf
TOP STUDENT GEOGRAPHY PREDICTIONS (3).pdf
TOP STUDENT COMPUTER PREDICTIONS QS (3).pdf
TOP STUDENT BIO PP3 PREDICTIONS (3).pdf
TOP STUDENT BIOLOGY PREDICTIONS (2).pdf
TOP STUDENT AGRICULTURE PREDICTIONS (2).pdf
TOP STUDENT MATHEMATICS PREDICTIONS (2).pdf

JOUST University Student Portal-Download Admission Letter and Admission Documents

JOUST University Student Portal-Download Admission Letter and Admission Documents

ADMISSION LETTER COLLECTION FORMS

TSC Minimum Requirements for Teacher Registration

TSC Minimum Requirements for Teacher Registration

Entry into the teaching service, especially under the Teachers Service Commission (TSC) umbrella, is a desire for many teachers.

But the question on what it takes to join the Commission is still a lingering issue, with some failing to make the cut because of lack of the requisite qualifications.

Thus, in this article, we highlight the academic and professional qualifications one needs to join the service as an employee of the Commission.

Individuals interested in joining the teaching profession can do so through the following entry grades: Early Childhood Development and Education (ECDE), PTE, Diploma in Education, Diploma in Education for Visually and hearing impaired, Bachelor of Education and Bachelor of Arts/Bachelor of Science, which have varying requirements.

  1. ECDE

ECDE Certificate

  1. Minimum of CPE/KCPE plus ECDE Certificate from KNEC.
  2. Minimum mean grade D+(Plus) at KCSE and ECDE Certificate from KNEC.
  3. Minimum mean grade D (Plain) at KCSE, KNEC proficiency certificate, ECDE Certificate from KNEC Diploma.

ECDE Diploma

  1. Mean grade C (Plain) at KCSE and ECDE Certificate from KNEC.
  2. Mean grade C+ (Plus) and above for University Diploma.

Degree

Mean grade C+ (Plus) and above.

PTE

  1. Minimum grade C Plain in KCSE and above.
  2. PTE Certificate from KNEC.
  3. Mean grade of C- (minus) for visually and hearing impaired persons.

Diploma in Education

  1. Minimum grade C+( Plus) in KCSE and above and C+ (Plus) in the two subjects specialization.
  2. At least C (Plain) in English.
  3. C (plain) in Mathematics for science-based courses.
  4. D+( plus) in mathematics in non-science based courses.

Bachelor of Education

  1. Minimum mean grade C+ (plus) and above or its equivalent.
  2. C+ (Plus) in two subjects of specialization.

Bachelor of Arts/Science

  1. Minimum grade C+ (Plus) in KCSE and above and C+ (Plus) in the two subjects of specialization.
  2. Post graduate Diploma in Education (PGDE).

 

List of all Senior Schools in Nyamira County

List of all Senior Schools in Nyamira County

S/No. SCHOOL NAME CLUSTER TYPE (Regular/  SNE/ DISABILITY TYPE ACCOMODATION TYPE GENDER REGION COUNTY SUB COUNTY UIC KNEC
7435 A.I.C GIETAI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY GIRLS NYANZA NYAMIRA BORABU 48DQ 43720122
7436 ERONGE SDA SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA BORABU AXRH 43720117
7437 ITUMBE SDA MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU LB7C 43720115
7438 KEGINGA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU B78C 43720124
7439 KINENI MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU PZ5Z 43720118
7440 MAGURA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU PU9Q 43720128
7441 MANGA GIRLS HIGH SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA BORABU PU3W 43720103
7442 MECHEO SDA MIXED SECONDARY C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA BORABU YG35 43720101
7443 MENYENYA S.D.A HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA BORABU MXLX 43720107
7444 MOGUSII SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU JGNZ 43720120
7445 MWONGORI SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA BORABU LQYX 43720111
7446 NYANSIONGO HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA BORABU 6Y3Y 43720106
7447 ONSANDO GIRLS DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY GIRLS NYANZA NYAMIRA BORABU 9GED 43720125
7448 RIGOKO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU P9L2 43720105
7449 ST MATHIAS MULUMBA SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA BORABU WNWN 43720110
7450 ST. GONZAGAGONZA ISOGE C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA BORABU T5PJ 43720108
7451 ST. JAMES NYARONDE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU VAM9 43720116
7452 ST. JOSEPH’S LIETEGO C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU 6GRU 43720102
7453 ST. PATRICK KAHAWA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU RAUV 43720112
7454 ST. PAUL’S NYANDOCHE SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA BORABU K9SY 43720113
7455 ST. THOMAS MOORE C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA BORABU 28VQ 43720104
7456 TINDERETI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA BORABU 4QFD 43720123
7457 BOGWENDO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA H6PB 43722116
7458 GEKE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA MPCA 43722114
7459 GESURE E.L.C.K SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA SWE3 43722121
7460 IKOBE MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA Z2GV 43722122
7461 IKONGE S.D.A. SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA BYR2 43722112
7462 IRIANYI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA YP5D 43722105
7463 KENYERERE P.A.G MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA ZNWB 43722133
7464 KIABIRAA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA 63W6 43722115
7465 KIENDEGE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA 96DE 43722120
7466 MANGA GIRLS MODEL SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA MANGA RFEZ 43722132
7467 MIRIRI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA 2DKP 43722108
7468 MOKOMONI SDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA V287 43722117
7469 MOKWERERO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA R64U 43722113
7470 MORAKO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA 3CBZ 43722110
7471 NYAGUKU SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA 3KCZ 43722106
7472 NYAIKURO HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA MANGA ZATU 43722107
7473 NYAISA MANGA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA N4K6 43722124
7474 NYAMBARIA  HIGH SCHOOL C1 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA MANGA VQT5 43700008
7475 OGANGO SDA MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA B5CN 43722119
7476 SENGERA MANGA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA 48F6 43722109
7477 SENGERERI MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA URE5 43722135
7478 ST PAUL’S GEKANO BOYS HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA MANGA BNZS 43722101
7479 ST THOMAS GEKANO MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA UKKX 43722126
7480 ST. ALENXANDER MIXED SECONDARY SCHOOL-KIOMAKOND C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA B7KF 43722134
7481 ST. ANDREWS NYABIGEGE MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA T25R 43722131
7482 ST. ANDREW’S NYAMWANGA D.O.K SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA ECBK 43722129
7483 ST. PAUL’S MANGA – OROTUBA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA KQ3T 43722118
7484 ST. PAUL’S NYACHICHI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA G4TF 43722123
7485 ST.MARY’S EKERUBO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA VLNQ 43722111
7486 TOMBE GIRLS HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA MANGA ZPWL 43722104
7487 TOMBE MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA MANGA LZWA 43722127
7488 BOCHARIA PAG MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 5XZ7 43715131
7489 ESANI SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NORTH MASABA PR4A 43715101
7490 KARANTINI SDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA DW2H 43715128
7491 KEBIRICHI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA C8ZU 43715102
7492 KEGOGI P A G MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 3D26 43715119
7493 KERONGETA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA PMNG 43715120
7494 MACHURURIATI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA U5Y4 43715122
7495 MATUTU PAG SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 2EJ4 43715116
7496 METAMAYWA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 5EVW 43715111
7497 MOCHENWA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA RXVN 43715109
7498 MONG’ONI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 6ZJD 43715107
7499 NYAIBASA MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA KVXK 43715133
7500 NYAKONGO HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA NORTH MASABA TS8P 43715112
7501 NYANKOBA SDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA DETQ 43715106
7502 NYARIACHO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 8ZDJ 43715124
7503 OMOYO GIRLS HIGH SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NORTH MASABA AKDL 43715114
7504 RIAKWORO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA TZ9Z 43715115
7505 RIAMONI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA DXDX 43715113
7506 RIGOMA SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NORTH MASABA C546 43715108
7507 RIOMANGA DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA HE2P 43715132
7508 RIOOGA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 4AP4 43715127
7509 RIOSIAGO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA JWM8 43715126
7510 RIYABE MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA WARN 43715103
7511 ST’ DANES ERONGE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA RKZV 43715110
7512 ST. ALBERT’S GIRANGO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA LUW5 43715129
7513 ST. ANATOLE NYANCHONORI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA 2DM8 43715104
7514 ST. CYPRIAN BITICHA SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NORTH MASABA KBU6 43715105
7515 ST. LUKE’S NYASUMI D.O.K. SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA ZQF2 43715130
7516 ST. YUVINALIS NYAMAKOROTO SEC. SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA PHPE 43715125
7517 ST.DON BOSCO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA EBDA 43715117
7518 ST.FRANCIS NYATIEKO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA BP8U 43715121
7519 SUNGUTUTA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NORTH MASABA ALFK 43715123
7520 BOMORITO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA RX6K 43706125
7521 BONDEKA ELCK MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 9CNX 43706149
7522 BONYUNYU SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA R2QM 43706104
7523 BOSIANGO S.D.A SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA H5E3 43706116
7524 EKENYORO TECHNICAL SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA WBU5 43706139
7525 EMBONGA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA JPX2 43706105
7526 GEKOMONI SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA RKQX 43706135
7527 GESIAGA SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA 88QB 43706110
7528 GESORE P.A.G SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA A93C 43706146
7529 GETA PAG SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA GFSX 43706141
7530 GETAARI MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA URVH 43706118
7531 GIANCHORE PAG MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 3MPX 43706124
7532 GUCHA SDA MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA QJY4 43706130
7533 KEBIRIGO HIGH SCHOOL C1 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA NYAMIRA UUZ3 43706115
7534 KENYENYA MIXED DAY AND BOARDING C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 2534 43706114
7535 KIANG’INDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA U3QK 43706126
7536 KIANUNGU SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA CFD9 43706123
7537 KUURA MIXED SECONDARY  SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 44LG 43706143
7538 MAKAIRO MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA KWBT 43706145
7539 MARANI P.A.G GIRLS SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA UFZV 43706129
7540 MARINDI SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA HMXQ 43706107
7541 MASOSA MIXED SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA ANGF 43706122
7542 MOTAGARA  GIRLS  SECONDARY  SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA AZBC 43706112
7543 NAMI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA EP5S 43706140
7544 NYABISIMBA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 2B7M 43706144
7545 NYACHOGOCHOGO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA AFUM 43706111
7546 NYACHURURU P.A.G MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA XJJX 43706132
7547 NYAGACHI DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA K78M 43706142
7548 NYAIGWA GIRLS SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY GIRLS NYANZA NYAMIRA NYAMIRA EVP5 43706151
7549 NYAKEORE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 58M8 43706133
7550 NYAMAIYA SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA 62BQ 43706103
7551 NYAMERU MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA YXZ4 43706131
7552 NYAMIRA BOYS HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA NYAMIRA TA4W 43706109
7553 NYANSABAKWA SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA NYAMIRA TKSJ 43706101
7554 OMOSASA DOK MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA ADL3 43706147
7555 OTANYORE ELCK MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 7GB8 43706152
7556 OUR LADY OF MERCY RANGENYO GIRLS SECONDARY SCHO C2 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA WKPN 43706102
7557 RIAMANDERE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 5JW4 43706120
7558 RIRUMI MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA TQ87 43706134
7559 SENATOR KEBASO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 3WNZ 43706119
7560 SIRONGA GIRLS HIGH SCHOOL C1 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA 2GPC 43700012
7561 ST PETER’S NYAISA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 9KMF 43706106
7562 ST PHILIP’S RATETI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA 3WVX 43706136
7563 ST TERESA MIXED SECONDARY SCHOOL (BUGO) C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA H5BJ 43706150
7564 ST TIBERIUS NYAMOTENTEMI M D SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA H658 43706148
7565 ST. JOSEPH’S ENCHORO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA GSUP 43706137
7566 ST. JOSEPH’S ETONO MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA GM62 43706121
7567 ST. MARY’S MONGORISI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA QAL2 43706113
7568 ST. PATRICE NYANTARO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA MLGU 43706127
7569 ST. PETER’S NYAKEMINCHA SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA 3WB4 43706117
7570 ST.JOSEPH’S KEMASARE MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA FPCR 43706128
7571 NYASIO  ELCK GIRLS SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY GIRLS NYANZA NYAMIRA NYAMIRA NORTH 2DE8 43728125
7572 ST. CLARE GEKENDO GIRLS SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY GIRLS NYANZA NYAMIRA NYAMIRA NORTH UXMH 43728126
7573 EGENTUBI MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH K6M7 43728113
7574 EGETONTO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 3EVT 43728219
7575 ENDIBA TECH SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH LRFG 43728110
7576 ENKINDA SDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH ZPZF 43728112
7577 ERONGE DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH WTSC 43728204
7578 ESANIGE MIXED TECHNICAL SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH B77F 43728222
7579 FR. KAISSER NYAMONGE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH L4GK 43728205
7580 GEKENDO SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA NORTH VE8S 43728102
7581 GEKONGE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 996T 43728211
7582 GETARE MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH SCR9 43728221
7583 GISAGE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH W8DB 43728213
7584 GITWEBE DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH R9C2 43728224
7585 IKAMU SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH SYG2 43728212
7586 IKONGE BOYS SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA NYAMIRA NORTH ZRSF 43728107
7587 IKONGE P A G SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA NORTH P95L 43728106
7588 ITERESI DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH K29W 43728132
7589 KEA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH GPZ6 43728101
7590 KEBABE GIRLS SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA NORTH XNY2 43728105
7591 KENGUSO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH CKKD 43728104
7592 KENYORO ELCK SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH Z8YU 43728118
7593 KIABONYORU GIRLS SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA NORTH A429 43728129
7594 KIABONYORU SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA NORTH Z8KS 43728114
7595 MAAGONGA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH CPNY 43728108
7596 MATONGO BOYS HIGH SCHOOL C2 PUBLIC REGULAR NONE BOARDING BOYS NYANZA NYAMIRA NYAMIRA NORTH 4LYK 43728210
7597 MATONGO LUTHERAN SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 3QEG 43728215
7598 MISAMBI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH EQXC 43728208
7599 MOCHENWA F.P.F.K. SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH PZBL 43728206
7600 MOGONGO GIRLS’ SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA NORTH CSN4 43728209
7601 MOTE OGUTO P.A.G SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 2NSM 43728124
7602 NSICHA DEB SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH PDTN 43728128
7603 NTANA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 58UA 43728203
7604 NYAGOKIANI SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY BOYS NYANZA NYAMIRA NYAMIRA NORTH Z2QK 43728115
7605 NYAIRANGA MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH XYGB 43728103
7606 NYAKENIMO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 9EKA 43728202
7607 NYAMAURO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 8WVA 43728122
7608 NYAMBIRI SDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH B95C 43728201
7609 NYAMIRANGA SECONDARY SCHOOL C2 PUBLIC REGULAR NONE BOARDING Mixed NYANZA NYAMIRA NYAMIRA NORTH E4XQ 43728120
7610 NYAMUSI GIRLS SECONDARY SCHOOL C3 PUBLIC REGULAR NONE BOARDING GIRLS NYANZA NYAMIRA NYAMIRA NORTH 22W9 43728207
7611 NYAMWANCHANIA PAG SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH YQF4 43728116
7612 NYANGOGE SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 7M7E 43728109
7613 OMORARE P.A.G MIXED TECH SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH QWDM 43728123
7614 OUR LADY OF MERCY IBARA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 4HEB 43728130
7615 RIOMEGO P.A.G  SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH ZDZW 43728217
7616 RIOMEGO SDA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 4HVX 43728214
7617 ST PAUL OMONAYO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH ZH5M 43728121
7618 ST. FRANCIS KEREMA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 5346 43728119
7619 ST. JOHN NYAKWEREMA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH 4ZKW 43728117
7620 ST. JOSEPH NYANCHOKA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH RBMK 43728223
7621 ST. JOSEPH’S BIEGO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH GTNL 43728111
7622 ST. MONICA MAGERI MIXED SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH TJMN 43728220
7623 ST. PAUL TOMBE TECHNICAL SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH DTLJ 43728127
7624 ST. PETER’S NYAKENYOMISIA SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH RG9X 43728218
7625 ST. THERESA OMONONO SECONDARY SCHOOL C4 PUBLIC REGULAR NONE DAY Mixed NYANZA NYAMIRA NYAMIRA NORTH ML9M 43728131
Exit mobile version